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A quantum particle can be localized in a disordered potential, the effect known as Anderson localization.
In such a system, correlations of wave functions at very close energies may be described, due to Mott, in
terms of a hybridization of localized states. We revisit this hybridization description and show that it may be
used to obtain quantitatively exact expressions for some asymptotic features of correlation functions, if the
tails of the wave functions and the hybridization matrix elements are assumed to have log-normal distributions
typical for localization effects. Specifically, we consider three types of one-dimensional systems: a strictly
one-dimensional wire and two quasi-one-dimensional wires with unitary and orthogonal symmetries. In each of
these models, we consider two types of correlation functions: the correlations of the density of states at close
energies and the dynamic response function at low frequencies. For each of those correlation functions, within
our method, we calculate three asymptotic features: the behavior at the logarithmically large “Mott length scale,”
the low-frequency limit at length scale between the localization length and the Mott length scale, and the leading
correction in frequency to this limit. In the several cases, where exact results are available, our method reproduces
them within the precision of the orders in frequency considered.
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I. INTRODUCTION

The localization of a quantum particle in a disordered
potential (commonly known as Anderson localization1) is
one of the most fascinating mesoscopic phenomena (see, e.g.,
Refs. 2 and 3 for a review). Arising from quantum interference
between different particle trajectories, localization depends
strongly on the dimensionality of the system. In one dimension,
such an interference is most relevant, and an arbitrarily weak
potential is known to localize a particle (in the absence of
decoherence).4–7 Besides, the one-dimensional case is more
accessible for analytic studies, which makes it the best
understood model of localization (see, e.g., Refs. 8 and 9).

For the purpose of the present paper, we distinguish
several models of one-dimensional localization: the strictly-
one-dimensional (S1D) case (with one conducting channel)
and the quasi-one-dimensional (Q1D) wire (with N � 1
conducting channels). These two limits exhibit some common
universal properties, but are typically treated with different
analytic techniques (Berezinsky technique10,11 and contem-
porary methods12,13 in the S1D case, and the sigma-model
technique14–16 in the Q1D case). The quasi-one-dimensional
wires may be further classified in terms of the symmetries
of the Hamiltonian, according to the random-matrix-theory
scheme (unitary, orthogonal, etc.).16,17

One of the main quantitative characteristics of the local-
ization is the statistics of (localized) eigenfunctions. In one
dimension, it was studied extensively, and many analytic
results are available.9,18–21 Most of the analytical results
are derived in the weak-disorder regime (which is believed
to obey the single-parameter-scaling property,22–24 see also
Refs. 25, 26, and 8 for further discussions). Remarkably, the
statistics of the “envelopes” of localized eigenfunctions in this
regime is universal for S1D and Q1D problems (independently
of the symmetry class) and can be expressed in terms of

the Liouville quantum mechanics,9,18 while the short-range
oscillations distinguish between S1D and Q1D cases and
between symmetry classes in the Q1D case.

A more detailed information about localization (in partic-
ular, relevant to dynamic properties) can be extracted from
correlations between eigenfunctions at different energies.
Two such quantities may be defined:27,28 the density-of-states
(DOS) correlation function,

R(ω,|x1 − x2|) = ν−2

〈 ∑
n,m

δ(En − E)δ(Em − E − ω)

× |ψn(x1)|2|ψm(x2)|2
〉
, (1)

and the dynamic response function,

S(ω,|x1 − x2|) = ν−2

〈 ∑
n,m

δ(En − E)δ(Em − E − ω)

×ψ∗
n (x1)ψn(x2)ψ∗

m(x2)ψm(x1)

〉
. (2)

Here, the sum is taken over the eigenstates ψn with energies
En, and ν is the average density of states. The normalization of
these correlation functions is chosen in such a way that they are
dimensionless quantities with a finite limit in an infinitely long
wire. It will be furthermore convenient to measure the lengths
in the units of the localization length ξ and the energies in
the units of the average level spacing within the localization
length �ξ .29 With this convention, R(ω,r) and S(ω,r) become
dimensionless functions of dimensionless parameters.

Both R(ω,r) and S(ω,r) were studied analytically in
detail in the S1D model,27,28 and R(ω,r) has been recently
calculated in the Q1D-unitary model30 (in all those studies, the
weak-disorder limit was assumed). While the limiting form
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of these correlations at ω → 0 is determined by the single-
wave-function statistics and is therefore universal for both
S1D and Q1D models, the corrections at finite ω distinguish
between S1D and Q1D.30,31 Qualitatively, the properties of the
correlation functions R(ω,r) and S(ω,r) in the low-frequency
limit ω � 1 may be understood using the original argument by
Mott about the hybridization of the localized wave functions32

(the opposite limit ω � 1 can be studied by means of the
standard perturbation theory). However, the first attempt to
promote the Mott’s arguments to quantitative calculations
in Ref. 33 produced some inaccurate results (as can be
seen by comparing to exact expressions27), since it neglected
mesoscopic fluctuations of the tails of the localized states.

