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Time-reversal invariant realization of the Weyl semimetal phase
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We propose a realization of the Weyl semimetal phase that is invariant under time reversal and occurs due
to broken inversion symmetry. We consider both a simple superlattice model and a more realistic tight-binding
model describing an experimentally reasonable HgTe/CdTe multilayer structure. The two models have the same
underlying symmetry, therefore their low-energy features are equivalent. We find a Weyl semimetal phase between
the normal insulator and the topological insulator phases that exists for a finite range of the system parameters and
exhibits a finite number of Weyl points with robust band touching at the Fermi level. This phase is experimentally
characterized by a strong conductivity anisotropy and topological surface states. The principal conductivities
change in a complementary fashion as the system parameters are varied, and the surface states only exist in a
region of momentum space that is determined by the positions of the Weyl points.

DOI: 10.1103/PhysRevB.85.035103 PACS number(s): 03.65.Vf, 73.21.Cd, 73.20.−r

I. INTRODUCTION

In recent decades, topological phases of matter have been
in the focus of intense theoretical and experimental study; for
a review, see Ref. 1 and references therein. The order exhibited
by these phases is not associated with spontaneous symmetry
breaking, and it can be described by topological invariants that
are insensitive to smooth changes in the system parameters.2

As a generic feature, these phases also have topologically
protected edge states.

The field of topological phases was revolutionized by the
discovery of two-dimensional (2D) topological insulators,3,4

and the subsequent generalization to three-dimensional (3D)
topological insulators.5 These materials exhibit a bulk energy
gap between the valence and the conduction bands, similarly to
normal insulators. On the other hand, they have gapless surface
states that are topologically protected, therefore conduction
is possible on the surface. Since topological insulators arise
due to strong spin-orbit coupling, their prevalence is larger
within materials consisting of heavier elements.6 They find
potential applications in the areas of spintronics and quantum
computation.

It is a recent development that topologically protected
surface states can also be achieved in materials without a
bulk energy gap: these are the Weyl semimetals.7–9 They have
band touching between the conduction and the valence bands
at the Fermi level. The band-touching points are called Weyl
points because the dispersion relation around them is linear and
hence the excitations are equivalent to Weyl fermions. Weyl
points can have positive or negative helicities, and they always
appear in pairs. To achieve robust band touching that cannot
be removed by an infinitesimal perturbation, Weyl points of
opposite helicities must be separated in momentum space.8

This requires breaking either the time-reversal or the inversion
symmetry of the system.10

Recent papers on Weyl semimetals have predominantly
studied the case with broken time-reversal symmetry.7,8 One
notable exception is Ref. 9, where time-reversal symmetry
remains intact and inversion symmetry is broken. It was argued
that a gapless phase appears in three dimensions between
the normal insulator (NI) and the topological insulator (TI)

phases. In this paper, we are also interested in the time-reversal
invariant case, but address specifically how this phase, which
is in fact the Weyl semimetal, may be designed in a NI/TI
superlattice. We propose two models: a simple superlattice
model adapted from Ref. 8 and a more realistic tight-binding
model describing a HgTe/CdTe multilayer structure. The
former model is presented in Sec. II and the latter one
is presented in Sec. III. The most prominent experimental
features are discussed in Sec. IV, while the overall conclusions
of the paper are summarized in Sec. V.

II. SUPERLATTICE MODEL

A. General description

The model considered in this section is based on the
multilayer structure in Ref. 8: a periodic superlattice of NI
and TI layers grown in the z direction. It is a simplified
tight-binding model where we only take the surface states
located at the NI/TI interfaces into account. These states are
labeled by the unit cell index and the parallel 2D momentum
k = (kx,ky).

It is known that a realization of the Weyl semimetal phase
requires breaking either the time-reversal or the inversion
symmetry of the system. Since we intend to keep the time-
reversal symmetry intact, the inversion symmetry must be
broken. To achieve that, we introduce a finite voltage V

between the top and the bottom NI/TI interfaces in each unit
cell. The Hamiltonian of the multilayer structure is then

H =
∑

k

∑
i,j

[
vF τ z(σxky − σykx)δi,j + V τzδi,j

+�T τxδi,j + �N

∑
±

τ±δi,j±1

]
c
†
i,kcj,k, (1)

where the Pauli matrices �σ = (σx,σ y,σ z) act on the real spin
degree of freedom and the Pauli matrices �τ = (τ x,τ y,τ z) act on
the top/bottom surface pseudospin degree of freedom. The first
term describes the NI/TI surface states with isotropic Fermi
velocity vF , the second term represents the inversion-breaking
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voltage, and the remaining terms describe hopping between
neighboring interfaces. The hopping amplitude through a TI
layer is �T and that through a NI layer is �N . In general, both
�T and �N can be functions of the parallel momentum k, and
the symmetries of these functions determine the symmetry of
the system.

The Hamiltonian in Eq. (1) can be solved by exploiting the
translational symmetry in the z direction, and introducing the
corresponding 3D momentum �k = (kx,ky,kz). By doing so, we
find that the band dispersion relation is

E2
±(�k) = �2(kz) + [V ± vF |k|]2, (2)

where �(kz) =
√
�2

T + �2
N + 2�T �N cos(kzd) and d is the

periodicity of the superlattice. The four bands are nondegen-
erate when k �= 0, and band touching between the two middle
bands takes place when E− = 0. If we assume without loss
of generality that �T and �N are both positive, this happens
when kzd = π , �T = �N , and V = vF |k|.

