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Focusing through random media: Eigenchannel participation number and intensity correlation
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Using random matrix calculations, we show that the contrast between maximally focused intensity through
random media and the background of the transmitted speckle pattern for diffusive waves is μN = 1 + Neff,
where Neff is the eigenchannel participation number for the transmission matrix. For diffusive waves, Neff is the
inverse of the degree of intensity correlation κ . The profile of the focused beam relative to the ensemble average
intensity is expressed in terms of the square of the normalized spatial field correlation function F (�r) and κ .
These results are demonstrated in microwave experiments and provide the parameters for optimal focusing and
the limits of imaging.
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I. INTRODUCTION

Electromagnetic, acoustic, and electronic waves are used
to transmit energy and information and to control, probe,
and image our environment. The particularities of wave
interactions in diverse systems are the basis of our rich
experience of the world, but their common characteristics
provide a framework for understanding transport and often
point to new applications.

Waves traversing a random medium are typically so
completely scrambled that they produce a random speckle
pattern of transmitted flux bearing no relation to the incident
waveform. Nonetheless, intensity can be focused at any point
by phasing all sources of the wave so that the fields arriving
at the selected point from these sources add constructively.
Light has recently been focused through a random medium by
employing a genetic algorithm to manipulate the incident field
in each generation based on feedback of transmitted intensity
at a point,1 and by recording the transmission matrix and
using phase conjugation.2 Light can also be focused through
a random slab in both space and time by manipulating the
incident field.3–5

Maximum focused intensity is achieved by constructing an
incident field by phase conjugating the Green’s function from
the focal point to the incident surface.6 Phase conjugation
of monochromatic waves is analogous to time reversal for
pulsed signals,7 which is widely used to focus ultrasound
and electromagnetic radiation within reverberant cavities8,9

or through random media.10,11

The contrast and spatial profile of focused intensity in
transmission through a multiple scattering sample must depend
upon the random medium as well as upon the incident field. It
is natural to explore the role of the medium via the complete
set of the N orthogonal eigenchannels of the transmission
matrix and their associated transmission eigenvalues τn. The
field transmission matrix t relates the fields Ea and Eb

between incoming channel a and outgoing channel b with
Eb = ∑N

a tbaEa .
The full transmission matrix is not generally available;

however, focusing through random media may also be
characterized via the correlation and the fluctuations of the
transmitted intensity, which are accessible experimentally.
These statistical characteristics of the interaction of the wave
with the medium reflect the number of statistically independent
constituents of the transmitted field. Intensity correlation

across the transmitted speckle pattern persists beyond the range
over which the field is correlated12–16 and may be characterized
through the degree of intensity correlation κ .17 This is the value
of the correlation of intensity normalized by its ensemble
average between points at which field correlation vanishes.
Correlation in intensity and fluctuations of total transmission
normalized by its ensemble average sa = Ta/〈Ta〉, where
Ta = ∑N

b |tba|2 are linked via the equality κ = var(sa) for
N � 1.15 κ is also inversely proportional to the dimensionless
conductance g,13,14,16–20 which is the ensemble average of the
optical transmittance g = 〈T 〉 = 〈∑N

a,b |tba|2〉 = 〈∑N
n=1 τn〉.21

Although focusing through random media has been demon-
strated, the focused intensity pattern has not been fully
characterized and related to experimentally accessible param-
eters. In addition, the full transmission matrix, which reflects
the correlation within the medium, has not been measured
and related to focusing. In this paper, we show that, for
maximum focused intensity, the ensemble average of the
contrast in focusing may be expressed in terms of the degree of
intensity correlation κ and the number of effective eigenvalues
Neff, which is the eigenchannel participation number of the
transmission matrix. We show that in the diffusive limit,
the average of intensity at a distance �r from the focus
relative to the ensemble average of the intensity is given
by 〈Ifoc(�r)〉/〈I 〉 = N [(F (�r) + κ)/(1 + κ)]. Here, F (�r)
is the square of the field correlation function with displacement
normalized to unity at �r = 0 and κ is equal to the inverse of
Neff. In the limit of strong localization, the contrast approaches
unity and the wave can no longer be focused. These results are
confirmed via microwave measurements of the focusing profile
and contrast Neff and κ in random ensembles of samples over
a wide range of Neff. The description of focusing in space in
terms of the degree of intensity correlation can be extended to
describe focusing in both time and space.