In the present work, we rectify this approach and revisit
Mott’s arguments on wave-function hybridization32 taking into
account the log-normal distribution of the tails of the localized
states.9 Our method is based on a number of assumptions that
we introduce in the main text and then explicitly summarize
and discuss in the last section of the paper (see Sec. VIII). As
a result, we obtain a semiphenomenological description of the
hybridization of the localized states at distances much larger
than the localization length, r � 1. Our theory reproduces
correctly the physics at the “Mott length scale,”

LM = 2 ln(1/ω), (3)

and the leading correction to R(ω,r) at 1 � r < LM in the
Q1D-unitary model. We further make predictions concerning
the properties of R(ω,r) in the Q1D-orthogonal model and of
S(ω,r) in all the above-mentioned models. These predictions
may be checked against future sigma-model calculations in
Q1D systems.

II. MAIN RESULTS

In the present work, we assume the single-parameter-
scaling regime for the tails of the localized states. Namely,
we suppose that at distances r � 1, the decay of the localized
wave function may be described by a log-normal distribution
with the width and median (or, formally, the variance and
the mean of the logarithm) described by one parameter and
with an appropriate cut-off of the tails. By combining this
assumption with the Mott’s argument about the wave-function
hybridization (see subsequent sections for details), we can
infer quantitative details about the behavior of the correlation
functions (1) and (2) in the low-frequency limit ω � 1.

The general structure of those two correlation functions
contains two main separate regimes: r � LM and r ∼ LM (see
Fig. 1). At r � LM , the correlations are known to be domi-
nated by the statistics of a single wave function,27,28,30,32,33 and
it is natural to represent them as

R(ω,r) = R(ω → 0,r) + δR(ω,r) , (4a)

S(ω,r) = S(ω → 0,r) + δS(ω,r) , (4b)

where δR(ω,r) and δS(ω,r) vanish as ω → 0.
At r ∼ LM , the correlation function R(ω,r) exhibits a

crossover from zero to one centered at LM and with a width
of the order

√
LM , and the correlation function S(ω,r) has a

negative bump at the same location.27,28 The asymptotic form

FIG. 1. (Color online) A schematic (not numerically exact) view
of the correlation functions R(ω,r) (top panel) and S(ω,r) (bottom
panel) defined in Eqs. (1) and (2), respectively. The dashed lines
denote the ω → 0 limits [the same function (36) for R(ω,r) and
S(ω,r)]. The shaded regions denote δR(ω,r) and δS(ω,r) as defined
in Eq. (4). The features at the Mott length scale LM are denoted by
RM (ω,r) and SM (ω,r), respectively.

of these features at ω → 0 will be denoted as RM (ω,r) and
SM (ω,r), respectively.

Our hybridization argument reproduces the (universal)
main asymptotics R(ω → 0,r) and S(ω → 0,r) at 1 � r �
LM , the (nonuniversal) leading in ω corrections δR(ω,r) and
δS(ω,r) as well as the universal behavior of RM (ω,r) and
SM (ω,r), see Tables I and II.34 Some of these results can
be verified against the existing exact calculations, while others
present new conjectures. As a byproduct of our calculation, we
also relate the R(ω → 0,r) and S(ω → 0,r) to the statistics
of a single wave function [Eq. (39) below], including the
proportionality coefficient.

III. STATISTICS OF WAVE-FUNCTION TAILS

We start with a simplified statistical description of a single
localized state in terms of the log-normal distribution of its
tails. The statistics of a single wave function has been studied
in detail in both Q1D and S1D geometries,9,21 and we first
briefly summarize the existing results and then propose our
approximation.

First of all, a localized state ψ(x) can be represented as a
product of a slowly varying envelope and a rapidly oscillating
short-range component:9

ψ(x) = ψ̃(x) ϕ(x) (Aξ )−1/2 (5)

(here we include the dimensional factor (Aξ )−1/2, where A is
the cross section of the wire, in order to simplify the formulas
below). The short-range component ϕ(x) is correlated on the
scale of the mean free path l and oscillates on the scale
of the particle wave length λF . We choose it normalized to
〈|ϕ(x)|2〉 = 1. The “envelope” component ψ̃(x) is correlated
on the scale of the localization length ξ (in S1D, ξ ∼ l; in Q1D,
ξ � l) and does not oscillate. The two components ψ̃(x) and
ϕ(x) are distributed independently. It was shown in Refs. 9
and 21 that such a decomposition is exact with the statistics
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TABLE I. Correlation function R(ω,r) at low frequencies (ω � 1).

Model R(ω → 0,r � 1) δR(ω,r � 1) RM (ω,r)

S1D ∝ ω2(LM − 3r)e2r

Q1D-unitary ∝ r−3/2e−r/4 ∝ ω2(LM − 3r)2e2r
1

2

(
1 + erf

r − LM

2
√

r

)
Q1D-orthogonal ∝ ωer/2

of ψ̃(x) being universal for Q1D and S1D systems, and that
of ϕ(x) distinguishing between S1D and Q1D and between
different symmetry classes in Q1D.