B. The Weyl semimetal phase

If �T and �N are independent of k, the band touching
occurs along a circle of radius V/vF in the kz = π/d plane. It
marks the transition between the NI and the TI phases of the
material at �T = �N . We can argue on physical grounds that
�T > �N (thin TI layers and thick NI layers) corresponds to
the NI phase, while �T < �N (thick TI layers and thin NI
layers) corresponds to the TI phase.

However, this band touching is not robust because it
requires the fine tuning of the condition �T = �N . To achieve
robust band touching, we need to make the hopping amplitudes
depend on the momentum k:

�T,N = �
(0)
T ,N + �

(1)
T ,N (k). (3)

Furthermore, we cannot keep the continuous rotational sym-
metry around the z axis because then �T and �N are still
constants at |k| = V/vF , the only region where band touching
is possible. On the other hand, the continuous rotational
symmetry is broken in real crystals as well, and one is only
left with a discrete rotational symmetry. In the following, we
demonstrate robust band touching in the reasonable cases of
the fourfold and twofold rotational symmetries.

C. Fourfold rotational symmetry

In the first case, we assume a fourfold rotational symmetry
around the z axis and four planes of reflection symmetry:
the {x,z} plane, the {y,z} plane, and the two planes halfway
in between. These are the natural symmetries of many real
materials with tetragonal crystal structures. By neglecting any
contributions depending on |k| only, the lowest-order term
having all the above symmetries and time-reversal symmetry is
∝(k4

x + k4
y). The k-dependent parts of the hopping amplitudes

are then

�
(1)
T ,N (k) = δT,N |k|4(cos4 θ + sin4 θ ), (4)

where the polar coordinates kx = |k| cos θ and ky = |k| sin θ

are introduced. The difference �T − �N depends on the angle
θ at |k| = V/vF , therefore band touching with �T = �N only
occurs at specific points of the circle. The band touching also

becomes robust because the parameters �
(0)
T ,N and δT,N do not

require fine tuning: an infinitesimal change in any of them
only gives an infinitesimal change in θ , displacing the band-
touching points along the circle.

Contrary to the case with continuous rotational symmetry,
now there is a Weyl semimetal phase between the NI and
the TI phases that exists for a finite range of the parameter
values. This phase features a finite number of Weyl points at
which band touching between the two middle bands occurs.
To be more precise, the solution of the band-touching equation
�T = �N for the angle θ is

cos(4 θ ) = 4
(
�

(0)
N − �

(0)
T

)
|k|4(δT − δN )

− 3. (5)

This expression gives eight Weyl points, which are related
to each other by the symmetry transformations of the
system. Since | cos(4 θ ) | � 1, the condition for the Weyl
semimetal phase becomes 1/2 < (�(0)

N − �
(0)
T )/[|k|4(δT −

δN )] < 1, where |k| = V/vF as always in this subsection. Let
us assume without loss of generality that δT > δN , and imagine
decreasing �

(0)
T gradually while keeping the other parameters

constant. This corresponds to a transition from the NI phase
to the TI phase. The Weyl points then first appear at the lines
kx = ±ky , move along the circle of radius V/vF , and finally
disappear at the lines kx = 0 and ky = 0. For an illustration of
this, see the top half of Fig. 1.

It can be verified that the band-touching points occurring in
this scenario are indeed proper Weyl points around which the
band dispersion is linear in all directions. To obtain physically

FIG. 1. (Color online) Illustration of the Weyl semimetal phase
in the cases of fourfold (top) and twofold (bottom) rotational
symmetries. We set kz = π/d in all subfigures. (a) Arrangement of
the Weyl points with positive (red plus) and negative (blue minus)
helicities. (b) Trajectories of the Weyl points as the transition from
the NI phase to the TI phase takes place. The Weyl points first appear
at the red squares and finally disappear at the yellow diamonds.
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transparent results, we assume that δT − δN is sufficiently
small so that �T − �N is almost independent of θ . This
difference is then only important along circles of constant
kz and |k| where there would be no difference otherwise.
Consequently, the principal directions are the axial (z), the
radial (r), and the tangential (t) directions, and an expansion
of E− around a band-touching point reads

E2
−(�k) = v2

z δk
2
z + v2

r δk
2
r + v2

t δk
2
t , (6)

where the effective Fermi velocities corresponding to the
principal directions are vz = d

√
�T �N = d�T , vr = vF , and

vt = |k|3(δT − δN )| sin(4 θ )|. The expression in Eq. (6) indeed
gives a linear band dispersion in all directions. We can now
establish that the approximation of small δT − δN requires
vt � vr , i.e., V 3(δT − δN ) � v4

F . This is satisfied in the
reasonable case when the inversion-breaking voltage V and
the coefficients δT,N are small.

We note that the Weyl points related to each other by
rotations have identical helicities, while those related to each
other by reflections have opposite helicities: this implies that
there are four Weyl points of each helicity. If we pair up all
the Weyl points into pairs of opposite helicities, the sum of
the resulting separation vectors is zero. This property follows
from the general notion of time-reversal symmetry, which also
implies that the anomalous Hall conductivity vanishes.

