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Majorana zero modes in a quantum Ising chain with longer-ranged interactions
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A one-dimensional Ising model in a transverse field can be mapped onto a system of spinless fermions
with p-wave superconductivity. In the weak-coupling BCS regime, it exhibits a zero-energy Majorana mode
at each end of the chain. Here, we consider a variation of the model, which represents a superconductor with
longer-ranged kinetic energy and pairing amplitudes, as is likely to occur in more realistic systems. It possesses
a richer zero-temperature phase diagram and has several quantum phase transitions. From an exact solution of
the model, we find that these phases can be classified according to the number of Majorana zero modes of an
open chain: zero, one, or two at each end. The model possesses a multicritical point where phases with zero,
one, and two Majorana end modes meet. The number of Majorana modes at each end of the chain is identical
to the topological winding number of the Anderson pseudospin vector that describes the BCS Hamiltonian.
The topological classification of the phases requires a unitary time-reversal symmetry to be present. When this
symmetry is broken, only the number of Majorana end modes modulo 2 can be used to distinguish two phases.
In one of the regimes, the wave functions of the two phase-shifted Majorana zero modes decay exponentially in
space but in an oscillatory manner. The wavelength of oscillation is identical to that in the asymptotic connected
spin-spin correlation of the XY model in a transverse field, to which our model is dual.

DOI: 10.1103/PhysRevB.85.035110 PACS number(s): 71.10.Pm, 03.67.Lx, 74.20.Mn

I. INTRODUCTION

There has been much recent interest in Majorana zero
modes.1–13 Their relevance to topologically protected quan-
tum computation is intensely studied. Kitaev14 suggested an
elegant model of a one-dimensional p-wave superconducting
wire, which supports Majorana zero modes at the ends of the
chain.

Kitaev’s model is the fermionized version of the familiar
one-dimensional transverse field Ising model (TFIM),15 which
is one of the simplest models of quantum criticality. In
the fermionic representation, the well-known quantum phase
transition in the model can be understood as a transition
from the weak-pairing BCS regime to the strong-pairing
Bose-Einstein condensate (BEC) regime.16 The weak-pairing
phase is topologically nontrivial, and in this phase the chain
with open boundaries possesses a Majorana fermion zero-
energy mode localized at each end. It is equivalent to the
ferromagnetic phase of the transverse field Ising chain. The
strong-pairing phase is topologically trivial and does not have
any normalizable Majorana fermion zero-energy modes at
the ends. It corresponds to the quantum disordered phase of
the transverse field Ising chain. Recently, there have been
attempts to realize Kitaev’s model in one-dimensional wire
networks.17 In a realistic quantum wire, however, the range
of the hybridization of the electron wave function, as well
as that of Cooper pairing, will be finite, and the effect of
such longer-ranged interactions must be addressed. The goal
of this paper is to study the effect of such longer-ranged
interactions. We do so within the context of another exactly
solvable model, and find a rich phase diagram that results from
such longer-ranged correlations.

These longer-ranged interactions were considered in a
previously introduced generalization of the Ising model in a
transverse field by extending it to contain a three-spin interac-
tion term,18 which is also exactly solved by a Jordan-Wigner

transformation.15 This generalized model arises as a first step
of a real-space renormalization-group transformation19 and
has a richer phase diagram. The purpose of that study was
to understand how irrelevant operators can drive a system
along a critical line between two different zero-temperature
quantum critical points. The flow of this crossover as the higher
energy states are integrated out conforms to Zamolodchikov’s
c theorem.20 It is an explicit example of an exactly solved case
where a system that points to a given fixed point at higher
energies can asymptotically flow to a different fixed point at
lower energy scales. This flow was explicitly traced in terms
of a flow from higher temperature to lower temperature. The
lesson learnt there was that at higher temperatures a system
may be pointing to a different fixed point compared to its true
fate at zero temperature.

Here we reexamine the Ising model with a transverse field,
with the added three-spin interaction, from the perspective of
Majorana zero modes. We find that the phase diagram can be
classified according to the number of Majorana zero modes.
The fermionized version of this model corresponds to a p-wave
superconductor in which the electrons have longer-ranged
hoppings and longer-ranged harmonics of the p-wave gap
function, enabling us to address the effect of such longer-
ranged interactions on the zero-temperature phase diagram of
the quantum Ising chain. We find several topological phase
transitions in our model, and the phases can be classified by a
topological invariant of the Anderson pseudospin vector21 of
the mean-field description of the superconducting state. This
topological invariant is an integer, Z, and also specifies the
number of normalizable Majorana fermion zero-energy modes
that are localized at each end of a chain with open boundary
conditions.

We assess the conditions under which the topological order
of the zero-temperature phase diagram remains intact and
find that all phases are protected by a unitary version of
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time-reversal symmetry (appropriate for spinless fermions): so
long as this time-reversal symmetry is preserved, the phases
described in our work remain stable. In particular, we find
that this is so even when there are two Majorana fermion zero
modes localized at each end, separated by a lattice spacing and
with wave functions orthogonal to each other. Once we allow
breaking of time-reversal invariance, the topological invariant
collapses to Z2, which implies at most one Majorana zero
mode at each end of an open chain. The results for the one-
dimensional (1D) superconductor also offer insights into the
TFIM. We find from analyzing the Majorana zero modes that
the phase dominated by the three-spin interaction has ground-
state degeneracy. However, we also find that there exists a
class of local spin interaction that can remove this ground-
state degeneracy. Such impurities are time-reversal-symmetry
breaking, and it is not clear how they are realized in generic
circumstances.