The statistics of ψ̃(x) can be most conveniently described
in terms of its logarithm

χ (x) = ln |ψ̃(x)|2 . (6)

As shown in Ref. 9 (see Sec. 3.2.2), the statistics of
χ (x) is given by a functional integral, which involves a
diffusion-type quadratic action in χ (x) and a delta-function
constraint imposing the normalization of the wave function∫

eχdx = 1.
An accurate treatment of that functional integral is difficult,

and we simplify it by observing that the tails of ψ(x)
contribute very little to the normalization, and therefore
the normalization-enforcing delta-function term is of little
importance for the tails of ψ(x). The normalization is mostly
determined by the maxima of χ (x), and therefore the main role
of this delta term is to normalize the maxima of the function
χ (x). We expect that the distribution of the maxima of χ (x)
has a width of order one and centered around zero.

This suggests our approximation for studying the wave-
function tails. Instead of working with a full path integral
of Ref. 9, we first fix the position x0 and the value χ (x0)
of the maximum of χ (x) (with |χ (x0)| � 1) and replace the
normalization constraint by an approximate condition that
χ (0) < χ (x0) everywhere. This guarantees a normalization
of the wave function to a “logarithmic” precision: namely, the
normalization of wave functions constructed in such a way will
be of order one. Furthermore, we will only be interested in a
“coarse-grained” behavior of χ (x): typical scales of interest of
χ (x) will be of order r , and therefore for many purposes, we
do not need to distinguish between the maximum value χ (x0)
and zero.

We thus arrive at the following coarse-grained description
of the ensemble of the envelopes χ (x): a localized state is
determined by the location x0 of its (global) maximum [where
χ (x0) ≈ 0] and the functional measure for the tails [which

follows directly from the formula (3.34) of Ref. 9],

dμx0 [χ (x)] ∝ exp

{
−

∫
1

4

[
dχ

dx
+sign(x − x0)

]2

dx

}
Dχ (x)

(7)

with the constraint χ (x) � 0 for all x. In particular, the left
and right parts of the tails (x < x0 and x > x0, respectively)
are distributed independently. The action (7) describes a
diffusion with a drift, and the resulting form of the probability
distribution for χ (x) is approximately normal, with its variance
growing linearly with x and its average decreasing linearly
with x, as x moves away from the center x0.

For our calculations, we will be interested in one- and multi-
point probability distributions of χ (x) for a fixed position of x0.
Let us start with the one-point probability distribution P (χ,r),
where r = |x − x0|. The action (7) results in the differential
equation

∂P

∂r
= ∂2P

∂χ2
+ ∂P

∂χ
, (8)

which describes diffusion with a drift. This equation, together
with the boundary condition P (χ > 0) = 0, results in the long-
time (r � 1) asymptotic form of the solution

P (χ,r) = f

(
χ

r

)
P0(χ,r) , χ < 0 , (9)

where

P0(χ,r) = 1

2
√

πr
exp

[
− (χ + r)2

4r

]
(10)

is the normal distribution (see Fig. 2). The effect of the
boundary condition is the “cutoff” factor f (χ/r). The exact
form of the function f (z) is determined by a short-time
evolution (at r ∼ 1) and is therefore beyond our approximation
scheme. The only property that we assume about f (z) (which
becomes useful in Sec. VI) is its asymptotic behavior

f (z) ∝ −z at z → −0 . (11)

TABLE II. Correlation function S(ω,r) at low frequencies (ω � 1).

Model S(ω → 0,r � 1) δS(ω,r � 1) SM (ω,r)

S1D ∝ −ω2(LM − 3r)e2r

Q1D-unitary ∝ r−3/2e−r/4 ∝ −ω2(LM − 3r)2e2r − 1

2
√

πr
exp

[
− (r − LM )2

4r

]
Q1D-orthogonal ∝ −ωer/2

035109-3



IVANOV, SKVORTSOV, OSTROVSKY, AND FOMINOV PHYSICAL REVIEW B 85, 035109 (2012)

FIG. 2. (Color online) A description of a single-wave-function
statistics. The wave function is described by the position x0 of its
maximum and the distribution of its tails. The one-point probability
distribution P (χ,r) is assumed to have the form (9) at r � 1.

The normalization of the probability distribution P (χ,r)
implies f (−1) = 1. Furthermore, the typical values of χ (x)
are not affected by the cutoff factor, and we have a “single-
parameter-scaling” relation:

1
2 〈(�χ )2〉 = −〈χ〉 = r . (12)

Note that a similar single-parameter scaling is also well known
for the conductance of long wires.24,35–37

The above consideration may be directly extended to
multipoint probability distributions. For example, consider the
probability distribution to find χ (x1) = χ1 and χ (x2) = χ2

under the condition that the maximum of χ (x) is located at x0

[so that χ (x0) ≈ 0]. The form of this probability distribution
Px0 (χ1,x1; χ2,x2) depends on the relative positions of x1, x2,
and x0 (see Fig. 3). If x1 and x2 lie on opposite sides of x0 [see
Fig. 3(a)], then the joint probability distribution factorizes:

Px0 (χ1,x1; χ2,x2) = P (χ1,r1)P (χ2,r2) , (13)

where ri = |xi − x0| and P (χ,r) is given by Eq. (9). In other
words, the left and right tails are statistically independent.
In the opposite case, if x1 and x2 belong to the same tail,
the distributions of χ (x1) and χ (x2) are correlated. For the
configuration shown in Fig. 3(b) (the point x1 lies between x0

and x2), one gets

Px0 (χ1,x1; χ2,x2) = P (χ1,r1)P0(χ2 − χ1,r2 − r1) . (14)

Note that the second factor does not involve the cutoff function
f (z), since, at −χ1 � 1 and −χ2 � 1, the probability of the
functional integral (7) to return to χ (x) = 0 is exponentially
small.

FIG. 3. (Color online) The two-point probability distribution
Px0 (χ1,x1; χ2,x2) for a single wave function depends on the ordering
of the observation points x1, x2, and the “center” of the wave function
x0. (a) For x1 and x2 belonging to different tails, the distribution
factorizes, see Eq. (13). (b) For x1 and x2 belonging to the same tail,
the distribution is given by Eq. (14).

We may note in passing that the two-point distributions
(13) and (14) are consistent with the one-point distribution
(9). Namely,∫

dχ1 Px0 (χ1,x1; χ2,x2) = P (χ2,|x2 − x0|) , (15)

irrespectively of the relative positions of the points x0, x1,
and x2.

Generalization of this construction to many-point distri-
butions is straightforward. The only requirements are that
the distances between all the points involved exceed the
localization length, |xi − xj | � 1, and that only small tails
are considered, −χi � 1.

IV. WAVE-FUNCTION HYBRIDIZATION

It was realized in the early works on localization that,
at ω � �ξ , the correlation functions (1) and (2) may be
understood in terms of the hybridization of two localized
states.32,33 Following the original argument, we may cut the
wire into smaller pieces and consider two states ψA and ψB

localized in different pieces (centered at positions xA and xB ,
respectively, and with energies EA and EB). As we connect the
pieces of the wire together, the states get hybridized, and such
pairs of states give the main contribution to the correlation
functions (1) and (2).

To use this argument at a quantitative level, we need to
introduce the “hybridization” matrix element J between the
states ψA and ψB . Then the hybridized wave functions are
given by the linear combinations

ψ+ = u+ψA + u−ψB , ψ− = u∗
−ψA − u∗

+ψB , (16)

where

|u±|2 = 1

2

(
1 ∓ ε

�

)
, (17)

ε = EB − EA and

� =
√

ε2 + 4|J |2 (18)

are the energy splittings before and after hybridization (see
Fig. 4). Such a pair of hybridized states contributes to the
correlation functions (1) and (2), when � = ω.

It turns out that this approximate description reproduces
quantitatively many features of the exact results, provided
the distribution of the tails (9) is taken into account, and
appropriate assumptions on J are made.

FIG. 4. (Color online) A schematic view of the hybridization
of the two localized wave functions ψA and ψB , as described
by Eq. (16).
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Namely, by analogy with the hybridization of states
localized in potential wells,38 we assume that the hybridization
matrix element J is proportional to the product of the two
envelopes ψ̃A(x) and ψ̃B(x):

|J | = �ψ̃A(x) ψ̃B(x) , (19)

where � is a coefficient of order one, which takes into account
the short-range oscillations of the wave functions ψA(x) and
ψB(x). The distribution of � is assumed to be statistically
independent of the distributions of the envelopes ψ̃A(x) and
ψ̃B(x). The average 〈�〉 is taken to be of order one, so that
Eq. (19) gives the matrix element J in the units of �ξ .

The specific properties of the distribution of � will be of
relevance for some of our calculations below. In fact, it is
this distribution that distinguishes between the S1D and Q1D
geometries and between the different symmetry classes in the
Q1D case. Specifically, in Sec. VII, we will need the behavior
of the probability distribution of � at � → 0. Based on an
analogy with the random-matrix theory, in that part of the
calculation, we will use the following ansatz:

dP (�) = δ(� − �0) d� with �0 ∼ 1 in S1D, (20a)

dP (�) ∝ �d� , � → 0 in Q1D unitary, (20b)

dP (�) ∝ d� , � → 0 in Q1D orthogonal. (20c)

Our ansatz for dP (�) in the Q1D-unitary and Q1D-
orthogonal cases can be understood in terms of the sum of
the hybridization amplitudes over a large number of channels.
In the case of the unitary symmetry class, this sum is complex,
and therefore its absolute value is distributed as �d� at small
�, while in the orthogonal symmetry class, it is real with the
measure d� at small �.

