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The GW approximation takes into account electrostatic self-interaction contained in the Hartree potential
through the exchange potential. However, it has been known for a long time that the approximation contains
self-screening error, as is evident in the case of the hydrogen atom. When applied to the hydrogen atom, the
GW approximation does not yield the exact result for the electron removal spectra because of the presence of
self-screening: the hole left behind is erroneously screened by the only electron in the system that is no longer
present. We present a scheme to take into account self-screening and show that the removal of self-screening
is equivalent to including exchange diagrams, as far as self-screening is concerned. The scheme is tested on a
model hydrogen dimer and it is shown that the scheme yields the exact result to second order in (U0 − U1)/2t ,
where U0 and U1 are, respectively, the on-site and off-site Hubbard interaction parameters and t is the hopping
parameter.
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I. INTRODUCTION

In the Hartree approximation,1 a system of electrons moves
in a common potential arising from the electrostatic field
of the electrons, in addition to the external field. In this
approximation, a given electron experiences the electrostatic
potential from the other electrons as well as from itself because
the common potential or the Hartree potential contains the
field from the electron itself. This unphysical self-interaction
is removed when exchange interaction is included, leading to
the Hartree-Fock approximation (HFA).2 In density functional
theory,3 Perdew and Zunger introduced the concept of self-
interaction correction4 to remove a similar problem in the
local density approximation (LDA).

For many-electron systems, such as solids, it is well known
that the HFA is not satisfactory because it completely neglects
screening, which is very crucial in describing the electronic
structure of many-electron systems. Thus, for example, the
Hartree-Fock band gaps of semiconductors and insulators are
much too wide, and when the HFA is applied to metals, the
density of states at the Fermi level becomes unphysically zero
due to the logarithmic singularity in the derivative of the
one-particle energy with respect to the k vector at k = kF .5

The simplest known and successful method beyond the HFA
that cures the band-gap problem and the anomaly of the HFA
in metals is the GW approximation (GWA).6,7 The GWA in-
cludes the effects of frequency-dependent screening from first
principles, and the self-energy in space-time representation is
approximated by a product of the Green function G and the
screened interaction W.

The GWA includes the exchange potential so that it is
free from self-interaction. However, it is contaminated by
“self-screening” in that an electron screens itself. This is
analogous to “self-interaction,” where an electron interacts
with its own electrostatic field. This undesirable self-screening
effect has been a long-standing problem and is thought to be
a source of significant errors in the electronic structure. The
self-screening problem can be illustrated by the famous case
of the hydrogen atom. Since there is only one electron, it is
clear that the one-particle removal energy or the hole energy

is simply given by 13.6 eV, the 1s orbital energy. The Hartree
approximation applied to the hydrogen atom would yield a too
low removal energy due to the self-interaction error, while the
HFA would give the correct result. Embarrassingly, when the
GWA is applied to the hydrogen atom, it yields a wrong result
because, as a consequence of self-screening, the correlation
part of the hole self-energy in the GWA is not zero.8 Evidently,
since there is only one electron, upon removal of the electron
there are no other electrons that can screen the remaining hole,
so the hole self-energy ought to be zero.

The self-screening error is believed to be responsible for a
number of well-known problems. It has long been suspected
that the presence of self-screening in the GW self-energy
may be responsible for errors in the quasiparticle energies
of localized states. It has been found that GW quasiparticle
energies of core or semicore states usually lie above the exper-
imental values. It is argued that in the HFA, the quasiparticle
energies are too low due to the absence of screening, and
when screening is taken into account within the GWA, these
energies are pushed up too high, an indication of overscreening
due to self-screening. In molecules, a recent comprehensive
and systematic study of 34 molecules found that the GWA
overscreens the Hartree-Fock ionization potential, leading to
an underestimation by 0.4–0.5 eV compared to experiment.9

In many materials, the energy position of the core or semicore
states is usually too high in the LDA due to self-interaction.
GW calculations on the 3d semicore states of a number of
semiconductors such as GaAs and ZnSe improve the LDA
results, but the remaining error is still significant.10 It is very
likely that this error originates from self-screening. From a
physical viewpoint, the self-screening error is expected to
be significant when the states are rather localized but less
important in extended states.