The dual22 (exchanging the bond spins for the site
spins) of the three-spin model that we study is (amusingly)
the one-dimensional quantum XY model in a transverse
magnetic field23 in a larger parameter space than studied
previously. From a complex calculation of the asymptotic
form of the connected z component of the instantaneous
spin-spin correlation function, it was discovered that there
is an oscillatory region within the ferromagnetic phase.
We find that this phenomenon of oscillation is intimately
related to the oscillation of the Majorana zero modes; most
remarkably the oscillation wavelengths are identical, as is
the exponential decay in the vicinity of the quantum critical
lines.

The plan of the paper is as follows: In Sec. II we
set the stage by recapitulating the phase diagram of the
model to orient the reader. In Sec. III Majorana zero modes
and their properties are obtained from the solution of the
Bogoliubov–de Gennes (BdG) equation, while in Sec. IV
we discuss the efficacy of the Majorana representation by
obtaining the solution of a three-term recursion relation instead
of the full numerical solution of the BdG Hamiltonian. In
Sec. V we discuss the topological aspects and Sec. VI is the
concluding section. There are three Appendixes giving some
details.

II. THE HAMILTONIAN AND THE PHASE DIAGRAM

The three-spin extension of the TFIM, which was previ-
ously studied,18 has the Hamiltonian

H = −
∑

i

(
gσx

i + λ2σ
x
i σ z

i−1σ
z
i+1 + λ1σ

z
i σ z

i−1

)
. (1)

The σ ’s are the standard Pauli matrices. In this section we
introduce the Hamiltonian and its phase diagram from a
conventional Jordan-Wigner analysis. The Hamiltonian after
the Jordan-Wigner transformation

σx
i = 1 − 2c

†
i ci , (2)

σ z
i = −

∏
j<i

(1 − 2c
†
j cj )(ci + c

†
i ) (3)

is

H = −g

N∑
i=1

(1 − 2c
†
i ci) − λ1

N−1∑
i=1

(c†i ci+1 + c
†
i c

†
i+1 + H.c.)

− λ2

N−1∑
i=2

(c†i−1ci+1 + ci+1ci−1 + H.c.). (4)

In contrast to the spin model, the spinless fermion Hamiltonian
is actually a one-dimensional mean-field model for a triplet
superconductor, where there is both nearest- and next-nearest-
neighbor hopping, as well as condensates. The nearest-
neighbor hopping amplitude λ1 is also the amplitude of the
nearest-neighbor superconducting gap, and the next-nearest-
neighbor hopping amplitude is equal to the next-nearest-
neighbor superconducting gap; in general λ1 �= λ2. In terms
of Jordan-Wigner fermions one can envision finding an actual
one-dimensional system with such an extended Hamiltonian.
The solution of the corresponding spin Hamiltonian through
Jordan-Wigner transformation is, however, exact and includes
all possible fluctuation effects and is not a mean-field solution.

Imposing periodic boundary conditions, the Hamiltonian
can be immediately diagonalized by a Bogoliubov transfor-
mation:

H =
∑

k

εk

(
η
†
kηk − 1

2

)
. (5)

The anticommuting fermion operators ηk’s are suitable linear
combinations in the momentum space of the original Jordan-
Wigner fermions. The spectra of excitations are (lattice spacing
will be set to unity throughout the paper)

εk = ±2
√

1 + λ2
1 + λ2

2 + 2λ1(1 − λ2) cos k − 2λ2 cos 2k;

(6)

unless otherwise stated, we shall set g = 1. The quantum phase
transitions of this model are given by the nonanalyticities of
the ground-state energy:

E0 = −1

2

∑
k

εk. (7)

These nonanalyticities are also defined by the critical lines
where the gaps collapse; see Fig. 1.

For the Ising model in a transverse field without three-spin
interaction, the gaps collapse at the Brillouin zone boundaries
k = ±π at the self-dual point λ1 = 1 and λ2 = 0. When the
three-spin interaction is added, the gaps can collapse at k = 0
as well as k = arccos(λ1/2) for λ2 = −1 and 0 < λ1 < 2.
But at the free-fermion point b, there are no zero-energy
excitations except at k = ±π/2. When we move to the point
c the spectrum evolves, increasing the weight at k = 0, and
the locations of the nodes are incommensurate with the lattice.
The incommensuration shifts as a function of λ2. The point d

is a multicritical point and the spectrum vanishes quadratically
at ±π . As we shall discuss below, the spectra are no longer
relativistic at this point as a result of the confluence of two
Dirac points, corresponding to a dynamical exponent z = 2.
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FIG. 1. (Color online) The region λ2 > 1 + λ1 is ordered in the
original spin representation and the boundary of it is a critical
line where the gap at k = 0 collapses. The region λ2 < 1 − λ1 is
disordered as well and the boundary corresponds to a critical line
where the gap at k = π collapses. The point λ1 = 0 and λ2 = 1
is a special multicritical point24 with an emergent U(1) symmetry,
most transparently seen in the dual representation (see below). In
the same dual representation, the region enclosed by λ2

1 = −4λ2 is
an oscillatory ferromagnetically ordered phase separating from an
ordered phase for λ2 < 0, as determined by the spatial decay of
the instantaneous spin-spin correlation function. Note that duality
exchanges the ordered and disordered phases. Here n = 0,1,2
correspond to regions with n Majorana zero modes at each end of
an open chain.

III. MAJORANA ZERO MODES

In this section we explore the zero modes via the
Bogoliubov–de Gennes equations with open boundary
conditions.