II. FOCUSING CONTRAST

Focusing with maximum intensity on a point β for a
normalized incident field is achieved by phase conjugating
the field transmission coefficient between the target point
at β and input points a so that the incident field is Ea =
t∗βa/

√∑
a |tβa|2 = t∗βa/

√
Tβ .6 Components of the transmitted

field originating from different points then interfere construc-
tively at β to give the focused intensity, which is equal
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to the total transmission through the opposite surface for
a source at β, Iβ = |∑a |tβa|2|2/Tβ = Tβ . For M incoming
channels with M < N , where N is the number of independent
channels supported in the space surrounding the medium, 〈Iβ〉
is enhanced by a factor M over 〈I 〉, 〈Iβ〉 = M〈I 〉 = Mg/N2.
On the other hand, the background intensity at points b �= β is
Ib = |∑a tbat

∗
βa|2/Tβ .

Decomposing the field into orthonormal incoming and
outgoing singular vectors vn and un, respectively, t can be
written as t = U�V = ∑N

n=1 unλnv†n. The singular values
λn are the square root of the eigenvalues τn obtained by
diagonalizing the Hermitian matrix t t†, and the singular
vectors vn and un are the waveforms at input and ouput
surfaces, respectively, which couple selectively to the nth
eigenchannel propagating through the medium. The focused
and background intensities can be expressed in terms of the
singular vectors (see Appendix A)

Iβ =
∑

n

τn|unβ |2, (1a)

Ib =
∣∣∑

n τnunbu
∗
nβ

∣∣
Tβ

2

. (1b)

Since the background intensity is the result of interference
between randomly phased statistically independent elements
associated with different eigenchannels, the contrast μM =
〈Iβ/Ib〉 depends on the effective number of eigenchannels
contributing to the transmission.

The average of the contrast between the peak and
background intensity for M input points is shown in Appendix
A to be

μM = 1
1

1+1/Neff
− 1

M

, (2)

where Neff ≡ 〈(∑N
n=1 τn)

2
/
∑N

n=1 τ 2
n 〉, and the eigenchannel

participation number of the transmission matrix is the effective
number of uncorrelated speckle patterns contributing to the
transmitted field.

Neff reflects the internal statistics of τn and the statistics
of relative intensity and is independent of τ1. Dorokhov22 and
Imry23 have shown that for good conductors, g is equal to the
number of open or active eigenchannels for which τn � 1/e.
This number is proportional to Neff in nondissipative, diffusive
samples. For Neff � M , Eq. (2) yields

μN = 1 + Neff. (3)

Equation (2) is consistent with the previous finding that the
contrast increases linearly with M when M � g.11 In this case,
the components of an N × M matrix for M incoming channels
are uncorrelated and the normalized singular values of this
matrix λ̃ = λ/

√∑M
n=1 τn/M follow the quarter-circle law for

M � 1.24 This distribution gives Neff = M/2, which, taken
together with Eq. (2), leads to μM = M . The quarter-circle law
was found in optical2 and acoustic25 measurements in which
the number of measured channels M was smaller than g.