In this paper, we develop a scheme that aims at correcting
the self-screening error in the GW self-energy as well as the
linear density-density response function within the random-
phase approximation (RPA).11 An interesting consequence of
the proposed scheme is the fact that the screened interaction W

becomes explicitly spin-dependent, in contrast to the original
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GWA where the screened interaction is spin-independent. We
also furnish theoretical support for the scheme by showing
from a diagrammatic viewpoint that the removal of the
self-screening terms is partially equivalent to adding exchange
diagrams. In other words, the self-screening terms are canceled
by corresponding terms in the exchange diagrams.

As an illustration of our scheme, we calculate the bonding-
antibonding gap of a model hydrogen dimer. We have chosen
this model because the exact result is known, which allows
for rigorous comparison. Moreover, the calculations can be
performed analytically so that possible numerical errors are
eliminated and the simplicity of the system permits us to
analyze the results without unnecessary complicating factors.
It is found that the self-screening corrected GWA reproduces
the exact result to order [(U0 − U1)/2t]2, where U0 and U1 are,
respectively, the on-site and off-site Coulomb energies and t

is the hopping integral.

II. GW APPROXIMATION WITH SELF-SCREENING
CORRECTION

A. Theory

The first step of the procedure is to decompose the
noninteracting Green function into its orbital components:

G0
σ (r,r′; ω) =

∑
n

gnσ (r,r′; ω), (1)

gnσ (r,r′; ω) = ϕnσ (r)ϕ∗
nσ (r′)

ω − εnσ

, (2)

hϕnσ = εnσϕnσ , (3)

where h is a one-particle Hamiltonian, εnσ → εnσ + iδ for an
occupied state, and εnσ → εnσ − iδ for an unoccupied state.
We refer to {gnσ } as orbital Green functions. In the GWA, the
self-energy is given by, using a noninteracting G0,

�σ (rt,r′t ′) = iG0
σ (rt,r′t ′)W (r′t ′,rt)

= i
∑
m

gmσ (rt,r′t ′)W (r′t ′,rt), (4)

where W is the screened interaction,

W = ε−1v, (5)

with ε being the dielectric matrix.
Consider an electron occupying an orbital ϕmσ propagating

from (r′t ′) to (rt) represented by gmσ . Another electron with
the same spin cannot occupy the orbital ϕmσ , and therefore
gmσ should not participate in the screening process during the
propagation of the electron. Therefore, the screened interaction
W should be calculated using a polarization propagator that
does not include gmσ . However, an electron in the same orbital
but with opposite spin can naturally participate in the screening
process. We therefore define the following Green function:

Gmσ = Gσ − gmσ , (6)

where Gmσ is now the Green function without gmσ . We also
introduce the polarization Pmσ , defined as the polarization
without gmσ , i.e., no Green function line in Pmσ contains gmσ .
In other words,

Pmσ = −i(Gmσ Gmσ + G−σG−σ ) (7)

FIG. 1. Comparison between the self-energy diagrams in the
conventional GWA (a) and the GWA with self-screening correction
(b). In the latter, the screened interaction depends on both the orbital
and spin of the electron represented by gn, as discussed in the text.

and the corresponding response function is given by

Rmσ = Pmσ + PmσvRmσ . (8)

With this response function, the screened interaction becomes

Wmσ = v + vRmσv = v + Wc
mσ . (9)

The self-energy then takes the following form:

�σ (rt,r′t ′) = i
∑
m

gmσ (rt,r′t ′)Wmσ (r′t ′,rt). (10)

In Fig. 1, the self-energy diagrams corresponding to Eq. (10)
are compared with the conventional GW diagrams.

The correlation part of the GW self-energy with self-
screening correction is given by

�c
σ (r,r′; ω) = i

∑
m

∫
dω′

2π
gmσ (r,r′; ω + ω′)Wc

m(r′,r; ω′)

= i
∑
m

∫
dω′

2π

ϕmσ (r)ϕ∗
mσ (r′)Wc

m(r′,r; ω′)
ω + ω′ − εmσ + iδ sgn(εmσ − μ)

.