The wave functions ψ̃A(x) and ψ̃B(x) in Eq. (19) are taken
at some common point x in the tails of the wave functions.
One can verify that, due to the log-normal statistics of the tails
described in Sec. III, the probability distribution of the product
ψ̃A(x)ψ̃B(x) is independent of the specific position of the point
x. In other words, our ansatz (19) gives a consistent definition
of the probability distribution of |J |. Equivalently, one may
also rewrite

|J | = �eχJ /2 , (21)

where the parameter χJ has a distribution of the type (9), with
or without a cut-off factor [depending on the type of the points
where the values of ψ̃A(x) and ψ̃B(x) are fixed].

We are now ready to formulate the improved version
of the Mott hybridization argument by combining the three
ingredients: (i) the hybridization of the wave functions (16),
(ii) the statistical properties of a single wave function (7), and
(iii) the properties of the hybridization matrix element (19). To
obtain the ω � �ξ limits of the correlation functions (1) and
(2), we restrict the sums over m and n to the two hybridized
states (16) and arrive at

R(ω,|x1 − x2|)
=

∫
dxA dxB

∫
dμxA

[χA(x)] dμxB
[χB(x)]

×
∫

dP (�)
∫

dε |ψ+(x1)|2|ψ−(x2)|2 δ (� − ω) , (22)

S(ω,|x1 − x2|)
=

∫
dxA dxB

∫
dμxA

[χA(x)] dμxB
[χB(x)]

∫
dP (�)

×
∫

dε ψ∗
+(x1)ψ+(x2)ψ∗

−(x2)ψ−(x1) δ (�−ω) . (23)

Here, the average is taken (i) over the positions of the maxima
xA and xB of the envelopes ψ̃A(x) and ψ̃B(x), respectively,
(ii) over the statistical properties of the wave-function tails
dμxA

[χA(x)] and dμxB
[χB(x)] defined by Eq. (7), with the

constraint χα(x) � 0 [here we define χα(x) = ln |ψ̃α(x)|2, as
in Eq. (6)], (iii) over the energy difference ε, and (iv) over the
coefficient � in Eq. (19).

The following sections are devoted to extracting the three
different regimes from the general formalism (22) and (23):
the behavior at the Mott scale and the leading and subleading
corrections at sub-Mott lengths.

V. BEHAVIOR AT THE MOTT SCALE

As pointed out in the early works,32 the hybridization of
localized states introduces the logarithmically large “Mott
scale” (3). The leading contribution to the behavior of R(ω,r)
at r ∼ LM is obtained by picking out the following term from
the general formula (22):

|ψ+(x1)|2|ψ−(x2)|2 −→ |u+|4|ψA(x1)|2|ψB(x2)|2 . (24)

Since the wave functions ψA and ψB are localized at distances
of order one and R(ω,r) at r ∼ LM varies at a logarithmically
larger scale (δr ∼ √

LM , as shown below), the variables xA and
xB are nearly pinned to the points x1 and x2, respectively. Then
integration over xA and xB yields just the unit normalization
of ψA and ψB , and we get

RM (ω,r) =
∫

dP (J )
∫

dε δ(� − ω)|u+|4 , (25)

where � and u+ are functions of ε and J defined by Eqs. (17)
and (18). The measure of integration over J is

dP (J ) = f 2

(
χJ

r

)
P0(χJ ,r) dχJ dP (�), (26)

where J is parameterized by Eq. (21), P0(χJ ,r) is the normal
distribution (10), and f (χJ /r) is the cutoff function [the same
as in Eq. (9)]. The integral over ε may be easily taken, which
gives

RM (ω,r) =
∫

dP (J )
1

2

(
ε

ω
+ ω

ε

)
, (27)

where ε =
√

ω2 − 4|J |2.
Since the main contribution to the integral comes from

logarithmically large intervals of χJ , one can approximate

1

2

(
ε

ω
+ ω

ε

)
≈ θ (ω − 2|J |) (28)

in Eq. (27) (the step function in the right-hand side takes care
of the integration limits) and disregard the exact form of the
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distribution of �. Then, within these approximations, one gets

RM (ω,r) ≈
∫ 2 ln ω

−∞
f 2

(
χJ

r

)
P0(χJ ,r) dχJ

= 1

2

[
1 + erf

(
r − LM

2
√

r

)]
, (29)

i.e., the result reported in the last column of Table I. Note
that the cutoff function f (χJ /r) does not play any role in
this calculation, since f (−1) = 1 by the normalization of
probability.

We can further repeat the same procedure for the correlation
function S(ω,r) given by Eq. (23) by selecting the term

ψ∗
+(x1)ψ+(x2)ψ∗

−(x2)ψ−(x1)

−→ −|u+|2|u−|2|ψA(x1)|2|ψB(x2)|2 . (30)

We then arrive at the formula similar to Eq. (25), but with |u+|4
replaced by −|u+|2|u−|2. The formula (27) then gets replaced
by

SM (ω,r) =
∫

dP (J )
1

2

(
ε

ω
− ω

ε

)
. (31)

Now we cannot simply replace ε by ω, but need to expand to
the next order. In fact, we can reexpress

1

2

(
ε

ω
− ω

ε

)
= ∂

∂χJ

ε

ω
≈ −δ

(
χJ − 2 ln

ω

2�

)
, (32)

which allows us to integrate over χJ to obtain

SM (ω,r) ≈ − 1

2
√

πr
exp

[
− (r − LM )2

4r

]
, (33)

again independently of the distribution of � and therefore
universally valid in S1D and Q1D systems (including the
numerical prefactor34).