D. Twofold rotational symmetry

In the second case, we have a twofold rotational symmetry
around the z axis and two planes of reflection symmetry:
the {x,z} plane and the {y,z} plane. This case is particularly
important for us because the tight-binding model described
in Sec. III has the same symmetries. The lowest-order terms
obeying all these symmetries and time-reversal symmetry are
∝(k2

x + k2
y) and ∝(k2

x − k2
y). However, the former one only

depends on |k|, and hence it would not break the continuous
rotational symmetry on its own. For the sake of simplicity, we
consider the special case of

�
(1)
T ,N (k) = δT,N k2

x = δT,N |k|2 cos2 θ, (7)

and obtain that the solution of �T = �N is

cos(2 θ ) = 2
(
�

(0)
N − �

(0)
T

)
|k|2(δT − δN )

− 1. (8)

Now there are four Weyl points in the Weyl semimetal phase
that occurs when 0 < (�(0)

N − �
(0)
T )/[|k|2(δT − δN )] < 1. If

there is a transition from the NI phase to the TI phase due
to a gradual decrease in �

(0)
T , the Weyl points first appear at

the kx = 0 line, move along the circle of radius V/vF , and
finally disappear at the ky = 0 line. For an illustration of this,
see the bottom half of Fig. 1.

If δT − δN is sufficiently small, the principal directions
around the Weyl points are the axial, the radial, and the
tangential directions. Equation (6) is therefore valid in this
case as well, and the effective Fermi velocities in the principal
directions are given by vz = d

√
�T �N = d�T , vr = vF ,

and vt = |k|(δT − δN )| sin(2 θ )|. The approximation of small
δT − δN holds when vt � vr , i.e., when V (δT − δN ) � v2

F .

III. REALISTIC TIGHT-BINDING MODEL

A. Formulation of the model

In this section, we consider a periodic multilayer structure
of strained HgTe and CdTe layers which are grown on top of
each other in the z direction. This model is in fact a concrete
realization of the superlattice structure described in Sec. II
because CdTe is a NI and HgTe becomes a TI under strain.11

The band structures of these materials are well known, and can
be reproduced with high accuracy from realistic tight-binding
models. Here we adapt the ten-band tight-binding model
described in Ref. 12, which assumes two s orbitals (s, s∗)
and three p orbitals (px , py , pz) on each atom.

Both HgTe and CdTe have zinc-blende structures: the
anions (Te) form a face-centered-cubic lattice, and the cations
(Hg, Cd) are located at the positions 1

4 [1,1,1]. This implies
that each anion (cation) is tetrahedrally coordinated by
four nearest-neighbor cations (anions). We assume that the
thicknesses of the HgTe and CdTe layers are N1 and N2 as
measured in units of the cubic lattice parameter a. When
cutting through the structure along the z direction, one finds
subsequent layers of one atomic thickness consisting of only
anions and only cations, respectively. The anionic layers all
contain Te, while there are 2N1 cationic layers containing Hg
and 2N2 cationic layers containing Cd in each superlattice
period.

The atomic orbitals are labeled according to | �R,u,t,σ 〉,
where �R is the position of the atomic site, u = {Te,Hg,Cd}
is the type of the atom, t = {s,s∗,px,py,pz} is the type of
the orbital, and σ = {↑,↓} is the spin quantum number. The
Hamiltonian of the system can be written as

H = H0 + HI + Hso, (9)

where the first term contains the bare energies of the atomic
orbitals, the second term describes the interaction (hopping)
between them, and the third term represents spin-orbit cou-
pling. These terms are

H0 =
∑
�R,t,σ

| �R,u( �R),t,σ 〉Eu( �R),t 〈 �R,u( �R),t,σ |,

HI =
∑
�R,t,σ

∑
�R′,t ′

| �R,u( �R),t,σ 〉Vu( �R),u( �R′),t,t ′ 〈 �R′,u( �R′),t ′,σ |, (10)

Hso =
∑

�R,t,t ′σ,σ ′

| �R,u( �R),t,σ 〉2λu( �R)
�L · �σ 〈 �R,u( �R),t ′,σ ′|,

where the second sum in HI goes over all four nearest
neighbors �R′ of the atomic site �R, and u( �R) denotes the type
of the atom at the position �R.

The hopping amplitudes Vu,u′,t,t ′ between different types
of p orbitals are related to each other by the geometry of
the crystal structure. In particular, they are affected by the
uniaxial strain ε which is defined as the relative elongation of
the lattice constant in the z direction with respect to those
in the x and y directions. This strain occurs because the
subsequent layers of HgTe and CdTe are grown on top of
each other, and there is a slight lattice-constant mismatch.13

Since the lattice constant of CdTe is approximately 0.3% larger
than that of HgTe, and both materials have a Poisson’s ratio
≈0.5, we assume that the relationship between the strains in
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TABLE I. Bare energies Eu,t and spin-orbit coupling strengths λu

for different atom types (all numbers are in eV units).

u Te Hg Cd

Eu,s −9.75 −1.40 −1.42
Eu,p 0.12 4.30 3.48
Eu,s∗ 6.08 6.50 6.67
λu 0.333 0.286 0.013

them is ε(CdTe) = ε(HgTe) + 0.009. Even if a small strain
does not change the distance between neighboring atoms,
the direction vector connecting them changes, leading to a
different overlap between any two orbitals if at least one of
them is a p orbital. Using simple geometry, the different
hopping amplitudes involving p orbitals are then expressed
as