(11)

Writing the correlation part of the screened interaction, Wc, in
its spectral representation,

Wc
mσ (r′,r; ω′) =

∫ 0

−∞
dω′′ Dmσ (r′,r; ω′′)

ω′ − ω′′ − iδ

+
∫ ∞

0
dω′′ Dmσ (r′,r; ω′′)

ω′ − ω′′ + iδ
, (12)

the frequency integral over ω′ can be performed analytically.
The correlation part of the self-energy may be divided into two
parts, �occ and �unocc:

�occ
σ (r,r′; ω) =

occ∑
m

∫ ∞

0
dω′′ ϕmσ (r)Dmσ (r′,r; ω′′)ϕ∗

mσ (r′)
ω + ω′′ − εmσ − iδ

,

(13)

�unocc
σ (r,r′; ω) =

unocc∑
m

∫ ∞

0
dω′′ ϕmσ (r)Dmσ (r′,r; ω′′)ϕ∗

mσ (r′)
ω − ω′′ − εmσ + iδ

.

(14)

Dmσ is the spectral function of Wc
mσ and we have used the

relations

Dmσ (−ω) = −Dmσ (ω), Wc
mσ (−ω) = Wc

mσ (ω), (15)
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and

Dmσ (ω) = − 1

π
ImWc

mσ (ω)sgn(ω). (16)

The corresponding expressions for the self-energy in the
conventional GWA are the same as above except that Dmσ

is replaced by the spectral function of W instead.
It is worth noting that the self-screening correction intro-

duces spin dependence in the screened interaction W , as can
be seen in Eq. (10). Each electron experiences a different
screened interaction Wmσ that is not only orbital-dependent
but also spin-dependent according to the orbital occupied by
the electron as well as the spin of the electron.

Since in the exact set of Hedin’s equations the screened
interaction W is spin-independent, the appearance of a
spin-dependent screened interaction seems unnecessary. It
is interesting to make a comparison with density functional
theory. In principle, the total energy is obtainable from the
ground-state electron density, which is the sum of spin-up and
-down components. In practice, for spin-polarized systems it
is more favorable to introduce the spin variable and regard the
total energy as a functional of the up- and down-spin densities.
The separation of the density into the up and down components
mimics the true system and captures the essential physics so
that a relatively simple approximation, such as the local spin
density approximation, still works well. A presumably much
more complicated functional would be required to achieve
the same level of accuracy for the total energy if the total
density were to be used instead. A similar situation arises in
our case, in which the orbital- and spin-dependent screened
interactions closely mirror the physical situation and thereby
promote a better self-energy within the simple GWA. If we
kept the conventional screened interaction, we would need to
include exchange diagrams as vertex corrections to cancel the
self-screening terms, as shown in a later section. It is much
simpler to remove the self-screening terms than to include
vertex corrections.

It is interesting to ask if the scheme can be made self-
consistent. Full self-consistency in the sense of having a
renormalized Green function is beyond the present scheme
because it relies on the expansion of the self-energy in terms of
a noninteracting Green function, which is diagonal in the one-
particle eigenfunctions and can therefore be decomposed into

its orbital components as in Eq. (1), whereas a renormalized
Green function is generally not diagonal. However, partial self-
consistency can be achieved by updating the one-particle wave
functions and eigenvalues in Eq. (2), and several techniques
are available for performing this updating within the so-called
quasiparticle self-consistency scheme.12–14 The self-energy
obtained from a starting G0 is used to construct a new set of
one-particle or quasiparticle wave functions and eigenvalues,
which in turn are used to construct a new G0. The cycle is
continued until self-consistency in the one-particle spectrum
is achieved. In this way, the self-screening scheme proposed
in this paper becomes independent of the starting G0. Such
self-consistency may be important in systems in which the
starting G0, which is usually constructed from the LDA wave
functions and eigenvalues, deviates significantly from the true
quasiparticle wave functions and energies.

B. Self-screening correction in extended states

The self-screening correction tends to vanish for each
individual extended state. However, when summation is
performed over continuous quantum labels as in Eq. (10), the
self-screening correction may be finite. Indeed, from a physical
point of view, we expect that the self-screening correction is
significant when the extended state originates from a localized
orbital such as a 3d or a 4f orbital. Performing the sum in
Eq. (10) for extended states, however, can be numerically
very challenging so that in practice an approximate scheme
is necessary. Below, we present an approximate scheme based
on the expansion of the states in maximally localized Wannier
orbitals.