A. Unbroken time-reversal invariance

The equations, assuming open boundary conditions, are
given by (

ĥ �̂

−�̂ −ĥ

)( �un

�vn

)
= En

( �un

�vn

)
, (8)

where the submatrices are (unless otherwise stated, we will set
g = 1)

ĥij = λ1(δj,i+1 + δj,i−1) + λ2(δj,i+2 + δj,i−2) − 2δij , (9)

�̂ij = −λ1(δj,i+1 − δj,i−1) − λ2(δj,i+2 − δj,i−2). (10)

Here �uT
n = (un(1),un(2), . . . u(N )) and from time-reversal

symmetry of the Hamiltonian �un = �u∗
n and �vn = �v∗

n. The
eigenvalue is labeled by n and the arguments of �u and �v are
lattice indices.

From the diagonaliztion of the BdG Hamiltonian, we can
easily see that the Majorana zero modes can occur only
for open boundary conditions. The phase diagram itself can
be deduced from the number of zero modes of the BdG
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FIG. 2. (Color online) The two Majorana zero modes for λ1 =
0.05 and λ2 = 1.5. The row number 1 shows u01(i) and v01(i)
corresponding to the the first Majorana zero mode. The second row
corresponds to the second Majorana zero mode which is orthogonal
to the first. The third row corresponds to the probability distributions
P01(i) and P02(i) for the two respective Majorana modes. The
numerical diagonalization was carried out for a lattice of N = 100
sites with open boundary condition. For lattices larger than 150, one
quickly loses numerical control because of the 1016 difference in the
orders of magnitude of the largest eigenvalue and the zero mode.

equation. In the next section we shall see that, in the Majorana
representation, the zero modes can be obtained from a very
simple recursion relation. With reference to Fig. 1 we note
that there are regions of n = 0, n = 1, and n = 2 zero modes,
and the lines separating them are quantum critical lines, except
for the line separating n = 0 and n = 2, which is a topological
transition. The thin curved line λ2

1 = −4λ2 corresponds to zero
entanglement entropy.25 In this respect, it is remarkable that
this thin line touches the quantum critical line.

For λ2 > 0 and λ2 > 1 + λ1, one of the zero modes decays
exponentially in the bulk, and the decay length diverges as
the quantum critical line is approached. The amplitude of the
second zero mode also decays exponentially but it oscillates
as eiπn regardless of λ1 as it approaches the quantum critical
line, at which point it loses the compactness of its support,
signifying the loss of this zero mode. On the side λ2 < 1 + λ1,
one zero mode is recovered and it decays exponentially in the
bulk, as in the region λ2 > 1 + λ1, as shown in Fig. 2.

The situation is richer for λ2 < 0. First of all there are no
zero modes until λ2 < −1 for λ2 < 1 − λ1. In this region, there
are two zero modes, both of which are oscillatory with expo-
nentially decaying envelope. But this time the wavelengths of
the modes depend on the parameters (λ1,λ2). Note that they
are phase shifted by a lattice site; see Fig. 3. When we cross
the quantum critical line λ2 = 1 − λ1, a nonoscillatory and
exponentially decaying zero mode is observed.
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FIG. 3. (Color online) The two Majorana zero modes for λ2 =
−1.2 and λ1 = 1. The first row depicts u02(i) and v02(i) corresponding
to the first Majorana zero mode. The second row shows the second
Majorana zero mode which is orthogonal to the first. The third row
corresponds to the probability distributions P01(i) and P02(i) for the
two respective Majorana modes.

B. Broken time-reversal invariance

We can ask what happens if we add a relative phase between
the two order parameters in the BdG Hamiltonian, while
keeping the single-particle Hamiltonian intact. Then,

(
ĥ �̂

�̂† −ĥ

)( �un

�v∗
n

)
= En

( �un

�v∗
n

)
, (11)

where the submatrices are

ĥij = λ1(δj,i+1 + δj,i−1) + λ2(δj,i+2 + δj,i−2) − 2δij , (12)

�̂ij = eiθλ2(δi,j+2 − δi+2,j ) + λ1(δi−1,j − δi+1,j ). (13)

The solution of this modified BdG Hamiltonian shows that the
regions of the phase diagram which contain n = 1 Majorana
zero mode remain robust while those containing n = 2
Majorana zero modes are in general destroyed, meaning that
they are split; two examples are shown in Fig. 4 for θ = π/2.
For an arbitrary value of θ , the real and the imaginary parts of
�̂ij will receive contributions from both λ1 and λ2, making it
difficult to directly compare with the previous phase diagram
in Fig. 1. For θ = π/2, the term containing λ2 will be purely
imaginary, while the λ1 term will remain untouched. This is
easier to compare with the previous phase diagram because the
absolute magnitude of the next-nearest-neighbor condensate
remains the same. We have verified that our conclusions hold
for arbitrary θ as well.
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FIG. 4. (Color online) Splitting of n = 2 Majorana zero modes
for the complex Hermitian BdG equation. Left: λ2 = 2.5. Right: λ2 =
−2.0. The magnitude of ε0 is the smallest eigenvalue. The slight
rounding in the proximity of the quantum critical point is due to
the finite size of the lattice: N = 200. The quantum critical point
for the infinite system is at λ1 = 1.5 for the left panel and λ1 = 3.0
for the right panel. The n = 1 Majorana zero mode survives intact.
Note that at λ1 = 0 the chain splits into two independent chains, and
hence there is a zero mode irrespective of the fact that the λ2 pairing
amplitude is purely imaginary.

IV. MAJORANA HAMILTONIAN

To unveil the hidden topology behind the TFIM with three-
spin interaction, we introduce Majorana fermion operators

ai = c
†
i + ci, (14)

bi = −i(c†i − ci), (15)

satisfying anticommutation relations, so that the Hamiltonian
in Eq. (4) becomes

H = −i

[
−

N∑
i=1

biai + λ1

N−1∑
i=1

biai+1 + λ2

N−1∑
i=2

bi−1ai+1

]
.