Vs,px
= Vs,py

= 1√
3
Vs,p,σ

(
1 − ε

3

)
,

Vs,pz
= 1√

3
Vs,p,σ

(
1 + 2ε

3

)
,

Vpx,px
= Vpy,py

= 1

3

[
Vp,p,σ

(
1− 2ε

3

)
+2Vp,p,π

(
1 + ε

3

)]
,

(11)

Vpz,pz
= 1

3

[
Vp,p,σ

(
1 + 4ε

3

)
+ 2Vp,p,π

(
1 − 2ε

3

)]
,

Vpx,py
= 1

3
(Vp,p,σ − Vp,p,π )

(
1 − 2ε

3

)
,

Vpx,pz
= Vpy,pz

= 1

3
(Vp,p,σ − Vp,p,π )

(
1 + ε

3

)
.

Note that the subscripts u and u′ are suppressed for the sake
of compactness, the label s can stand for both s and s∗, and all
terms are expanded up to first order in ε.

The concrete tight-binding parameters are based on those
in Ref. 12, but they are normalized according to a consistent
procedure. The bare energies of all orbitals in the CdTe
model are first shifted such that the Te orbitals have the same
average energy in HgTe and CdTe. This corresponds to
matching the arbitrary zero energy levels of the independent
HgTe and CdTe tight-binding models. The bare energies of the
respective Te orbitals are then obtained by averaging those in
the normalized HgTe and CdTe models, which are already
close to each other at this point. The spin-orbit coupling

TABLE II. Hopping amplitudes between different atom and
orbital types (all numbers are in eV units).

u/u′ Te/Hg Te/Cd

Vu,u′,s,s −0.817 −1.195
Vu,u′,s,p,σ 1.044 0.753
Vu,u′,p,s,σ −1.404 −2.064
Vu,u′,s∗,p,σ 1.524 0.844
Vu,u′,p,s∗,σ −0.140 −1.147
Vu,u′,p,p,σ 2.180 2.651
Vu,u′,p,p,π −0.549 −0.442

strength λTe is averaged in the same way, and the final values
of the tight-binding parameters are presented in Tables I and II.

Table I shows that the normalized bare energies of the
Hg orbitals are on average larger than those of their Cd
counterparts. The HgTe layers are therefore more positively
charged than the CdTe layers, resulting in a potential difference
that lowers the orbital energies in the HgTe layers. This effect
is taken into account by introducing a periodic potential U (�r),
which is added to all bare energies at position �r . The potential
depends on z only, and we write it in the form

U (z) = −U0 cos

[
2π

d

(
z − d1

2
+ δ0

)]
, (12)

where d1,2 = aN1,2 are the thicknesses of the HgTe and CdTe
layers, and d = d1 + d2 is the periodicity of the superlattice.
In the symmetric case when δ0 = 0, the potential function
U (z) reaches its minimum in the middle of the HgTe layer and
its maximum in the middle of the CdTe layer. However, we
assume a certain asymmetry in U (z), which is characterized
by the displacement δ0 of these extrema. When the multilayer
is grown under reasonable experimental conditions, such an
asymmetry is inadvertently present due to the specific growth
direction. For example, it is possible that the HgTe and CdTe
materials are more likely to form an alloy at one of their
interfaces. Since the resulting asymmetry is probably small, we
take 0 < |δ0| < a in the rest of this section. Also, by comparing
the bare energies in Table I we estimate that the amplitude of
the potential is U0 ∼ 0.1 eV.

B. Linear fourband approximation

The Hamiltonian presented in Eqs. (9) and (10) can be
solved by exploiting translational invariance and introducing
the corresponding momentum �k = (kx,ky,kz). On the other
hand, the large periodicity in the z direction means that
the Hamiltonian is represented by a large M × M matrix
where M = 40(N1 + N2). It can therefore only be solved
numerically, and for relatively small layer thicknesses N1,2.

However, despite the complexity in this model, some of
its properties can be deduced by referring to symmetry only.
In the case of U0 �= 0 and δ0 �= 0, the basic symmetries of
the system are time-reversal symmetry (T) and the reflection
symmetries (R1,2) across the {y ′,z} and the {x ′,z} planes. The
natural coordinates x ′ = (x + y)/

√
2 and y ′ = (x − y)/

√
2

are introduced to make these symmetries more explicit. Note
that the reflection symmetries R1,2 also lead to a twofold
rotational symmetry (S) around the z axis. In terms of
symmetry, the tight-binding model studied in this section is
equivalent to the superlattice model in Sec. II D.

The presence of both T and S symmetries puts two crucial
restrictions on the band structure. First, the states on the
kx ′ = ky ′ = 0 line are twofold degenerate. Since the number
of occupied bands is always even, the highest occupied band
(HOB) and the lowest unoccupied band (LUB) have different
energies on this line with the Fermi level lying between them.
Second, the band structure is invariant under the reflection
kz ↔ −kz. As shown in Sec. III C, this implies that robust
band touching between the HOB and the LUB is only possible
in the kz = 0 and the kz = π/d planes.
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Numerical investigation of the model indicates that band
touching between the HOB and the LUB always occurs
close to the kx ′ = ky ′ = 0 line. In perspective of this and of
the symmetry considerations above, we introduce simplified
fourband models around the two special points at �k = (0,0,0)
and �k = (0,0,π/d). We only keep the nearest two bands on
each side of the Fermi level, and assume that they are linear
in the relative momentum δ�k = (kx ′ ,ky ′ ,δkz) with respect to
the corresponding special point. More formally, we project the
Hamiltonian H onto a subspace spanned by four basis states:
the appropriate eigenvectors of the full model at δ�k = 0. The
reduced Hamiltonian H is then a 4 × 4 diagonal matrix at
δ�k = 0, and the linearity of the band dispersion is achieved by
additional terms that are linear in δ�k.