Consider expanding a given Bloch state ψknσ in its Wannier
representation,15

ψknσ (r) =
∑
m

Unm(k)ψw
kmσ (r), (17)

ψw
knσ (r) = 1√

N

∑
R

exp(ik · R)χRnσ (r), (18)

where U is chosen to maximally localize the Wannier orbitals
{χRnσ }. We assume for simplicity that U is a unitary matrix,
which is not necessarily the case for entangled bands. The
Green function is, with εknσ → εknσ + iη for occupied states
and εknσ → εknσ − iη for unoccupied states,

G0
σ (r,r′; ω) =

∑
kn

ψknσ (r)ψ∗
knσ (r′)

ω − εknσ

= 1

N

∑
kn

∑
mm′

∑
RR′

exp[ik · (R − R′)]
Unm(k)χRmσ (r)χ∗

R′m′σ (r′)U †
m′n(k)

ω − εknσ

= 1

N

∑
kn

∑
mm′

∑
R�=R′

exp[ik · (R − R′)]
Unm(k)χRmσ (r)χ∗

R′m′σ (r′)U †
m′n(k)

ω − εknσ

+ 1

N

∑
kn

∑
mm′

∑
R

Unm(k)χRmσ (r)χ∗
Rm′σ (r′)U †

m′n(k)

ω − εknσ

. (19)
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We apply the self-screening correction to the component of
G0

σ corresponding to R = R′. As before, we define

G0
nσ = G0

σ − gnσ , (20)

gnσ (r,r′; ω)

= 1

N

∑
k

∑
mm′

∑
R

Unm(k)χRmσ (r)χ∗
Rm′σ (r′)U †

m′n(k)

ω − εknσ

. (21)

For a very narrow band such as the one formed by semicore
states, we may make the following approximation:

gnσ (r,r′; ω) ≈ 1

N

∑
R

χRnσ (r)χ∗
Rnσ (r′)

ω − 〈εnσ 〉 , (22)

〈εnσ 〉 =
∑

k

εknσ , (23)

where we have used the unitarity of U . For a given site R,
the orbital Green function gnσ is confined to the site and it is
equivalent to a core state Green function.

The above approximation, however, suffers from arbitrari-
ness in the choice of the orbitals. The situation is similar to,
for example, the LDA + U scheme,16 in which an arbitrary
choice of localized orbitals has to be made. Considering that
the self-screening scheme itself is semiphenomenological, the
arbitrariness in the choice of localized orbitals is a reasonable
compromise for the large numerical simplification associated
with the approximation.

C. Theoretical justification of self-screening correction

Here we show that removing the self-screening terms in the
self-energy is partially equivalent to adding vertex corrections
in the form of exchange diagrams. It can be shown that the
self-screening terms are canceled by the corresponding terms
in the exchange diagrams in a similar fashion as for the first-
order self-energy or the HFA. We will illustrate the idea for
the second-order self-energy, but it is clear that the argument
applies to any order. The second-order exchange and direct
diagrams are shown in the upper part of Fig. 2.

According to the Feynman rules,17 the second-order ex-
change self-energy for a given spin is

�x(x1,x2) = (i)2
∫

dx3dx4G(x1,x3)G(x3,x4)

×G(x4,x2)v(x1 − x4)v(x3 − x2), (24)

where x = (r,t) and

v(x − x ′) = v(r − r′)δ(t − t ′). (25)

(a) exchange (b) direct

FIG. 2. The second-order exchange and direct self-energy and
polarization diagrams. As shown in the text, the exchange diagrams
cancel the self-screening terms in the direct diagrams.

Fourier transformation with respect to τ = t1 − t2 yields

�x(r1,r2; ω) = −
∫

d3r3d
3r4

∫
dω1dω2

(2π )2
G(r1,r3; ω1)

×G(r3,r4; ω2)G(r4,r2; ω − ω1 + ω2)

×v(r1 − r4)v(r3 − r2). (26)

Using a noninteracting Green function of a given spin

G0(r,r′; ω) =
occ∑
n

ϕn(r)ϕ∗
n(r′)

ω − εn − iδ
+

unocc∑
m

ϕm(r)ϕ∗
m(r′)

ω − εm + iδ
, (27)

we can perform the frequency integral over ω2 using Cauchy’s
theorem by closing the contour either in the upper or lower
plane: ∫

dω2

2π
G0(r3,r4; ω2)G0(r4,r2; ω − ω1 + ω2)

= i

occ∑
n

unocc∑
m

{
ϕn(r3)ϕ∗

n(r4)ϕm(r4)ϕ∗
m(r2)

ω − ω1 + εn − εm + iδ

+ϕm(r3)ϕ∗
m(r4)ϕn(r4)ϕ∗

n(r2)

ω − ω1 + εm − εn − iδ

}
. (28)