(16)

The three-spin interaction corresponds to a next-nearest-
neighbor coupling in addition to the Majorana fermion analog
of polyacetylene in the transverse Ising model. The difference
here is that on-site potentials do not occur with Majorana
fermions: terms like V a2

i or V b2
i only add overall constants,

since a2
i = b2

i = 1 We write down the Hamiltonian in the basis
ψT = (a1,b1,a2,b2,a3,b3, . . .) and see that

H = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · ·
−1 0 λ1 0 λ2 · · ·

0 −λ1 0 1 0 · · ·
0 0 −1 0 λ1 0 λ2 · · ·
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(17)

The zero modes are given by the recursion relation of the
amplitudes,

−Ai + λ1Ai+1 + λ2Ai+2 = 0, (18)

where the eigenvector is chosen to be of the form
(A1,0,A2,0, . . .)T . We note that, when λ2 < 0, the above
recursion relation looks like the equation of motion of a
damped harmonic oscillator with the time variable discretized.
The two linearly independent solutions can be expressed as

Ai = C1q
i
+ + C2q

i
−, (19)
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where q± satisfy

1 = λ1q + λ2q
2, (20)

q± =
−λ1 ±

√
λ2

1 + 4λ2

2λ2
, (21)

and C1, C2 are constants. However, when we restrict ourselves
to real and normalizable solutions, we may have only one,
two, or zero solutions. Note that λ2

1 + 4λ2 > 0 is sufficient
for giving us real solutions regardless of the C1-to-C2 ratio.
Therefore, we can obtain the phase boundary for λ2

1 + 4λ2 > 0
just by examining whether |q±| is larger than 1 or not. For the
case λ1,λ2 > 0, we can recover the results found by Kopp
and Chakravarty.18 For 1 − λ1 < λ2 < 1 + λ1, we have 0 <

q+ < 1 < −q−, and therefore a single Majorana zero mode at
each end of the chain. For λ2 > 1 + λ1, we have 0 < −q− < 1
and 0 < q+ < 1 and thus there are two Majorana zero modes
at each end of the chain. Last, we have no Majorana zero
mode for λ2 < 1 − λ1, as q+ and −q− are both greater than
1. We can extend this analysis to λ2

1 + 4λ2 > 0 and λ2 < 0,
λ1 > 0. For λ2 < 1 − λ1 and λ2 > −1, we have |q±| > 1 and
thus no Majorana zero mode, whereas λ2 > 1 − λ1 gives us
0 < q+ < 1 < −q−, and thus there is one Majorana zero mode
at each end of the chain.

By contrast, when we break the time-reversal symmetry
by having a phase difference between the two pairing terms
as in Eq. (13), we find that we can have only zero or one
normalizable Majorana zero mode at the end of the chain, as
shown above from the explicit solution of the BdG equation.
Interestingly, we find that we obtain the same result if we
break time-reversal symmetry by adding an impurity term of
the form (see Appendix B)

Himp = −iλ̃ajaj+m

= −iλ̃(c†j cj+m − c
†
j+mcj + c

†
j c

†
j+m − cj+mcj ) (22)

to the original Hamiltonian Eq. (4). Since the translational
invariance is broken in this case, the number of zero Majorana
modes provide a convenient way to distinguish different
phases.

A. Oscillatory Majorana zero modes with varying wavelength

We find from the recursion relation Eq. (18) that there are
no Majorana zero modes for −1 < λ2 < 0 and λ2 < 1 − λ1.
However, there are two oscillatory zero modes for λ2 < −1
and λ2

1 + 4λ2 < 0, with amplitudes at a lattice site j given by
the two solutions of the recursion relation:

Aj = (−λ2)−j/2 cos jθ (23)

and

Aj = (−λ2)−j/2 sin jθ, (24)

where θ = arcsin(λ1/
√−4λ2). The amplitude can be rewritten

as

(−λ2)−j/2 = e−x/ξ , (25)

where ξ = 2a/ ln(−λ2). Note that close to the quantum critical
line |λ2| ∼ |λ1 − 1|. We have reintroduced the lattice spacing

a here. Examples of oscillatory Majorana modes are shown in
Fig. 3.

When λ2 becomes negative, an oscillatory phase, as deter-
mined from the spin-spin correlation function, was obtained
from a dual transformation that exchanges sites and bonds of
the lattice. Then the Hamiltonian in Eq. (4) can be cast in the
standard notation of the quantum XY model by factoring out
an overall scale. Thus, with the μ’s as bond-centered Pauli
matrices,

H = − 2

1 + r

∑
n

[
1 + r

2
μ1(n)μ1(n + 1)

+ 1 − r

2
μ2(n)μ2(n + 1) + hμ3(n)

]
, (26)

the two parametrizations are related to each other by

λ1 = 2h

1 + r
, λ2 = r − 1

1 + r
. (27)

The critical line in the XY model, separating the quantum
disordered phase from the ferromagnetic phase, is h = 1,
which corresponds to λ1 + λ2 = 1, separating the ordered
phase from the disordered phase. The model was previously
studied only in the range 0 < r < 1 and h > 0. Since the
ordered and the disordered phases are exchanged under duality,
the disordered phase of the three-spin model is λ1 + λ2 < 1.

A complex calculation23 of the instantaneous spin-spin
correlation function showed that within the ferromagnetic
phase there is an oscillatory phase in which the connected
correlation function G(x) = 〈μ3(x)μ(0)〉 − 〈μ3(x)〉〈μ3(0)〉 in
the limit x → ∞ is

G(r) =

⎧⎪⎨
⎪⎩

1√
x
e−x/ξ , disordered,

1
x2 e

−x/ξ , ordered,
1
x2 e

−2x/ξ Re(BeiKx), oscillatory ordered.