At the special point, the reduced Hamiltonian can be written
as H0 = E(1)τ (1) + E(2)τ (2), where τ (1,2) = (1 ± τ z)/2 and
E(1,2) are the energies of the LUB and the HOB at δ�k = 0. The
energy levels are pairwise degenerate, and this degeneracy is
split by a finite kx ′ or ky ′ but not by a finite δkz. To represent
this splitting, we need to add coupling terms between states
corresponding to the same energy at δ�k = 0. In the most
general case, the additional terms in the Hamiltonian read

HS =
2∑

l=1

τ (l)
[
α(l)

x kx ′σx + α(l)
y ky ′σy

]
, (13)

where the coefficients α(1,2)
x,y can be obtained from a comparison

with the full model. The choice of the Pauli matrices σx,y

corresponds to defining the basis states within the degenerate
subspaces of H0 in a particular way.

There is also coupling between states corresponding to
different energies at δ�k = 0. Since the Hamiltonian H must
be invariant under all symmetry operations of the system,
there are only a small number of such coupling terms allowed
by symmetry. The parities of the possible terms under the
symmetry operations are summarized in Table III. Note that
the parities of τ z and σx,y are determined by the already
established terms H0 and HS , which must be even under
all symmetry operations. Furthermore, the relations between
different Pauli matrices imply that we only need to choose the
parities of τ x under T and R1,2. The choice of these parities
corresponds to setting the relative complex phases of the basis
states. Under the choice presented in Table III, the most general
contribution to the Hamiltonian takes the form

HD = τ x[βxky ′σx + βykx ′σy + βzδkzσ
z], (14)

where the coefficients βx,y,z are again to be determined from
a comparison with the full model. The reduced Hamiltonian
finally reads H = H0 + HS + HD . It is a considerable simpli-
fication with respect to H , and it only contains nine parameters
that need to be extracted from the full model.

C. Conditions for robust band touching

Band touching between the HOB and the LUB occurs
in the full model when the two middle eigenvalues are equal in
the simplified model. It can be shown that for a 4 × 4 matrix
of the form H with βx,y,z � α(1,2)

x,y , this is possible if and

only if the direction of the vector �B = (βxky ′ ,βykx ′ ,βzδkz)

TABLE III. Potential terms in the Hamiltonian and their parities
under the symmetry operations of the system: time reversal (T),
reflection across the {y ′,z} plane (R1), reflection across the {x ′,z}
plane (R2), and twofold rotation around the z axis (S).

T R1 R2 S

kx′ − − + −
ky′ − + − −
δkz − + + +
σ x − − + −
σ y − + − −
σ z − − − +
τ x + − − +
τ y − − − +
τ z + + + +

lies halfway between the directions of the vectors �A(1,2) =
(α(1,2)

x kx ′ ,α(1,2)
y ky ′ ,0). The two bands then cross each other as

|δ�k| is increased without changing the direction of δ�k, whereas
anticrossing happens otherwise. Since the above condition
requires the three vectors to lie in the same plane, the third
component of �B has to vanish. Due to βz �= 0 in general, we
find that robust band touching can only occur in the δkz = 0
plane.

Restricting our attention to this plane simplifies the problem
because �A(1,2) and �B become 2D vectors. If we change the ratio
ky ′/kx ′ gradually from 0 to ∞, the ratios of the corresponding
components in �A(1,2) change in the same direction, while those
in �B change in the opposite direction between 0 and ±∞.
This means that whether band touching happens at any δ�k is
determined entirely by the signs of the different parameters.
Since we always choose α(1,2)

x,y > 0, the condition becomes
straightforward: band touching occurs if and only if βx and βy

have the same sign.
Let us now consider the special case of the symmetric po-

tential with δ0 = 0. By repeating the symmetry considerations
in Sec. III B and taking into account the additional fourfold
roto-reflection symmetry around the z axis, we find that the
parameters from the full model are no longer independent
because α(1,2)

x = α(1,2)
y and βx = −βy . This shows that band

touching can only occur in this scenario if at least one of
these parameters vanishes. However, the corresponding band
touching is not robust because it requires the fine tuning of a
parameter. We conclude that robust band touching requires the
asymmetry characterized by δ0 �= 0, and expect that it becomes
easier to observe as U0 and δ0 increase.

D. The Weyl semimetal phase

The detailed behavior of the system is determined by
how the coefficients from the full model depend on the
external parameters. Since this dependence is affected by the
complexity of the full model, its understanding requires a
numerical treatment. In perspective of this, we numerically
investigate the phenomenon of robust band touching in the
function of the layer thicknesses N1,2, the strain ε0 ≡ ε(HgTe)
in the multilayer structure, the amplitude U0 of the superlattice
potential, and the asymmetric displacement δ0.