In general, the contrast in focusing depends both upon
t and on the character of the incident field. The contrast
increases with the effective number of eigenchannels con-
tributing to the intensity at the focus. For an arbitrary

ensemble of incident fields with complex amplitude an for
the nth eigenchannel, the incident field that adds coherently
at the focal point β is Ea = ∑

n anu
∗
nβvna and the eigen-

channel participation number in the focused field becomes

N
{a}
eff = 〈(∑M

n=1 |an|λn)
2
/
∑M

n=1 |an|2λ2
n〉. When the incident

field is constructed by means of phase conjugation, an =
λn and N

{a}
eff = Neff. For the choice an = 1/λn, known as

the inverse filter,26 N
{a}
eff = N and μN ∼ N . However, since

smaller values of λn are emphasized in this approach, the
peak intensity is small. The noise level can be high in this
case since significant weight is given to small values of λn in
which the relative contribution of noise is larger. For any set
of an, the contrast achieved when these waves are summed to
interfere constructively at a point is given by Eq. (2) with N

{a}
eff

substituted for Neff.
Microwave measurements of the field transmission matrix

allow us to test the calculations of contrast above as well as
the relationship between Neff and intensity correlation and
the spatial distribution for the focused wave over a large
range of Neff. The comparison is made with high resolution
for ensembles of statistically equivalent disordered samples.
Measurements are made in samples of randomly positioned
alumina spheres contained in the copper tube in two frequency
ranges.27 The wave is localized in the frequency range between
10 and 10.24 GHz and diffusive between 14.7 and 14.94
GHz with N ∼ 30 and 66, respectively. Measurements are
carried out for sample of lengths L = 23, 40, and 61 cm for
which g ranges from 6.9 to 0.17 and Neff from 13.8 to 1.16.
Measurements are made for horizontal and vertical linearly
polarized components of the field by rotating the source and
detector antennas. The antennas are translated over a 9-mm
grid on the front and back surfaces of the waveguide. The
field correlation falls rapidly and F (�r = 9 mm) ∼ 0. The
transmission matrix t is computed using N/2 points for each
polarization. New configurations are created by briefly rotating
and vibrating the sample tube.

Typical speckle patterns for diffusive and localized waves
are displayed in Figs. 1(a) and 1(b), respectively. Patterns
produced by focusing the field at the input via the phase
conjugation protocol at a point in the center of the output
speckle pattern β = (x,y) = (0,0) are shown on Figs. 1(c)
and 1(d). The Whittaker-Shannon sampling is used to obtain
high-resolution patterns.28 The focused patterns are obtained
utilizing the reciprocity of propagation to calculate the incident
field t∗βa . Only for diffusive waves does the focal spot emerge
from the background. Several closely spaced eigenvalues
contribute to the transmittance T as can be seen in Fig. 2(a).
For the diffusive sample of length L = 23 cm and g = 6.9, we
find Neff = 13.8. In contrast, the first eigenchannel dominates
transmission for localized waves so that the intensity pattern
is not very different from the pattern for this eigenchannel. In
the sample of length L = 61 cm and g = 0.17, 〈τ1〉/〈τ2〉 ∼ 24
and Neff = 1.16. As a result, it is not possible to significantly
enhance the intensity at a particular point for localized waves.
The intensity at the focus is still N〈I 〉, but this is essentially the
average intensity in the pattern when only the first transmission
eigenchannel is excited.

Focusing diffusive waves via phase conjugation may greatly
enhance the background intensity by giving more weight to
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FIG. 1. (Color online) Intensity speckle pattern generated for L =
23 cm for diffusive waves (a) and for L = 61 cm for localized waves
(b) normalized to the average intensity in the respective patterns.
Focusing at the central point the same frequency as in (a) and (b) via
phase conjugation is displayed in (c) and (d) with 66 and 30 input
points, respectively.