Similarly, integrating over ω1, we find

�x(r1,r2; ω)

= −
occ∑
n

unocc∑
m

∫
d3r3d

3r4 v(r1 − r4)v(r3 − r2)

×
{

occ∑
k

ϕk(r1)ϕ∗
k (r3)ϕm(r3)ϕ∗

m(r4)ϕn(r4)ϕ∗
n(r2)

ω − εk + εm − εn − iδ

+
unocc∑

k

ϕk(r1)ϕ∗
k (r3)ϕn(r3)ϕ∗

n(r4)ϕm(r4)ϕ∗
m(r2)

ω − εk + εn − εm + iδ

}
. (29)

The second-order direct self-energy is

�d (x1,x2) = −(i)2
∫

dx3dx4G(x1,x2)G(x3,x4)G(x4,x3)

×v(x1 − x4)v(x3 − x2), (30)

and we have considered the direct term with all G having the
same spin since this is the term that contains self-screening.
Its Fourier transform is given by

�d (r1,r2; ω) =
∫

d3r3d
3r4

∫
dω1dω2

(2π )2
G(r1,r2; ω1)

×G(r3,r4; ω2)G(r4,r3; ω − ω1 + ω2)

×v(r1 − r4)v(r3 − r2), (31)

which can be calculated analytically as in the exchange case
yielding

�d (r1,r2; ω)

=
occ∑
n

unocc∑
m

∫
d3r3d

3r4 v(r1 − r4)v(r3 − r2)

×
{

occ∑
k

ϕk(r1)ϕ∗
k (r2)ϕm(r3)ϕ∗

m(r4)ϕn(r4)ϕ∗
n(r3)

ω − εk + εm − εn − iδ

+
unocc∑

k

ϕk(r1)ϕ∗
k (r2)ϕn(r3)ϕ∗

n(r4)ϕm(r4)ϕ∗
m(r3)

ω − εk + εn − εm + iδ

}
. (32)
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Comparison between �d and �x reveals that the self-
screening terms n = k in �d for an occupied ϕk ,

ϕk(r1)ϕ∗
k (r2)ϕm(r3)ϕ∗

m(r4)ϕk(r4)ϕ∗
k (r3)

ω − εk + εm − εk − iδ
, (33)

where ϕm is unoccupied, are canceled by the corresponding
terms in �x . This is similar to the case in which ϕk is
unoccupied. Thus we see that by removing the self-screening
terms from the direct self-energy we effectively include the
exchange self-energy.

III. THE RANDOM-PHASE APPROXIMATION
WITH SELF-POLARIZATION CORRECTION

In the previous section, we developed a scheme for
removing the self-screening in the random-phase approxima-
tion (RPA)11 in relation to the GW approximation. When
considering the propagation of an electron or a hole that is
screened by the surrounding electrons, the electron or hole
in question should not participate in the screening process.
Here, we apply an analogous idea to the case in which the
perturbation is not due to an electron or a hole but to a dipole
or an electron-hole excitation.

In the RPA, the polarization is given by

P (r,r′; ω) =
∑

α

{
dα(r)d∗

α(r′)
ω − �α

− dα(r′)d∗
α(r)

ω + �α

}

=
∑

α

pα(r,r′; ω), (34)

dα(r) = ϕm(r)ϕ∗
n(r),

(35)
�α = εm − εn − iδ, εm > μ, εn � μ.

The index α includes the spin. The response function is given
by

R = [1 − Pv]−1P

= P + PvP + PvPvP + · · ·. (36)

We can think of [1 − Pv]−1 = ε−1 as a screening factor that
screens the bare polarization P , which consists of electron-
hole excitations {pα}. We observe that a given electron-hole
excitation pα generates via the Coulomb interaction screening
polarizations that include itself because P contains pα . To
eliminate this self-polarization, we therefore calculate the self-
polarization corrected response function as follows:

R =
∑

α

[1 − Pαv]−1pα, (37)

where

Pα = P − pα. (38)

Physically this means that a particular polarization pα should
not participate again in the screening process so that it should
be subtracted out from P . To distinguish it from self-screening,
we have referred to this type of process as “self-polarization,”
although in essence it is also a self-screening process.

Analogous to the self-screening correction described be-
fore, the self-polarization correction may be regarded as
an approximate way of including the exchange diagrams.