035103-5
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FIG. 2. Critical strains ε0 against U0 at constant δ0 = a/2 (left)
and against δ0 at constant U0 = 0.1 eV (right). The phase boundaries
separate four distinct phases: the normal insulator (NI), the strong
(3D) topological insulator (TI), the weak (2D) topological insulator
(WI), and the Weyl semimetal (WS). The layer thicknesses are
constant N1 = 3 and N2 = 4 in both subfigures.

We first consider the dependence on the strain. If U0 �= 0
and δ0 �= 0, there are two ranges in ε0 close to zero with band
touching in the kz = 0 and the kz = π/d planes, respectively.
The corresponding band touching is robust because it remains
intact for an infinitesimal change in any of the external
parameters ε0, U0, and δ0. The upper and lower limits of the
ranges are functions of U0 and δ0 as illustrated in Fig. 2, and we
verify the expectation from Sec. III C that the ranges increase
with both U0 and δ0. For the reasonable values of U0 ∼ 0.1 eV
and δ0 ∼ a/2, the ranges are �ε0 ∼ 0.002.

Now we turn our attention to the layer thicknesses. Keeping
the HgTe thickness N1 = 3 constant and varying the CdTe
thickness N2 between 4 and 8 reveals that an increase in N2

decreases �ε0. This is intuitive because δ0 becomes smaller in
comparison to d. Keeping the CdTe thickness N2 = 4 constant
and varying the HgTe thickness N1 between 3 and 7 shows
that an increase in N1 shifts the ranges in ε0 downwards. This
means that the phases with robust band touching appear at
more negative strains.

To conclude that these phases are indeed Weyl semimetals,
they need to satisfy one more condition: the lack of band
overlap. Even if there is robust band touching between the
HOB and the LUB, the band structure becomes metallic if the
highest overall energy of the HOB is larger than the lowest
overall energy of the LUB. It is an empirical observation that
the individual band structures of the kz = 0 and the kz = π/d

planes are metallic when ε0 is sufficiently negative. This occurs
for all ε0 < 0 in the limit of U0 → 0 or δ0 → 0, while the
critical ε0 becomes slightly negative at larger values of U0 and
δ0. Furthermore, the appropriate bands of the kz = 0 and the
kz = π/d planes can overlap with each other as well. Since
the band-touching energies are different in the two planes, this
typically occurs when there is band touching in one of the
planes and almost band touching in the other one.

We are now in the position to discuss the other phases
around the Weyl semimetals. The overall transition between
the two bulk phases at small and large values of ε0 is a
2D topological phase transition because it happens via band
touching around both special points on the kz axis. This means

4 5 6

0.00

0.01

0.02

NI

TI WI

WS WS

M M
N1

0

FIG. 3. Phase diagram of the system against the strain ε0 and
the HgTe thickness N1. The other parameters are constant: U0 =
0.2 eV, δ0 = a/2, and N2 = 4. The phase boundaries separate five
distinct phases: the normal insulator (NI), the strong (3D) topological
insulator (TI), the weak (2D) topological insulator (WI), the band
overlap metal (M), and the Weyl semimetal (WS). The dashed lines
indicate approximate phase boundaries.

that the bulk phases on the two sides of this transition do
not have a 3D topological character: we identify them as the
NI phase and the weak (2D) topological insulator (WI) phase.
Since the spin-orbit coupling is stronger in HgTe than in CdTe,
we argue that the system is in the NI phase when the HgTe
layers are thin and in the WI phase when the HgTe layers
are thick.4 On the other hand, the phase between the Weyl
semimetals is related to each bulk phase by a topological phase
transition that has a 3D character because it happens via band
touching around only one special point. We conclude that this
phase in the middle is the TI phase. Note that the NI and
the WI phases are equivalent in terms of their 3D topology,
therefore there is no need to distinguish between the two Weyl
semimetals: they are intermediates in two equivalent phase
transitions.

The phase diagram of the system against the strain ε0 and the
HgTe thickness N1 is presented in Fig. 3. Since its boundaries
are interpolated from only five points corresponding to integer
values of N1, the phase diagram is only correct on the
qualitative level. Nevertheless, it provides useful guidelines for
the realization of the Weyl semimetal phase in this multilayer
structure. The strain ε0 has to be positive to avoid band overlap
but not too large because that would be hard to achieve
experimentally. This gives a restriction on the thickness of the
HgTe layers: the ideal dimensionless thickness of 4 � N1 � 6
corresponds to an actual thickness of d1 ∼ 3 nm, which is on
the border of experimental reasonability.

E. Connection with the superlattice model

To illustrate the relationship with the results obtained in
Sec. II, we discuss the arrangement of the Weyl points in
the Weyl semimetal phase. There are four Weyl points that
are related to each other by the symmetries of the system.
As ε0 is gradually increased, and the transition from the NI
(TI) phase to the TI (WI) phase happens through a Weyl
semimetal, the Weyl points first appear at the kx ′ = 0 line,
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move on approximately circular curves, and finally disappear
at the ky ′ = 0 line. This is in perfect agreement with the
corresponding arrangement for the superlattice model in Sec.
II D. Indeed, the two models presented in Secs. II D and III A
obey the same symmetries, therefore it is understandable that
their low-energy features are equivalent.