more highly transmitting eigenchannels.6 From Eq. (1), the
total transmission

∑
b Ib obtained by summing the intensity

over the output when the wave is focused for maximum
intensity is given by C4,2 = 〈∑n τ 2

n 〉/〈∑n τn〉 = g/Neff,6 in-
stead of 〈Ta〉 = g/N for illumination by a random wave.
This enhances the background in the focused pattern over
the average intensity 〈I 〉 by a factor N/Neff. For the diffusive
samples studied here with L = 23 cm, the total transmission
is enhanced fivefold. The values of 〈τn〉 are seen in Fig. 2(a)
to fall exponentially for these samples. This exponential
falloff corresponds to the distribution P (τ ) = g/τ for the
transmission eigenvalues, and give an average value of total
transmission of g/Neff = 1/2. We find g/Neff = 0.50 and 0.53
for L = 23 and 61 cm, respectively, giving enhancements of
total transmission by factors of 4.8 and 10 for the focused wave.
These results differ from the result predicted for the bimodal
distribution, in the diffusive limit,6,29,30 of g/Neff = 2/3. The
departure we find from the bimodal distribution may be due
to the measurements protocol in which the field is measured
between points on a grid instead of between waveguide
modes.31 In addition, the fractional field correlation has a
residual value of F ∼ 0.05 as opposed to the vanishing of
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FIG. 2. (Color online) (a), (b) Averages of τn for the first 30
transmission eigenvalues (a) for diffusive waves L = 23 cm and
(b) for localized waves L = 61 cm.
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FIG. 3. (Color online) The contrast μM is plotted with respect to
the number of input points M for L = 61 cm (magenta filled circles),
40 cm (cyan asteriks), and 23 cm (blue circles) for diffusive waves
and L = 61 cm (red stars) for localized waves. The curves are the fit
of Eq. (4) to the data. The black dashed line corresponds to μM = M .
In the inset, measurements of μN are compared to (1 + 1/κ) for
diffusive waves with κ equal to the value of κ = var (sa) obtained
experimentally.

field correlation between orthogonal channels, which would
occur with continuous spatial wavefronts.

The contrast μM for M incoming channels is seen in
Fig. 3 to increase linearly before beginning to saturate.
The departure from linearity was noted by Derode et al.
in acoustical studies.11 Assuming that the average of the
background intensities is linear in M for M < N gives 〈Ib〉 =
〈I 〉[1 + (1/μN − 1/N )(M − 1)], which leads for N � 1 to

μM = M

[1 + (1/μN − 1/N)(M − 1)]
. (4)

Good agreement with measurements is seen in Fig. 3.
The eigenchannel participation number Neff may be directly

linked to fluctuations and correlations of intensity for diffusive
waves for quasi-one-dimensional samples. In such samples,
the length greatly exceeds the transverse dimensions of the
sample with reflecting sides so that waves from all incident
points are perfectly mixed on the sample output. Intensity
correlations remain even when the field correlation function
vanishes. The cumulant correlation function of normalized
intensity versus displacement, C(�r) = 〈δĨ (r)δĨ (r + �r)〉,
may be expressed in terms of the square of the normalized field
correlation function FE(�r) = 〈Ẽ(r)Ẽ∗(r + �r)〉 and κ as
C(�r) = F (�r) + κ(1 + F (�r)).16,17 Here, I (r) = |E|2 =
|tab|2, Ĩ (r) = I (r)/〈I (r)〉, Ẽ(r) = E(r)/

√〈I (r)〉, and F =
F 2

E . κ involves both long- and infinite-range correlations.
Correlations in intensity and fluctuations of total transmission
normalized by its ensemble average sa = Ta/〈Ta〉 are linked
with κ = var(sa), which is shown in Appendix B to be for
diffusive waves and N � 1:

var (sa) = κ = 1/Neff. (5)
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For the ensemble of diffusive samples of length L = 61 cm,
var(sa) = 0.147 is in good agreement with 1/Neff = 0.145.
Equations (3) and (5) then give μN = 1 + 1/ var(sa) = 1 +
1/κ , which is in a good agreement with measurements in Fig. 3.