Consider the first-order direct and exchange terms. The direct
term is given by

Pd (x1,x2) = −
∫

dx3dx4G(x3,x1)G(x1,x3)

×v(x3 − x4)G(x4,x2)G(x2,x4). (39)

For the exchange term, we have

Px(x1,x2) =
∫

dx3dx4G(x4,x1)G(x2,x4)

×G(x3,x2)G(x1,x3)v(x3 − x4). (40)

Writing the Green functions in Fourier representation yields

Pd (r1,r2; ω)

= −
∫

d3r3d
3r4

∫
dω1

2π
G(r3,r1; ω1)G(r1,r3; ω1 + ω)

×
∫

dω3

2π
G(r2,r4; ω3)G(r4,r2; ω3 + ω)v(r3 − r4) (41)

and

Px(r1,r2; ω)

=
∫

d3r3d
3r4

∫
dω1

2π
G(r4,r1; ω1)G(r1,r3; ω1 + ω)

×
∫

dω3

2π
G(r2,r4; ω3)G(r3,r2; ω3 + ω)v(r3 − r4).

(42)

Using a noninteracting Green function of a given spin yields
the following, using the convention that repeated indices are
summed and n,n′ refer to the occupied orbitals whereas m,m′
to the unoccupied orbitals:

Pd (r1,r2; ω) = ϕ∗
n(r1)ϕm(r1)vnm,n′m′ϕn′ (r2)ϕ∗

m′(r2)

(ω − εm + εn + iδ)(ω − εm′ + εn′ + iδ)

− ϕ∗
n(r1)ϕm(r1)vnm,m′n′ϕm′(r2)ϕ∗

n′(r2)

(ω − εm + εn + iδ)(ω + εm′ − εn′ − iδ)

− ϕ∗
m(r1)ϕn(r1)vmn,n′m′ϕn′ (r2)ϕ∗

m′(r2)

(ω + εm − εn − iδ)(ω − εm′ + εn′ + iδ)

+ ϕ∗
m(r1)ϕn(r1)vmn,m′n′ϕm′ (r2)ϕ∗

n′(r2)

(ω + εm − εn − iδ)(ω + εm′ − εn′ − iδ)
.

(43)

For the exchange term, we obtain for a given spin

Px(r1,r2; ω) = − ϕ∗
n(r1)ϕm(r1)vnn′,mm′ϕn′ (r2)ϕ∗

m′(r2)

(ω − εm + εn + iδ)(ω − εm′ + εn′ + iδ)

+ ϕ∗
n(r1)ϕm(r1)vnm′,mn′ϕm′(r2)ϕ∗

n′(r2)

(ω − εm + εn + iδ)(ω + εm′ − εn′ − iδ)

+ ϕ∗
m(r1)ϕn(r1)vmn′,nm′ϕn′(r2)ϕ∗

m′(r2)

(ω + εm − εn − iδ)(ω − εm′ + εn′ + iδ)

− ϕ∗
m(r1)ϕn(r1)vmm′,nn′ϕm′(r2)ϕ∗

n′(r2)

(ω + εm − εn − iδ)(ω + εm′ − εn′ − iδ)
,

(44)

where

vij,kl =
∫

d3rd3r ′ϕi(r)ϕ∗
j (r)v(r − r′)ϕ∗

k (r′)ϕl(r′). (45)
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The two self-polarization terms, corresponding to n = n′ and
m = m′ in the second and third terms of Eq. (43), are canceled
by the corresponding terms in Px .

IV. APPLICATION TO A MODEL HYDROGEN DIMER

A. The HOMO-LUMO gap in the conventional GWA

Consider a model hydrogen molecule with one orbital
centered on each atom. The two orbitals centered on different
hydrogen atoms, ϕ1 and ϕ2, are normalized but not generally
orthogonal: 〈ϕ1|ϕ2〉 �= 0. The one-particle eigenfunctions are
the bonding and antibonding states:

ψB = 1√
2

[ϕ1 + ϕ2], (46)

ψA = 1√
2

[ϕ1 − ϕ2], (47)

with eigenenergies εB and εA, respectively. The indices A and
B include the spin functions α and β. These two eigenfunctions
are orthonormal. We may assume that φ1 and φ2 are real. The
two electrons occupy the bonding state with up and down spin.
The noninteracting Green function (the up- and down-spin
Green functions are identical) is given by