The comparison of the band structures in Secs. II A and
III B also makes it possible to estimate reasonable values for
the superlattice parameters in Eq. (1). The inversion-breaking
voltage V corresponds to the energy difference E(1) − E(2)

between the HOB and the LUB, which is typically about
0.05 eV in the tight-binding model. The Fermi velocity of
the surface states becomes vF ∼ α(1,2)

x,y ∼ 106 ms−1, and the
hopping amplitudes are estimated from the typical energy scale
along the kz axis: �T,N ∼ 10−3 eV. The small magnitude of
�T,N indicates that the band structure is relatively flat in the
kz direction. Since vr = vF ∼ 106 ms−1, and d ∼ 10 nm gives
vz = d

√
�T �N ∼ 104 ms−1, this results in the relation vz �

vr between the effective Fermi velocities around the Weyl
points. Note that the energy scale �T,N also translates into a
maximal temperature T ∼ 10 K at which the Weyl semimetal
phase is experimentally observable in this multilayer structure.

IV. PHYSICAL CHARACTERISTICS

A. Conductivity anisotropy

It was shown in Ref. 8 that the Weyl semimetal phase is
metallic: when impurities are present, its conductivity is a finite
constant in the limit of zero temperature. Using the Boltzmann
equation, one finds a conductivity σ = e2v2/6πγ for each
Weyl point, where v is the effective Fermi velocity and γ is
the strength of the impurity potential. This finite conductivity
is a characteristic experimental feature, especially in contrast
with the neighboring NI and TI phases. In this subsection, we
demonstrate that the finite conductivity at T → 0 becomes
highly anisotropic when the Weyl semimetal phase occurs due
to broken inversion symmetry.

To achieve this, we consider the model in Sec. II D, and
derive an expression for the conductivity tensor in the limit
of small δT − δN . When the condition of the Weyl semimetal
phase is satisfied, there are four Weyl points at angles θ1 = θ ,
θ2 = −θ , θ3 = π + θ , and θ4 = π − θ . Due to the convention
0 � θ � π/2 we find that θ gradually decreases from π/2 to 0
during a transition from the NI phase to the TI phase. For each
Weyl point labeled by l, the conductivity tensor in the (x,y,z)
basis takes the form8

σl = e2

6πγ

⎛
⎝ v2

r cos2 θl v2
r cos θl sin θl 0

v2
r cos θl sin θl v2

r sin2 θl 0
0 0 v2

z

⎞
⎠ , (15)

where we exploit vt � vr relating the effective Fermi veloci-
ties. Adding the contributions of all four Weyl points, there is
a cancellation in the off-diagonal terms, and we obtain

σ =
4∑

l=1

σl = 2e2

3πγ

⎛
⎝ v2

r cos2 θ 0 0
0 v2

r sin2 θ 0
0 0 v2

z

⎞
⎠ . (16)

As the transition between the NI and the TI phases takes place
through the Weyl semimetal phase, the conductivities in the
x and y directions change in a complementary fashion. In

0.0 1.0

0.0

1.0

ITIN WS

0
xxyy

FIG. 4. (Color online) Variation in the principal conductivities
σxx (red solid line) and σyy (blue dashed line) during a transition
between the normal insulator (NI) and the topological insulator (TI)
phases through the Weyl semimetal phase (WS). The transition pa-
rameter is μ = v2

F (�(0)
N − �

(0)
T )/[V 2(δT − δN )] and the conductivities

are measured in units of σ0 = 2e2v2
F /3πγ .

particular, σxx vanishes on the NI side and σyy vanishes on the
TI side of the Weyl semimetal phase. For an illustration, see
Fig. 4. The conductivity in the z direction is approximately
constant with σzz � σxx,σyy due to vz � vr . Such a strong
conductivity anisotropy that depends sensitively on the system
parameters is a potential hallmark of a Weyl semimetal with
broken inversion symmetry.

B. Topological surface states

Since Weyl semimetals are topological phases of matter,
they are characterized by topological surface states.8 In
this subsection, we consider the model in Sec. II D, and
demonstrate the existence of these surface states. Although
we choose a specific situation and also make a couple of
simplifying assumptions in the following, the topological
nature of the surface states ensures that they exist under more
generic circumstances as well.

In our specific situation, the interface is in the {x,z} plane,
therefore any spatial variation is in the y direction only. This
implies that kx and kz are still valid quantum numbers. Since
�T,N in Eq. (7) do not depend on ky , we can determine the
surface states without taking the explicit k dependence into
account, and then simply substitute the appropriate values
�T,N for each kx . It is assumed that only �T changes with y

and the other parameters are constant: �T < �N at y → −∞,
�T = �N at y = 0, and �T > �N at y → +∞. Furthermore,
if �T changes sufficiently slowly, we can approximate it with
a linear function in the important region around y = 0: we
write �T − �N = Ky. Expanding the kz-dependent terms up
to first order in k′

z ≡ kz − π/d, we find that the surface states
|
〉 with energy E need to satisfy

E|
〉 =
[
vF τ z(−iσ x∂y − σykx) + V τz

+Ky τx + k′
zd �N τy

]
|
〉, (17)

along with |
〉 → 0 in the limits of y → ±∞. To make the
subsequent discussion of the surface states more transparent,
we introduce the dimensionless form

Ẽ|
〉 = [τ z(−iσ x∂ỹ − σyκx) + Ṽ τ z + ỹ τ x + κzτ
y]|
〉,

(18)
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where the variables ỹ = y
√