III. FOCUSED INTENSITY PROFILE

Significantly higher spatial resolution is achieved by focus-
ing in disordered systems than in free space since the resolution
is not limited by the aperture of the emitting array. Instead, the
resolution is equal to the field correlation length, which is the
inverse of the width of the k-vector distribution of the scattered
waves.11,32–34 The spatial variation of intensity in the focused
speckle pattern 〈Ifoc(�r)〉 reflects the decay of the ensemble
average of the coherent sum of eigenchannels at the focus
toward the average value of the incoherent sum. The average
intensity pattern for focused waves normalized to the value at
the focus is derived in Appendix C as

〈Ifoc(�r)〉
N〈I 〉 =

〈 ∑N
n=1 τ 2

n

〉 + 〈∑N
n=1 τn

〉2
F (�r)〈∑N

n=1 τ 2
n

〉 + 〈 ∑N
n=1 τn

〉2
= F (�r) + κ

1 + κ
. (6)

The ensemble average of the intensity in the focused
patterns is shown in Fig. 4 and seen to be in an excellent
agreement with Eq. (6) using measurements of the square of the
field correlation function F (�r) and κ . κ is obtained from the
fit of the cumulant intensity correlation function C(�r). F (�r)
shown in Fig. 4 is well fitted with theoretical expressions35,36

based on the equality of FE(�r) with the Fourier transform of
the specific intensity. For localized waves, Eq. (6) no longer
holds, but good agreement with the focused pattern is obtained
when κ in Eq. (6) is replaced with 1/(μN − 1) with μN

obtained experimentally.
We have considered theoretically focusing in nondissi-

pative, quasi-one-dimensional samples in steady state. The
impact of absorption and the nature of focusing in the slab
geometry, in which the wave is not restricted in transverse di-
rections, and in the time domain can be outlined in the context
of these results. Focusing is little affected by absorption since
κ is much less sensitive to absorption than is transmission.20

Neff is similarly insensitive to absorption since the ratio of
transmission eigenvalues is only slight reduced by absorption.
As a result of the drop in κ and the increase in Neff, contrast in
focusing increases slightly with absorption. In a slab geometry,
κ varies with separation between points since the overlap of
the portion of the medium explored by the waves arriving at
different points on the output falls with separation.12

Equation (6) can be generalized to give the focused pattern
in space and time. The intensity contrast within the focused
pattern at a time �t relative to the time t at which the wave is
focused μN (t,�t) depends on both t and �t . The intensity in
the pattern due to a pulse focused at an arbitrary point within
the speckle pattern and at a time t is given by replacing F

in Eq. (6) by F (�r,�t) = F (�r)F (�t),17,37 and κ by the
time varying degree of correlation κσ (t) for an incident pulse
with bandwidth σ .17 Here, F (�t) = F 2

E(�t) is the square of
the normalized field correlation function with time FE(�t).
κσ (t) falls with increasing bandwidth as a greater number of
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FIG. 4. (Color online) The ensemble average of normalized
intensity for focused radiation (blue circles) is compared to Eq. (5)
(blue solid line) for L = 61 cm for diffusive waves. For localized
waves for L = 61 cm, κ is replaced by 1/(μN − 1) in Eq. (5). F (�r)
(blue dots) is fit with the theoretical expression obtained from the
Fourier transform of the specific intensity (dashed blue line). The
field has been recorded along a line with a spacing of 2 mm for 49
input points for L = 61 cm. The black dashed line is proportional to
〈I 〉/〈Ifoc(0)〉 = 1/N .

quasinormal modes and similarly a greater number of
transmission eigenchannels are substantially excited by the
pulse. This gives

〈Ifoc(�r,t,�t)〉
N〈I (t)〉 = F (�r,�t) + κσ (t)

1 + κσ (t)
. (7)

κσ (t) typically falls for short delay times before increases at
later times.37 This has been explained in terms of the temporal
variation of the number of quasinormal modes of the medium
that contribute substantially to transmission and, again, the
effective number of distinct transmission eigenchannels. At
short times, transmission is dominated by a few short-lived
modes, which surrender their energy rapidly, while at later
times transmission is due to a small number of long-lived
modes. As a result, correlation is high for short and long times
but lower at intermediate times.37 Finding the transmission
matrix at different delay times would yield the effective
number of eigenchannels at a delay time t , Neff(t), and the
contrast in the speckle pattern accordingly.