(28)

Here cos K = λ1/
√−4λ2 and ξ is the spin-spin correlation

length. The oscillatory phase in the XY model is bounded
by r2 + h2 � 1, which corresponds to λ2 � −λ2

1/4 in the
three-spin model. Note that the oscillation wavelength is
identical to the wavelength of the Majorana fermions. Even
the correlation length close to criticality is the scale of the
exponential decay of the Majorana fermions. This must imply
that in the spectral decomposition the Majorana zero modes
asymptotically dominate, although we have not yet found a
rigorous proof of it.

Since Majorana modes of zero energy are degenerate eigen-
states, a change of the number of Majorana zero modes can
occur only when the energy gap collapses, i.e., at a quantum
phase transition. Reexamining the behavior of Majorana zero
modes in the full parameter space, there are three dividing
lines based on their number: λ2 = 1 + λ1, λ2 = 1 − λ1, and
λ2 = −1; see Fig. 1. These lines are identified with the critical
lines signifying phase transitions, as can be seen in the energy
spectrum in the previous result.18 So in this case, the number
of Majorana zero modes serves as an “order parameter” for
the quantum phase transition.

We can then distinguish phases and locate quantum
phase transitions by simply transforming the Hamiltonian
in terms of Majorana operators and finding the number of
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allowed Majorana zero modes at each end of the chain,
which is a topologically protected quantity. This provides
us with a profoundly simple way to study quantum phase
transitions.

B. Unbroken unitary time-reversal symmetry

Some insight into the phase diagram can be obtained from
the perspective of the weak- to strong-pairing topological
phase transitions in this model. Starting from the spinless
fermion Hamiltonian in Eq. (4), we get upon Fourier trans-
formation

H =
∑

k

(2 − 2λ1 cos k − 2λ2 cos 2k)c†kck

+
∑

k

(iλ1 sin kc
†
kc

†
−k + iλ2 sin 2kc

†
kc

†
−k + H.c.), (29)

which describes a superconductor with a pairing potential that
consists of a nearest-neighbor and a second-nearest-neighbor
p-wave pairing. The BdG Hamiltonian which governs the
dynamics of the BCS quasiparticles at each momentum k has
the form

H BdG(k) =
(

εk − μ i�(k)

−i�(k) μ − εk

)
, (30)

where εk = −2λ1 cos k − 2λ2 cos 2k, �(k) = λ1 sin k +
λ2 sin 2k, and μ = −2. In this representation of the model,
the various phase boundaries described in previous sections
correspond to Lifshitz transitions, across which the number
of Fermi points changes. However, as we shall see, not
all Lifshitz transitions are topological phase transitions.
To determine precisely whether a Lifshitz transition is a
topological phase transition, we must define an integer-valued
topological invariant that changes only across a topological
phase transition. It is convenient to define the invariant using
the Anderson pseudospin vector21

�d(k) = �(k)ŷ + (εk − μ)ẑ. (31)

In terms of this vector HBdG(k) = �d(k) · �τ , where �τ are Pauli
matrices which act in the Nambu (i.e., particle-hole) basis
of HBdG. It is important to highlight that the pseudospin
is defined only in the yz plane in this problem. This is a
consequence of time-reversal symmetry (applied to spinless
fermions, time reversal is simply the operation of complex
conjugation). Time-reversal symmetry ensures that the relative
phase between the nearest-neighbor and second-neighbor
pairing amplitudes must be real (in the context of the spin
model, the relative phase is identically zero). However, when
time-reversal symmetry is broken, the relative phase between
these can be an arbitrary complex number. If this happens,
the Anderson pseudospin vector will have three components,
and the analysis below is invalidated. In this section, we
shall restrict our attention to the case where the relative
phase is zero. The topological invariant that characterizes
the phase transitions will be defined in terms of the unit
vector

d̂(k) =
�d(k)

| �d(k)| ≡ cos θkŷ + sin θkẑ. (32)
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FIG. 5. (Color online) Topological phase transition across the
point λ1 = 1,λ2 = 0. (a) λ1 = 1−,λ2 = 0. Of the two solid curves,
the one with greater dispersion is εk and the other is the quasiparticle
energy. Of the two dashed lines, the horizontal line is μ, and the
other is �k . (b) The same quantities plotted for λ1 = 1+,λ2 = 0. The
associated Anderson pseudospin vector d̂(k) is drawn schematically
below each plot. It is clear that in (a) the pseudospin does not wind
along the 1D Brillouin zone, i.e., W = 0, whereas in (b) it winds
once, i.e., W = 1.

Here, the momentum states with periodic boundary conditions
form a ring T 1, and the unit vector d̂(k) exists on a unit circle
S1 in the yz plane. Therefore, the angle θ (k) is a mapping θ (k) :
S1 → T 1, and the topological invariant we seek is simply the
fundamental group of this mapping, which is just the integer
winding number

W =
∮

dθk

2π
, (33)