The result (29) has been previously rigorously derived in
S1D and in Q1D-unitary cases,27,30 and the result (33) in the
S1D case.28 Note that the location and width of the features in
RM (ω,r) and SM (ω,r) reflect directly the median and the width
of the log-normal distribution for χJ in Eq. (21). In our ansatz
(10), we take them related to each other, which corresponds
to the single-parameter-scaling regime.23,24,36,37 In Ref. 33,
a qualitative behavior of R(ω,r) at the Mott scale was also
explained from the hybridization arguments, but the correct
quantitative expression (29) could not be obtained without
taking into account the log-normal distribution of the wave-
function tails.

VI. LEADING ORDER AT DISTANCES MUCH SHORTER
THAN THE MOTT SCALE

At distances 1 � r � LM , the correlation functions
R(ω,r) and S(ω,r) can be found, to the leading order, from
the general expressions (22) and (23) if one retains only the
contributions from ψA in both ψ+ and ψ−:

|ψ+(x1)|2|ψ−(x2)|2 and ψ∗
+(x1)ψ+(x2)ψ∗

−(x2)ψ−(x1)

−→ |u+|2|u−|2|ψA(x1)|2|ψA(x2)|2 . (34)

Then, using the relation (32), we can integrate over all the
variables, except for xA and χA (in the order ε, χJ , xB , �) and
arrive at the result

R(ω,r) ≈ S(ω,r)

≈ 2
∫

dxA dμxA
[χA(x)] |ψA(0)|2|ψA(r)|2 . (35)

Thus the short-distance behavior of these correlation functions
is universal for S1D and Q1D models and is only determined by
the single-wave-function statistics. This result was rigorously
derived for S1D (as follows from Refs. 19, 27, and 28) and
Q1D-unitary cases,30 and the exact form of this function is
known,

R(ω → 0,r) = 4π2 ∂2

∂r2

∫ ∞

0
k dk

tanh πk

cosh2 πk
e−(k2+1/4)r .

(36)

Within our approximate method, we cannot derive this exact
expression, but we can access its r � 1 limit. In this case, the
main contribution comes from xA located between 0 and r

[see Fig. 3(a)], with the two tails of the wave function ψA

distributed independently, according to Eq. (13):

R(ω,r) ≈ S(ω,r) ≈
∫ r

0
dxA

∫ 0

−∞
dχ1

∫ 0

−∞
dχ2

×P (χ1,xA)P (χ2,r − xA)eχ1+χ2 . (37)

If we use our ansatz (9) for P (χ,r), then this integral
formally diverges at xA → 0 and xA → r . This means that
the main contribution to the correlation functions comes from
configurations where the maximum of the wave functions
coincides (within the localization length) with one of the
two points. At such short distances, our ansatz (9) is not
applicable, but we can estimate the correlation function, up to
a numerical prefactor, by cutting off the integral in xA within
a localization length from 0 and r [i.e., by integrating over xA

in the limits (δ,r − δ) with δ ∼ 1]. This immediately leads us
to the asymptotic expression (at r � 1)

R(ω,r) ≈ S(ω,r) ∝ r−3/2e−r/4 , (38)

where the proportionality coefficient cannot be calculated
within our approximation.

The asymptotic expression (38) is in agreement with the
exact expression (36).9,19,21,30 Note that the form of the cut-off
in the probability distribution (9) was important for calculating
the correct power in the pre-exponent in Eq. (38). In fact,
the correlation functions R(ω → 0,r) and S(ω → 0,r) are
dominated not by “typical” localized wave functions, but by
the rare events, when the wave function ψA has two peaks at
the positions 0 and r of comparable height. This can also be
seen from the exponential decay e−r/4, which does not describe
the decay of a “typical” wave function [whose weight decays
as e−r , according to Eq. (12)], but is four times slower.

Somewhat similar rare events are important for the statistics
of wave functions in the metallic limit,39 which also results in
log-normal tails. However, the metallic regime is beyond the
scope of the present paper.

Note that the derivation of the relation (35) does not use
the condition r � 1 (which is only needed for calculating its
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right-hand side), and is therefore valid for any r (in the limit
ω → 0). In terms of wave-function correlations, we may also
rewrite Eq. (35) as

R(ω → 0,|x1 − x2|) = S(ω → 0,|x1 − x2|)
= 2ξ ν−1

∑
n

δ(En − E)|ψn(x1)|2|ψn(x2)|2 , (39)

(in this equation, we restore the physical units). This relation
(without specifying the numerical prefactor) was already
proposed in Ref. 33 based on similar hybridization arguments.
However, the approach used in that work could not correctly
reproduce the asymptotic behavior (38), since it did not include
the log-normal distribution of the wave-function tails crucial
for such a calculation.