IV. CONCLUSION

In conclusion, we have provided a description of focusing
through scattering media in space and time for diffusive and
localized waves in terms of the effective eigenchannel number
and the field correlation function. For diffusive waves, the
contrast may be expressed in terms of an equivalent statistical
localization parameter, the degree of correlation κ , which
is the inverse eigenchannel participation number κ = N−1

eff .
In the localized limit, the contrast approaches unity since
transmission is carried by a single transmission eigenchannel.
These results are confirmed in microwave measurements and
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provide a systematic framework for focusing radiation for
applications in imaging and communications.
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APPENDIX A: DERIVATION OF THE CONTRAST

The contrast μM for M incident channels is the average of

the ratio of the focused intensity Iβ = |∑M
a |tβa|2|2/Tβ = Tβ ,

and the background intensity Ib = | ∑M
a tbat

∗
βa|

2
/Tβ , μM =

〈Iβ/Ib〉. The intensity at the focus can be expressed in terms
of the transmission matrix by decomposing the field into
singular values. The singular vectors are normalized so that∑M

a vnav
∗
n′a = δnn′ , and

Iβ =
M∑
a

∣∣∣∣
M∑

n=1

λnunβv∗
na

∣∣∣∣
2

=
M∑

n=1

τn|unβ |2. (A1)

Whereas the intensity at the focus is the square of a coherent
sum, the background intensity reflects the random phasing
between eigenchannels. For separation much greater than the
field correlation length δr , the average background is the sum
of the square amplitudes of the transmission eigenchannels

Ib =
∣∣∣∣

M∑
a

(∑
n

λnunbv
∗
na

)( ∑
n

λnu
∗
nβvn′a

)∣∣∣∣
2/

Tβ

=
∣∣∣∣

M∑
n=1

τnunbu
∗
nβ

∣∣∣∣
2/

Tβ. (A2)

Since the spacing between two points on the measurement
grid is equal to or larger than δr , we assume that components
of the singular vector associated with different points on the
sample output for the nth eigenchannel, unβ and unb, are
uncorrelated. Using Eq. (1), the contrast μM = 〈Iβ/Ib〉 in the
diffusive limit can be expressed as

μM =
〈
I 2
β/

∣∣∣∣
M∑

n=1

τnunbu
∗
nβ

∣∣∣∣
2〉

. (A3)

For diffusive waves, correlation between the nu-
merator and the denominator is small. The numera-
tor 〈I 2

β 〉 can be written as 〈I 2
β 〉 = 〈∑M

n=1 τ 2
n |unβ |4〉 +

〈∑M
n=1

∑
n′ �=n τnτn′ |unβ |2|un′β |2〉. The singular vectors, nor-

malized so that 〈|unβ |2〉 = 1/M , are independent of the
eigenvalues. The intensity of the Gaussian singular vectors
at the output M|unβ |2 have a negative exponential distribu-
tion, giving 〈M2|unβ |4〉 = 2. In the diffusive limit for sys-
tems with time-reversal symmetry, var(T ) = 〈T 2〉 − 〈T 〉2 ≈
2/15,13,14,38 while 〈T 〉 = g is large, so that 〈T 2〉 ≈ 〈T 〉2 and

〈∑M
n=1 τn〉2 ≈ 〈(∑M

n=1 τn)
2〉. This gives 〈I 2

β 〉 ≈ (〈∑M
n=1 τ 2

n 〉 +
〈∑M

n=1 τn〉2)/M2. The average denominator in Eq. (A3) is av-
eraged over all points b �= β and is equal to 〈∑M

n=1 τ 2
n 〉/M2 −

〈I 2
β 〉/M3.
The contrast μM can finally be expressed as a function of

the eigenvalues τn,

μM = 1〈∑M
n=1 τ 2

n

〉/〈∑M
n=1 τn

〉
2

1+
〈∑M

n=1 τ 2
n

〉/
〈∑M

n=1 τn

〉
2
− 1

M

. (A4)

Since the eigenchannel participation number Neff =
〈(∑M

n=1 τn)
2
/
∑M

n=1 τ 2
n 〉 is equal to 〈∑M

n=1 τn〉2
/〈∑M

n=1 τ 2
n 〉 in

the diffusive limit,6 this gives Eq. (2).