where the integral is done around the one-dimensional Bril-
louin zone. This quantity characterizes the number of times the
vector d̂(k) rotates in the yz plane around the one-dimensional
Brillouin zone. It can only be an integer and therefore cannot
vary with smooth deformations of the Hamiltonian, so long
as the quasiparticle gap remains finite. The winding number
changes discontinuously only when the energy gap vanishes,
i.e., at a topological phase transition. Moreover, the change
in the number of normalizable Majorana modes at each end
of the chain across a transition is given by the change in
the winding number W .16 We now apply this framework to
characterize several critical points in the λ1λ2 plane. In Fig. 5
we show the results in the vicinity of the critical point at λ1 = 1
and λ2 = 0. At this critical point, the chain consists only of
nearest-neighbor hopping and pairing. Therefore, the kinetic
energy has its minimum at k = 0, and the gap function also
vanishes at this point. For λ1 = 1− and λ2 = 0, the chemical
potential occurs below the band bottom. In this limit, the
winding number of d̂(k) is zero, since the configuration is
topologically equivalent to one where θ (k) = π/2 for all k,
and this state clearly has W = 0. On the other side of the
transition, λ1 = 1+ and λ2 = 0, the chemical potential crosses
the band bottom, and the winding number changes to W = 1.
At the critical point itself, the Anderson pseudospin unit vector
is not defined at the point k = 0, where the gap closure occurs.
The change in W is identical to the change in the number
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FIG. 6. (Color online) Topological phase transition in the vicinity
of the point λ1 = 0,λ2 = 1. (a) λ2 = 1−,λ1 = 0; (b) λ2 = 1+,λ1 = 0.
It is clear that in (a) the pseudospin does not wind along the 1D
Brillouin zone, i.e., W = 0, whereas in (b) it winds twice, i.e., W = 2.
The labels are the same as in Fig. 5.

of normalizable Majorana fermion zero modes across this
transition.

Next, we use similar reasoning to study the transition at the
critical point λ2 = 1 and λ1 = 0 across which the change in
the number of normalizable Majorana modes at each end is
2 (Fig. 6). Here, the chain consists only of second-neighbor
hopping and pairing. Note that there are now two extremal
points of the band structure: one at k = 0, the other at k = π .
The winding number jumps from 0 to 2 across this transition,
and for λ2 > 1 and λ1 = 0, we see two normalizable Majorana
zero-energy modes at each end of the chain.

Interestingly, our model hosts both BEC-BCS transitions
and BEC-BCS crossovers. Only the former are topological
transitions: these require that (1) an extremum of the band
crosses the chemical potential, and (2) the pairing potential
vanishes at the same momentum. If an extremum of the band
crosses the chemical potential at a point where the gap does
not vanish, the winding number will not change, since the total
energy gap does not vanish. This is an example of a BCS-BEC
crossover, and not a transition. This type of crossover is seen
near the line λ2 = −1. An illustrative example is presented
in Fig. 7. Here, the critical point λ1 = 1.5 and λ2 = −1 is
studied. In Fig. 7(a), the properties of the system are shown
at λ1 = 1.5 and λ2 = −1+, where no normalizable Majorana
zero mode occurs at the boundary. From the fact that Fermi
points occur in this system, it is clear that the system is in
the BCS regime. However, it is apparent from the form of the
Anderson pseudospin that the winding number is identically
zero. Thus, while this state is a BCS state, it is topologically
equivalent to a BEC state which also has zero winding number.
Thus, a crossover can connect this state to a BEC state.
However, when λ1 = 1.5 and λ2 = −1−, i.e., just below the
critical point, we know from the analysis of previous sections
that there are two normalizable Majorana fermion zero modes
at each edge of the chain. This is also consistent with the
winding number of the Anderson pseudospin, which is W = 2
in this regime. We stress, therefore, that a topological phase
transition between two BCS states can occur. However, so
long as the band structure possesses inversion symmetry, it
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FIG. 7. (Color online) Topological phase transition in the vicinity
of the point λ1 = 1.5,λ2 = −1. (a) λ2 = −1+,λ1 = 1.5; (b) λ2 =
−1−,λ1 = 1.5. In (a), the pseudospin does not wind along the 1D
Brillouin zone, i.e., W = 0, whereas in (b) it winds twice, i.e., W = 2.
The labels are the same as in Fig. 5.

follows that such topological BCS-BCS transitions can change
the topological invariant only by ±2. In a similar way, the
critical line in Fig. 1 from b to d represents a topological
transition across which the winding number changes by 2.
Along this line, the gap vanishes at an incommensurate set
of points in momentum space. Therefore it marks a transition
from zero to two Majorana zero modes at each end of the
chain. As we approach the special multicritical point d in
Fig. 1 (λ1 = 2,λ2 = −1), these two incommensurate points
move toward the origin. They meet at k = 0, which is now a
local maximum of the band structure. The two momenta ±k0

meet at k = 0 at the multicritical point (λ1 = 2,λ2 = −1). In
this way, all the topological phase transitions that occur in the
model can be understood.

Last, we study the nature of the special multicritical point
which occurs at (λ1 = 2,λ2 = −1). As this multicritical point
is approached, the two incommensurate momenta which occur
around and on either side of k = 0, where the gap vanishes,
approach each other at k = 0. At the multicritical point,
the momenta meet at k = 0 and annihilate each other, as
shown in Fig. 8. Note that in Figs. 8(a)–8(c) the Anderson
pseudospin is not defined at points where the gap vanishes.
Therefore, the winding number itself is not defined (this is
consistent with the fact that this line represents a topological
phase transition). However, for λ1 > 2,λ2 = −1, the system is
gapped everywhere, has a winding number W = 1, and possess
one normalizable Majorana fermion zero mode at each end of
the chain.

To conclude, in this section, we have described a com-
plementary way in which the phase transitions in this model
can be understood. Specifically, we have introduced the
topological invariant corresponding to the winding number
of the Anderson pseudospin vector around the Brillouin zone.
Each of the phase boundaries of the spin model studied in this
paper corresponds to a region where the winding number is
ill defined, and across each critical point the winding number
changes by an integer. The number of normalizable Majorana
fermion zero-energy modes localized to each end of the chain
at a point in the λ1λ2 plane is exactly equal to the winding
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FIG. 8. (Color online) Topological phase transition along
the line λ2 = −1. (a) λ1 = 1.6,λ2 = −1. (b) λ1 = 1.8,λ2 = −1.
(c) λ1 = 2.0,λ2 = −1. (d) λ1 = 2.2,λ2 = −1. The associated An-
derson pseudospin vector is not shown since it is not defined at points
where the quasiparticle energy gap vanishes. However, the system
in (d) is fully gapped and has W = 1, which is consistent with the
analysis of previous sections. The labels are the same as in Fig. 5.

number at that point. We have also emphasized the point that a
crossover can occur between a BEC and BCS system provided
that both have the same winding number (W = 0), and we
have also demonstrated that there can be topological phase
transitions from one type of BCS state to another.