VII. SUBLEADING ORDER AT DISTANCES MUCH
SHORTER THAN THE MOTT SCALE

Remarkably, we can extend our method further to finding
nonuniversal corrections δR(ω,r) and δS(ω,r) [defined in
Eqs. (4)] to the asymptotic behavior (38). Such corrections
are given by the same “cross terms” (24) and (30), as in the
calculations of RM (ω,r) and SM (ω,r) in Sec. V. One can
check that, for this term, the main contribution comes from
configurations with the points xA and xB (the maxima of the
wave functions ψA and ψB ) located outside the interval (x1,x2),
see Fig. 5.

For calculating δR(ω,r), we start with the general expres-
sion (22), where we only keep the term (24). Unlike in the
calculation of Sec. V, here the tails of the wave functions
contribute, and therefore we need to take into account their
log-normal distributions. If we write |ψA(x1)|2 = eχA and
|ψB(x2)|2 = eχB , then the hybridization matrix element |J |
may be expressed in the form (21) with

χJ = χA + χB + χ. (40)

Here, χA, and χB are distributed with the probability distri-
bution (9) (with the cutoff) and the distribution of χ is given
by Eq. (10) (without the cutoff) [compare with an analogous
form of Eq. (14)]. In the calculations of this section, we further
neglect the cutoffs, since all the three parameters −χ , −χA,
and −χB are much larger than one and the integrals with
respect to them can be done at the saddle-point level. The cutoff
functions contribute only to the overall numerical coefficient,
which is beyond the precision of our calculation.

FIG. 5. (Color online) An illustration of notation for the calcula-
tion of the subleading order at 1 � r � LM . The centers xA and xB

of the pair of localized states are located outside the interval (x1,x2).
The variables rA, rB , and r used in Eq. (41) are the pairwise distances
between the four points xA, x1, x2, and xB .

After integrating Eq. (22) over ε, we arrive at

δR(ω,r) ∝
∫ ∞

0
drA

∫ ∞

0
drB

∫ 0

−∞
dχA

∫ 0

−∞
dχB

×P0(χA,rA)P0(χB,rB)eχA+χB

×
∫

dχ P0(χ,r)
∫

dP (�)
1

2

( ε

ω
+ ω

ε

)
. (41)

Like in the calculation in Sec. V, we can use the approximation
(28). Furthermore, the integrals over rA and rB can be
calculated at the saddle-point level (thereby fixing rA = −χA

and rB = −χB), and afterwards we integrate over χA and χB .
The resulting expression is

δR(ω,r) ∝
∫

dP (�)
∫

dχ

2
√

πr
exp

[
− (χ + r)2

4r

]

×(z + 1)e−z
∣∣∣
z=max(0,χ−2 ln ω

2�
)
. (42)

One can show that, at r < LM/3, the main contribution
comes from the region χ − 2 ln ω

2�
> 0. The integral in χ

can be done in the saddle-point approximation, which sets
χ = −3r . Finally, only the integral over � remains [at our
level of approximation, we also neglect +1 in the second line
of Eq. (42)]:

δR(ω,r) ∝ ω2e2r

∫ ∼1

�ω

dP (�)
ln � − ln �ω

�2
, (43)

where �ω = exp [−(LM − 3r)/2]. Estimating the integral
(43) with the distributions dP (�) given by Eq. (20) yields
the results reported in the middle column of Table I.

An analogous calculation can also be performed for δS(ω,r)
starting with Eq. (23). The calculation parallels the one above,
with the only difference that (1/2)(ε/ω + ω/ε) in Eq. (41)
must be replaced by

1

2

( ε

ω
− ω

ε

)
≈ −δ

(
2 ln

ω

2�
− χ − χA − χB

)
. (44)

This results in

δS(ω,r) ∝ −
∫

dP (�)
∫

dχ

2
√

πr
exp

[
− (χ + r)2

4r

]

×ze−z
∣∣∣
z=max(0,χ−2 ln ω

2�
)
. (45)

To the precision of our approximation, this expression is op-
posite in sign to Eq. (42). Therefore, we conclude that, within
our approximation, δS(ω,r) ≈ −δR(ω,r). The corresponding
formulas are reported in the middle column of Table II. Note
that our method does not give the numerical coefficients in
δR(ω,r) and δS(ω,r), but predicts that they have the same
absolute value and are opposite in sign [positive for δR(ω,r)
and negative for δS(ω,r)].

One can compare our results of this section with the exact
calculations. The only case, where a direct comparison is pos-
sible is the Q1D-unitary case, where δR(ω,r) was computed in
Ref. 30 and, to the leading order, coincides (up to a numerical
prefactor) with our present result. Note that our results for
δR(ω,r) and δS(ω,r), in the S1D and Q1D-uintary cases, are
only applicable at r < LM/3. The new length LM/3 appeared
in Ref. 30 as the distance at which the correction δR(ω,r) in
the Q1D-uintary case changes its asymptotic form (in technical
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terms, there was a switching of the pole and the saddle in the
integral determining the leading form of the correction).