APPENDIX B: RELATION BETWEEN Neff AND var(sa)

The variance of normalized total transmission sa =
Ta/〈Ta〉, where Ta = ∑N

b |tba|2 is var(sa) = 〈T 2
a 〉/〈Ta〉2 − 1.

We obtain var(sa) = [〈∑N
n=1 τ 2

n 〉 + 〈(∑N
n=1 τn)

2〉]/〈∑N
n=1 τn〉2

− 1. In the diffusive limit, this leads to

var(sa) =
〈∑N

n=1 τ 2
n

〉
〈 ∑N

n=1 τn

〉2 = 1

Neff
. (B1)

APPENDIX C: DERIVATION OF THE FOCUSED
SPATIAL INTENSITY PATTERN

When focusing is achieved by phase conjugation at the se-
lected point β, the average intensity at points b displaced by �r

from β, 〈Ifoc(�r)〉 can be expressed as a function of the degree
of extended correlation κ and the square of the field corre-
lation function F (�r) = |〈E(r)E∗(r + �r)〉|2/[〈I (r)〉〈I (r +
�r)〉]. Using Eq. (1), the average intensity in the fo-
cused pattern normalized to the average intensity at the
focus is

〈Ifoc(�r)〉
N〈I 〉 ≈

〈∣∣∑N
n=1 τnunbu

∗
nβ

∣∣2〉
〈∣∣ ∑N

n=1 τn|unβ |2∣∣2〉 . (C1)

The numerator on the right-hand side of Eq. (C1)
is also written as

∑N
n=1 〈τ 2

n 〉〈unbu
∗
nβu∗

nbunβ〉 +∑N
n=1

∑
n′ �=n 〈τnτn′ 〉〈unbu

∗
nβu∗

n′bun′β〉. Since the components
of the singular vectors unb are circular Gaussian
variables, the average product 〈unbu

∗
nβu∗

nbunβ〉 can be

broken into the sum |〈unbu
∗
nβ〉|2 + 〈|unb|2〉〈|unβ |2〉.28 In

this expression, |〈unbu
∗
nβ〉|2 is the square of the field

correlation function of the singular vector unb, which can
be approximated as |〈unbu

∗
nβ〉|2 = F (�r)/N2. This gives

〈unbu
∗
nβu∗

nbunβ〉 = F (�r)/N2 + 1/N2.
For n �= n′, the singular vectors unb and un′b are un-

correlated so that 〈unbu
∗
nβu∗

n′bun′β〉 = 〈unbu
∗
nβ〉〈u∗

n′bun′β〉 =
F (�r)/N2. The numerator in Eq. (C1) can then
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be written as 〈|∑N
n=1 τnunbu

∗
nβ |2〉 = [〈∑N

n=1 τn〉2
F (�r) +

〈∑N
n=1 τ 2

n 〉]/N2. Equation (C1) finally leads to

〈Ifoc(�r)〉
N〈I 〉 =

〈 ∑N
n=1 τn

〉
2F (�r) + 〈∑N

n=1 τ 2
n

〉
〈∑N

n=1 τn

〉
2 + 〈 ∑N

n=1 τ 2
n

〉 . (C2)

By virtue of Eq. (B1) and κ = var (sa), Eq. (C2) can
be rewritten to give the spatial variation of the normalized
intensity pattern with the displacement �r in terms of κ:

〈Ifoc(�r)〉
N〈I 〉 = F (�r) + κ

1 + κ
. (C3)
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