C. Broken time-reversal symmetry

When the phase difference between the nearest-neighbor
and the second-neighbor pairing amplitudes is nonzero, the
BdG Hamiltonian takes the form

H (k) =
(

ξk −αk + iβk

−αk − iβk −ξk

)
, (34)

where αk = λ2 sin θ sin 2k and βk = λ1 sin k + λ2 cos θ sin 2k.
The particle-hole symmetry of the BdG Hamiltonian is

σ1H (k)σ1 = −H (−k)∗. (35)

k = 0,±π are special because they map onto themselves. Then
from the equations

H (k = 0) = (1 − λ1 − λ2)σ3, (36)

H (k = π ) = (1 + λ1 − λ2)σ3 (37)

it follows that the topological invariant is
∏

k=0,π sgn(ξk).
When ξ0 = (1 − λ1 − λ2) and ξπ = (1 + λ1 − λ2) have op-
posite signs, we get n = 1; otherwise n = 0. As to the
physical significance of k = 0,±π , it is similar to the case
of topological insulators26 where these points are termed
“time-reversal-invariant” points. In a superconductor, k and
−k states are paired, so the k = 0,±π points are again special
because they map onto themselves. This elegant topological
argument due to Roy27 confirms the results in Sec. III B; see
also Refs. 14 and 28.

V. CONCLUSIONS

In this paper we have studied an exactly solvable spin
Hamiltonian that is a TFIM with an added three-spin in-
teraction. While this spin interaction may appear to be
artificial to the reader, such a term is generated in real-space
renormalization-group treatments of the TFIM.19 Therefore,
it is a physically plausible coupling in a more realistic
Hamiltonian and corresponds to longer-ranged pairing and
hybridization interactions among the fermions related to
the spins via a Jordan-Wigner transformation. By analyzing
the fermionized version of this spin Hamiltonian, we have
identified the quantum phase transitions in this system and
classified them according to the number of Majorana zero
modes localized at each end. This number in turn is related
to the winding number of the Anderson pseudospin unit
vector along the one-dimensional Brillouin zone, so long as
time-reversal symmetry for the spinless fermions is preserved.
We have noted that when there are an even number of Majorana
fermion modes at each end, there can be a crossover from a
regime where the Majorana fermion wave function decays
in an oscillatory fashion (with an exponential envelope) to
a regime where these modes decay exponentially without
oscillation. Interestingly, at the crossover, the entanglement
entropy vanishes identically. We stress that this crossover does
not occur when there is an odd number of Majorana fermions
at each end. Whether the vanishing of the entanglement
entropy is a necessary condition for this crossover remains
to be understood. The degree to which such a crossover
remains generic, or is ascribed to the integrability of the
spin chain, is unclear. Finally, an interesting possibility is
that such crossovers may occur in higher dimensions in
spin-triplet superconductors in the presence of vortices and in
other topological superconductors involving noncentrosym-
metric systems. We shall relegate these studies to future
work.

For unitary time-reversal invariance, the topological argu-
ment involving Anderson’s pseudospin vector leads to the
winding number Z. One might wonder if higher windings
beyond n = 0,1,2 are possible as well. In principle, they
are. To check, we added an even longer-ranged term H3 =
λ3c

†
i ci+3 + λ3c

†
i c

†
i+3 + H.c. Now, in addition to n = 0,1,2,

we also get winding number n = 3 in appropriate regimes
of the parameter space, from explicit calculations of the BdG
equation. It is quite likely that these higher-order windings
are energetically punished. The situation is very similar to the
XY model in two dimensions for which higher-order vorticity
is suppressed by the chemical potential. Clearly, phases with
n = Z Majorana zero modes are allowed by longer-ranged
Hamiltonians. We find this phenomenon intriguing; it deserves
further attention. However, once the protection due to unitary
time-reversal invariance is removed, the topological invariant
collapses to Z2, with at most one Majorana zero mode at each
end of an open chain.

We have previously emphasized that, while the solution of
the spin model is exact, the fermonized version is a mean-field
description of a p-wave superconductor whose exact solution
requires treatment of fluctuation effects. In a recent paper it has
been shown, however, that inclusion of fluctuation effects does
not change the basic picture in a one-dimensional model.29
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Whether such a conclusion holds in higher dimensions, where
Majorana zero modes are nucleated in the vortex cores of
px + ipy superconductors, remains to be seen. We leave this
problem for future research.

An interesting question is whether or not the topological
phases described here are perturbatively stable against weak
interactions. We believe that they are, because they are
gapped. In principle, for stronger interactions, the unitary
time-reversal symmetry that protects the n = 2 phase can
break spontaneously and destabilize it. The effect of stronger
interactions in a specific model has been considered in Ref. 30.
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APPENDIX A: BROKEN TIME-REVERSAL INVARIANCE

When there is a relative phase eiθ between the nearest-neighbor and the next-nearest-neighbor pairing amplitudes, the Majorana
Hamiltonian is

H = −i

{
−

N∑
i=1

biai + λ1

N−1∑
i=1

biai+1 + λ2

2

N−1∑
i=2

[(1 + cos θ )bi−1ai+1 − (1 − cos θ )ai−1bi+1 + sin θ (ai−1ai+1 − bi−1bi+1)]

}
.