Another situation, where an indirect comparison can be
made is the S1D case. There, using the formalism of Ref. 27,
one can show31 that δR(ω,r) at small r starts with the order
ω2 ln ω, i.e., consistent with our result for the S1D case (strictly
speaking, the comparison is not accurate, since our result is
only applicable at r � 1, while the expansion of the result
from Ref. 27 is done at r � 1, but we expect that the leading
ω dependence is the same in both regimes). In the other cases,
there are no exact calculations to which our results reported
in Tables I and II could be compared, thus they should be
considered as conjectures.

VIII. SUMMARY, DISCUSSION, AND OUTLOOK

To summarize, in this paper, we propose a simple technique
of treating correlation of wave functions in Anderson localiza-
tion in terms of hybridization of localized states. While the
essence of our method repeats the well-known Mott argument,
supplementing it with a log-normal probability distribution for
the tails of localized wave functions (and, consequently, for the
hybridization matrix elements) gives the method a quantitative
power. We have checked that the results produced with our
simplified method reproduce quantitatively the main features
of the available exact results (obtained by more sophisticated
techniques).

Nevertheless, we should emphasize that the presented
method remains a phenomenological recipe, and its justifi-
cation still needs to be completed. The method depends on
several assumptions of various level of rigor. For the benefit
of the reader, we list them below:

1. A possibility to define localized wave functions that are
further hybridized into the eigenstates (16) close in energy.
These wave functions ψA and ψB are not rigorously defined
in our argument, and the formalization of this step would be
helpful for a rigorous justification of the method.

2. The log-normal distribution of the wave-function tails
(10), supplemented by a suitable cutoff (9). While we present
some arguments in favor of these formulas, they are not
formally derived. We hope that a rigorous derivation of this
step may be possible with the methods of Ref. 9.

3. The hybridization matrix elements (21) are assumed
to be proportional to ψ̃A(x)ψ̃B(x), the product of the two
hybridizing tails, and therefore to obey the same log-normal
distribution. Since neither J nor ψA,B are formally defined, this
assumption also remains a phenomenological construction.

4. The factor � in (21) reflecting the interference of
channels. Its probability distributions (20) are introduced
phenomenologically.

Note that, for different calculations, different assumptions
play a role. At the Mott length scale (see Sec. V), we only
used the assumptions 1 and 3, with the assumptions 2 and 4
being irrelevant. For the leading behavior at 1 � r � LM (see
Sec. VI), we also used the assumption 2, while in Sec. VII, we
additionally need the assumption 4 to calculate the subleading
terms δR(ω,r) and δS(ω,r).

We wish to remark here that our method was developed
under the specific assumption of a weak disorder (specifically,
it is applicable in the model of the Gaussian white noise), which

implies the single-parameter-scaling relation (12) between the
variance and the average of the wave-function tail. However,
the method can be extended to other interesting models of
localization by relaxing this assumption. This would imply
a modification of the log-normal probability distributions (9)
and (10) in the assumptions 2 and 3. One example where such
a modification may be applicable is localization far below the
mobility edge (see, e.g., Refs. 40–42). Another interesting
example is the exactly solvable localization problem with
the Cauchy-distributed disorder considered in Ref. 26. In that
model, the single-parameter-scaling relation (12) does apply,
but with a different coefficient. We believe that such a system
can also be treated by our method with a suitably modified
probability distributions (9) and (10).

Finally, it would be interesting to extend our approach to
higher dimensions. The key issue for such an extension is
the log-normal distribution of the wave-function tails (our
assumption 2 above). While we are not aware of such results
for wave functions in higher-dimensions, a similar claim was
made for the probability distribution of the conductance.24

Namely, it was shown that, in the weak-scattering case and in
the insulating phase, the conductance distribution in the large-
system-size limit is log-normal with the single-parameter-
scaling relation between the average and the variance of the
form (12). Therefore one may assume that a similar universal
distribution is also valid for the wave-function tails. If it
is indeed the case, then our calculations in Secs. V and
VI can be straightforwardly extended to higher dimensions.
In particular, the counterpart of Eq. (39) in any dimension
would read

R(ω → 0,|x1 − x2|) = S(ω → 0,|x1 − x2|)
= Sd−1L

d−1
M ξ ν−1

∑
n

δ(En − E)|ψn(x1)|2|ψn(x2)|2 ,

(46)

where Sd−1 is the area of the (d − 1)-dimensional sphere (e.g.,
in our one-dimensional case, S0 = 2), and the definition (3)
of LM remains the same in any dimension. Also, under the
same conditions, the behavior of RM (ω,r) and SM (ω,r) (the
right column of Tables I and II calculated in Sec. V) would
be universal in any dimension. This implies, in particular,
the validity of the Mott formula for the frequency-dependent
conductivity σ (ω) ∝ ω2(ln ω)d+1 in any dimension [which can
be deduced from SM (ω,r), see, e.g., Ref. 28], in agreement
with the original argument.32
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