G0(r,r′; ω) = ψB(r)ψB(r′)
ω − εB − iδ

+ ψA(r)ψA(r′)
ω − εA + iδ

, (48)

where the one-particle Hamiltonian is taken to be the Hartree
one. The HOMO-LUMO gap in the Hartree approximation is

�H = εA − εB = 2t, (49)

where the hopping integral is given by

t = −〈ϕ1| − 1
2∇2 + vext + VH|ϕ2〉. (50)

The on-site and intersite Coulomb interactions are, respec-
tively,

U0 = 〈
ϕ2

1

∣∣v∣∣ϕ2
1

〉 = 〈
ϕ2

2

∣∣v∣∣ϕ2
2

〉
, (51)

U1 = 〈
ϕ2

1

∣∣v∣∣ϕ2
2

〉
. (52)

〈ϕ1ϕ2|v|ϕ1ϕ2〉 and 〈ϕ2
1 |v|ϕ1ϕ2〉 are neglected since they are

much smaller compared with U0 and U1.
First, let us calculate the exchange contribution:

�x(r,r′) = −v(r − r′)ψB(r)ψB(r′). (53)

The matrix elements in the bonding and antibonding states are

〈ψB |�x|ψB〉 = − 1
2 (U0 + U1), (54)

〈ψA|�x|ψA〉 = − 1
2 (U0 − U1). (55)

The HOMO-LUMO gap in the HFA is, therefore,

�HF = 2t + U1. (56)

We now proceed to calculate the correlation part of the
self-energy. The polarization function can be written in the
form

P 0(r,r′; ω) = ψB(r)ψA(r)P 0(ω)ψB(r′)ψA(r′), (57)

where

P 0(ω) = 2

{
1

ω − �ε + iδ
− 1

ω + �ε − iδ

}
(58)

with

�ε = εA − εB. (59)

The factor of 2 in Eq. (58) is due to the sum over spin. Using
the RPA equation in Eq. (36) and solving it by iteration, it is
straightforward to see that each term in the iterative solution
can be written in the same form as P 0 so that the response
function can also be written as

R(r,r′; ω) = ψB(r)ψA(r)R(ω)ψB(r′)ψA(r′). (60)

R(ω) can be calculated algebraically and it is given by

R(ω) = 2r

ω − �E + iδ
− 2r

ω + �E − iδ
, (61)

where

�E =
√

(�ε)2 + 4vBA,BA�ε, (62)

vab,cd =
∫

d3rd3r ′ψa(r)ψb(r)v(r − r′)ψc(r′)ψd (r′), (63)

r = �ε

�E
< 1,

= 1√
1 + 2(U0−U1)

�ε

≈ 1 − U0 − U1

2t
. (64)

Using

Wc(r′,r; ω) =
∫

d3r1d
3r2v(r′−r1)R(r1,r2; ω)v(r2 − r),

(65)

the correlation part of the self-energy �c can be calculated
analytically to yield

�c
GW (r,r′; ω) = i

∫
dω′

2π
G0(r,r′; ω + ω′)Wc(r′,r; ω′)

= λ1(r,r′)
ω + �E − εB − iδ

+ λ2(r,r′)
ω − �E − εA + iδ

,

(66)

where

λ1(r,r′) = 2rψB(r)ψB(r′)
∫

d3r1d
3r2v(r − r1)

×ψB(r1)ψA(r1)ψA(r2)ψB(r2)v(r2 − r′), (67)

λ2(r,r′) = 2rψA(r)ψA(r′)
∫

d3r1d
3r2v(r − r1)

×ψB(r1)ψA(r1)ψA(r2)ψB(r2)v(r2 − r′), (68)

〈ψB |�c
GW (ω)|ψB〉

= 2rv2
BB,AB

ω + �E − εB − iδ
+ 2rv2

AB,AB

ω − �E − εA + iδ

= 1

2

r(U0 − U1)2

ω − �E − εA + iδ
, (69)
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〈ψA|�c
GW (ω)|ψA〉

= 2rv2
AB,AB

ω + �E − εB − iδ
+ 2rv2

AA,AB

ω − �E − εA + iδ

= 1

2

r(U0 − U1)2

ω + �E − εB − iδ
. (70)

Adding to the Hartree-Fock gap in Eq. (56), the HOMO-
LUMO gap in the GWA is, therefore,

�GW = 2t + U1 + r(U0 − U1)2

�ε + �E
. (71)

It is interesting to note that correlation effects increase the
Hartree-Fock gap, counter to the usual expectation.