(A1)

Thus, we cannot simply set λ2 to be complex in Eq. (18). The Hamiltonian in the Majorana basis ψT = (a1,b1,a2,b2,a3,b3, . . .)
is

H = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 λ2
2 sin θ − λ2

2 (1 − cos θ ) · · · · · ·
−1 0 λ1 0 λ2

2 (1 + cos θ ) − λ2
2 sin θ · · · · · ·

0 −λ1 0 1 0 0 · · · · · ·
0 0 −1 0 λ1 0 · · · · · ·
...

... 0 −λ1 0 1 · · · · · ·
...

... 0 0 −1 0 · · · · · ·
...

...
...

...
...

. . .
. . . · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

To find the zero-mode eigenvectors, we can try a solution
of the form |�〉 = (A1,B1,A2,B2,A3,B3, . . .)T . However, the
recursion relations turn out to be too complex to solve
analytically. Thus, we resorted to numerical diagonalization
of the BdG Hamiltonian in the main text.

APPENDIX B: MAJORANA ZERO MODES IN THE
PRESENCE OF IMPURITY

In general, we find that when H of Eq. (4) results in two
Majorana zero modes, Himp in Eq. (22) destroys them (except
for some special cases), while the regime with one Majorana
zero mode remains intact.

Consider the general definition of the Majorana zero mode
� = ∑

(Aiai + Bibi), which is determined by the commutator

0 = [H0 + Himp,�] = 2i
∑

(Ai − λ1Ai+1 − λ2Ai+2)bi

− 2iB1a1 − 2i(B2 − λ1B1)a2

− 2i
∑

(Bi+2 − λ1Bi+1 − λ2Bi)ai+2

+ 2iλ̃(Aj+maj − Ajaj+m), (B1)

which requires, in addition to the original recursion formula

Ai − λ1Ai+1 − λ2Ai+2 = 0, (B2)

Bi − λ1Bi−1 − λ2Bi−2 = 0 (i > j, i �= j + m), (B3)

new boundary conditions for the Bj ’s:

Bi = 0 for i < j, (B4)

Bj = λ̃Aj+m, (B5)

Bj+m − λ1Bj+m−1 − λ2Bj+m−2 = −λ̃Aj (B6)

(note that the Ai recursion relation is not affected by the Bi’s).
Because of this change in the boundary conditions, we can no
longer set Bi = 0 for all i. Rather, for i > j + m, the general
solution forAi and Bi are of the form

Ai = C+qi
+ + C−qi

−, Bi = C ′
+(1/q+)i + C ′

−(1/q−)i , (B7)

where 1 − λ1q± − λ2q
2
± = 0.

We can now see how the impurity term Eq. (22) may destroy
the Majorana zero modes. Equation (B7) implies that, if we
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have two Majorana zero modes without the impurity, which
only requires |q±| < 1, we will not have any normalizable
Majorana zero mode due to the divergence of Bi unless we
have Bj+m−1 = Bj+m = 0, which can occur only in special
situations. On the other hand, if we have a single Majorana zero
mode without the impurity, which means |q+| < 1 < |q−|, the
Majorana zero mode survives if Bi+m/Bi+m−1 = 1/q−. We
have checked this explicitly for the special cases of m = 1,2,3.

APPENDIX C: IMPURITY-INDUCED TUNNELING
BETWEEN TWO MAJORANA ZERO MODES

To consider the condition for the stability of two Majorana
zero modes, we first note that, in the limit where the bulk gap
is large, a semi-infinite chain can be regarded as a two-state
system. This is because the two Majorana zero modes would
form a single zero-energy state, giving us energy degeneracy
between the case where this zero-energy state is occupied and
the case where it is vacant. Due to the fermion number parity
conservation, perturbation cannot give rise to any off-diagonal
term between the two states; all we can obtain is the energy
difference between the occupied and vacant zero-energy states.

Therefore, an impurity term can annihilate the two Majo-
rana zero modes if the mode expansion of this impurity term
gives rise to dependence on the occupancy of the zero-energy
state. We know that, in the absence of any impurity, the
Hamiltonian in Eq. (4) gives us two Majorana zero modes
near i = 1 that can be written down as the linear combination
of only ai’s:

�n =
∑

i

cniai, (C1)

where n = 1,2 and ci ∈ R. Then, the annihilation operator of
the zero-energy state can be written as

f0 = (�1 + i�2)/2 =
∑

i

(c1i + ic2i)ai/2. (C2)

What follows from this is that when we do the mode expansion
on Majorana fermions on each site, only the ai’s receive a
contribution from the zero-energy state whereas all bi’s do
not:

ai = (c̃i0f0 + c̃∗
i0f

†
0 ) +

∞∑
m=1

(c̃imfm + c̃∗
imf †

m),

(C3)

bi =
∞∑

m=1

(c̃′
imfm + c̃′∗

imf †
m).

Any additional fermionic bilinear terms in the Hamiltonian
cannot affect the zero modes unless the mode expansion of
such terms contains f

†
0 f0.

We make the further restriction that we demand the
fermionic bilinear to be local. The criterion for locality here
is that, if our fermion operators are from sites i,j , they should
satisfy |i − j | ∼ O(1).

This leads to the conclusion that only iaiaj can gap out the
zero modes, while iaibj and ibibj do not. (Conversely, if we
have the right end of the semi-infinite chain, it is ibibj that
gaps out the zero modes.) We see from Eq. (C3) that

iaiaj = −i(c̃i0c̃
∗
j0 − c̃∗

i0c̃j0)f †
0 f0 + (gapped) (C4)

but the mode expansions of iaibj and ibibj do not have the
f

†
0 f0 term.
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