K/vF , Ẽ = E/�, Ṽ = V/�,
κx = vF kx/�, and κz = k′

zd �N/� are all dimensionless,
while � = √

KvF is a characteristic energy scale.
As a starting point in our discussion, we consider the limit

of Ṽ = 0. In this case, there are two distinct surface state
solutions for each κx and κz that take the analytic form

|
〉 = (i,∓ieiϕ,∓eiϕ,1) exp

(
− ỹ2

2

)
(19)

in the (T↑, T↓, B↑, B↓) basis, where tan ϕ = κx/κz and the
letters T/B stand for the top/bottom surfaces. The correspond-
ing dimensionless energies Ẽ = ±√

κ2
x + κ2

z are indicative of
surface states with Dirac dispersion between NI and TI phases
of matter. In the more relevant case of Ṽ �= 0, these analytic
solutions only find straightforward generalizations for κx = 0
when

|
〉 = (i,∓i,∓1,1) exp

(
− ỹ2

2
± iṼ ỹ

)
(20)

and the dimensionless energies are Ẽ = ±κz. Note that these
surface states decay in an oscillating fashion at y → ±∞, and
the wave vector ky = ±V/vF of the oscillations corresponds
to the radius of the circle in the kz = π/d plane along which
band touching occurs, as described in Sec. II.

In the most generic case of Ṽ �= 0 and κx �= 0, we solve
Eq. (18) numerically and find that there are still two distinct
surface states |
〉 for each κx and κz. The ratios of the vector
components in |
〉 are no longer independent of ỹ, which
explains why simple analytic solutions like those in Eqs. (19)
and (20) cannot be obtained. We verify that the surface states
follow a Dirac dispersion at small momenta κx,z � 1, even
when the dimensionless voltage Ṽ is large. However, the
effective Fermi velocity in the κx direction is reduced by a
factor that is empirically found to be exp(−Ṽ 2), and hence the
dispersion relation at small κx,z becomes

Ẽ = ±
√

κ2
x exp(−2Ṽ 2) + κ2

z . (21)

Unlike in the κz direction where the analytic solution guaran-
tees the linearity of the dispersion for all κz, there is a deviation
from the linear dispersion in the κx direction. As illustrated in
Fig. 5, the Dirac dispersion in Eq. (21) is only valid for small
enough κx .

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

x

E

FIG. 5. Dimensionless energies of the surface states in the
function of the momentum κx when κz = 0 and Ṽ = 1. The dashed
lines are linear asymptotes given by Eq. (21) in the κx � 1 limit.

If we now restore the k dependence of �T,N , the surface
states |
〉 remain the same for each kx . However, they only
exist at those kx for which the difference �T − �N changes
sign between y → ±∞. Assuming without loss of generality
that δT > δN in Eq. (7) and that �

(0)
T − �

(0)
N does change sign,

we find that �T > �N for all kx at y → +∞, while �T < �N

is only true at y → −∞ for |kx | < k0. The critical momentum
k0 marks the equality �T = �N at y → −∞, which is one
of the conditions required for band touching in Sec. II. While
the material at y > 0 is definitely in the NI phase, the material
at y < 0 is in the Weyl semimetal phase if k0 < V/vF so that
band touching occurs, and it is in the TI phase if k0 > V/vF

so that band touching does not occur. In the former case,
surface states exist between the coordinates kx = ±k0 of the
Weyl points. As the Weyl points first appear at the kx = 0
line, and then start to move further away from it, the range in
kx increases and more surface states appear. Remarkably, this
range characterized by k0 further grows when the material at
y < 0 is already in the TI phase, and there is no band touching
at all.

V. SUMMARY

We proposed a time-reversal invariant realization of the
Weyl semimetal phase that occurs due to broken inversion
symmetry. We considered both a superlattice model adapted
from Ref. 8 and a tight-binding model describing an exper-
imentally reasonable HgTe/CdTe multilayer structure. The
superlattice model was suitable for analytic calculations due
to its simplicity, while the more realistic tight-binding model
required a numerical treatment.

Although the formulations of the two models are very
different, their identical symmetries lead to equivalent low-
energy features. It should be remarked that, as seen from the
generality of the superlattice model, the Weyl semimetal could
be achieved in many possible material structures. Exploration
of potential compounds other than HgTe/CdTe would be
extremely interesting, especially given the need to tune strain
in the latter to observe the desired physics.

For both models considered, we found a Weyl semimetal
phase between the NI and the TI phases. This phase is
characterized by a finite number of Weyl points with robust
band touching at the Fermi level: the band touching occurs for
a finite range of the system parameters, and hence it cannot be
removed by an infinitesimal perturbation. We further verified
that the band-touching points are proper Weyl points with a
linear dispersion relation around them.

In terms of experimental observation, the potential hall-
marks of the Weyl semimetal phase with broken inversion
symmetry are a strong conductivity anisotropy and the pres-
ence of topological surface states. The highly unconventional
low-temperature and low-frequency bulk transport is discussed
in Ref. 14. The Dirac dispersion relation of the surface states is
indicative of TI materials, but these surface states only exist in a
region of momentum space that is determined by the positions
of the Weyl points. The Weyl semimetal phase between the
NI and the TI phases described in this paper is therefore
qualitatively new in terms of its topological surface states as
well.
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