B. The HOMO-LUMO gap in the GWA with
self-screening correction

Let us now apply our GW with self-screening correction
scheme. For an electron of a given spin in the bonding or
antibonding state, the screening is provided by the other
electron with opposite spin, as it should be. Thus, the
polarization is half of the polarization without self-screening
correction. The calculation proceeds as in the previous section,
and we obtain

R(ω) = r

ω − �E + iδ
− r

ω + �E − iδ
, (72)

where

�E =
√

(�ε)2 + 2vBA,BA�ε, r = �ε

�E
. (73)

The correlation part of the self-energy with self-screening
correction is

�c
GW -SS(r,r′; ω)

= 1

2

λ1(r,r′)
ω + �E − εB − iδ

+ 1

2

λ2(r,r′)
ω − �E − εA + iδ

, (74)

where λ1 and λ2 are given in Eqs. (67) and (68). Thus,

〈ψB |�c
GW -SS(ω)|ψB〉

= rv2
BB,AB

ω + �E − εB − iδ
+ rv2

AB,AB

ω − �E − εA + iδ

= 1

4

r(U0 − U1)2

ω − �E − εA + iδ
, (75)

〈ψA|�c
GW -SS(ω)|ψA〉

= rv2
AB,AB

ω + �E − εB − iδ
+ rv2

AA,AB

ω − �E − εA + iδ

= 1

4

r(U0 − U1)2

ω + �E − εB − iδ
. (76)

Taking into account the Hartree-Fock gap in Eq. (56),
the self-screening-corrected GW HOMO-LUMO gap is,

therefore,

�GW -SS = 2t + U1 + r(U0 − U1)2

2(�ε + �E)
, (77)

where

r = �ε

�E
=

[
1 + U0 − U1

�ε

]−1/2

. (78)

It is shown below that this is the same as the exact result
up to second order in (U0 − U1)/2t in the weak to moderate
coupling regime where (U0 − U1)/2t < 1.

C. Exact solution in an atomic basis

We consider configurations with total Sz = 0 . In this case,
the Hamiltonian is given by

H =

⎛
⎜⎜⎝

2ε0 + U1 0 −t −t

0 2ε0 + U1 t t

−t t 2ε0 + U0 0
−t t 0 2ε0 + U0

⎞
⎟⎟⎠ , (79)

which can be solved analytically. Since ε0 appears only in the
diagonal element, we may set it to zero. Choosing ε0 = 0, the
ground-state energy is given by

E0(N ) = 1
2 (U0 + U1) − 1

2

√
(U0 − U1)2 + 16t2. (80)

To calculate the bonding-antibonding or HOMO-LUMO
gap, we need to consider the N ± 1 problems. For the one-
and three-electron problem, there are only two configurations.
The eigenvalues are

E1,2(N + 1) = 3ε0 + U0 + 2U1 ± (−t), (81)

E1,2(N − 1) = ε0 ± t. (82)

The exact HOMO-LUMO gap with t > 0 is

�exact = E1(N + 1) − 2E0(N ) + E1(N − 1)

= −2t + U1 +
√

(U0 − U1)2 + 16t2. (83)

It approaches 2t as U0,1 → 0, as it should. In the weak or
moderate coupling regime where (U0 − U1)/2t < 1, the gap
is given by

�exact = −2t + U1 +
√

(U0 − U1)2 + 16t2

≈ 2t + U1 + t

2

(
U0 − U1

2t

)2

. (84)

This is the same as the gap in the GW scheme with self-
screening correction up to order [(U0 − U1)/2t]2:

�GW -SS = 2t + U1 + r(U0 − U1)2

2(�ε + �E)

≈ 2t + U1 + t

2

(
U0 − U1

2t

)2

. (85)

V. CONCLUSION

We have proposed a scheme for taking into account self-
screening correction within the GWA. The scheme introduces
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orbital and spin-dependent screened interaction. While this
is not necessary in theory, the introduction of orbital and
spin dependence W within the GWA captures the essential
physics better and improves the self-energy without resorting
to complicated vertex corrections. This is analogous to the
introduction of the spin variable in the spin density functional
theory. The scheme is justified theoretically by showing that
the self-screening terms are indeed canceled when exchange
diagrams beyond the GWA are considered. When applied to

a model hydrogen dimer, the scheme reproduces the exact
result in the weak to moderate coupling regime. Work is now
underway to apply the scheme to real systems.
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