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Solvent-induced current-voltage hysteresis and negative differential
resistance in molecular junctions
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We consider a single molecule circuit embedded into solvent. The Born dielectric solvation model is
combined with Keldysh nonequilibrium Green’s functions to describe the electron-transport properties of the
system. Depending on the dielectric constant, the solvent induces multiple nonequilibrium steady states with
corresponding hysteresis in molecular current-voltage characteristics as well as negative differential resistance.
We identify the physical range of solvent and molecular parameters where the effects are present. The position
of the negative differential resistance peak can be controlled by the dielectric constant of the solvent.
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The use of molecules—either singly or in small
ensembles—as the elements of electronic circuits holds
substantial promise in the fields of informational technol-
ogy, biological and environmental nanosensors, and energy
harvesting.1 For the science of molecular electronics to be
transformed into a technology it is not only important to
fabricate stable molecular junctions but also to be able to
efficiently control and manipulate their electric properties.
In the silicon-based microelectronic technology the gate
voltage regulates the flow of electrons, but placing a third
gate electrode has proven to be difficult in single molecular
size devices. The negative differential resistance (NDR) also
plays an important role in semiconductor devices, because
circuits with complicated functions can be implemented with
significantly fewer components with its help. On the other
hand, instead of copying the existing paradigms, such as, for
example, gate voltage or resonant tunneling diode structure
for NDR, the molecular electronics create new and unique
opportunities. The “wet” molecular electronics, where solvent
controls the electric behavior of an electronic circuit, may
open a new chapter in device engineering. Indeed, some
molecular electronic devices already exploit the solvent around
the molecule to modulate conductance through alteration of the
charge state or polarizability of the molecule.2–4

Let us consider a wet molecular circuit—a molecule
attached to two macroscopic metal electrodes and embedded
into solvent (Fig. 1). The total Hamiltonian is

H = HL + HR + HM + HT + HMS. (1)

The left and right electrodes contain free electrons and are
described by the following Hamiltonians:

HL =
∑
lσ

εla
†
lσ alσ , HR =

∑
rσ

εra
†
rσ arσ . (2)

Here a
†
lσ/rσ creates an electron with spin σ in the single-

particle state l/r of the left/right electrode and alσ/rσ is the
corresponding electron annihilation operator. The molecule is
described by a single spin degenerate electronic level with
energy ε0:

HM = ε0

∑
σ

a†
σ aσ . (3)

The operator a†
σ (aσ ) creates (destroys) an electron with spin

σ on the molecular level. The tunneling coupling between the
molecule and electrodes is

HT =
∑
lσ

tl(a
†
lσ aσ + h.c) +

∑
rσ

tr (a†
rσ aσ + H.c.). (4)

The interaction between the molecule and the surrounding
solvent, HMS , will be discussed below. We use natural units in
equations throughout the paper: h̄ = kB = | − e| = 1, where
−|e| is the electron charge.

We describe the interaction between the molecule and the
solvent based on the following simple model. The molecule
is considered as a conducting sphere of radius R, and the
solvent is macroscopically uniform and characterized by
dielectric constant ε. The work needed to place charge qM

on a conducting sphere in the dielectric environment is given
by the Born expression for the dielectric solvation energy:5

W = qMqS

2R

(
1 − 1

ε

)
, (5)

where qS is the induced charge in the solvent (qM = −qS).
The model can be easily extended to the molecules of
complex shapes (the so-called generalized Born model, which
represents the molecule as a number of overlapping spheres
of different radii).6 The (generalized) Born model is quite
simple yet is very successful in computing the electrostatic
contribution to the solvation free energy.6,7 The solvent
dynamics is slow in comparison with the electron tunneling
time scale. For example, the dielectric relaxation of the
solvent is diffusive and occurs on the picosecond or slower
time scales since dipolar solvent molecules generally respond
to the change of the molecule junction charging state by
rotating.5 Therefore, we can assume that the induced charge
qS corresponds to the average electronic population of the
molecular junction. Then, the dielectric solvation energy can
be directly associated with the interaction of the molecule with
the surrounding solvent:

HMS = −U (ε)(N − δ)(〈N〉 − δ), (6)

where U (ε) = 1
2R

(1 − 1
ε
) is an effective, local, and solvent-

controlled electron-electron attraction, and N = ∑
σ a†

σ aσ .
The charge of the molecule due to nonequilibrium tunneling
of electrons is (N − δ), while (δ − 〈N〉) is the corresponding
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FIG. 1. Schematic illustration of the model. The molecule is
attached to two metal electrodes and surrounded by solvent. The
solvent is described by uniform dielectric constant ε.

induced charge in the solvent. The parameter δ is the
equilibrium molecular electronic population, which depends
on the position of the molecular level ε0 relative to the electrode
Fermi energy εf . If ε0 corresponds to the highest occupied
molecular orbital (i.e., ε0 < εf ), then, without the applied
voltage bias, the molecular level is double occupied and δ = 2.
If ε0 is the lowest unoccupied molecular orbital (i.e., ε0 > εf ),
then the molecular level is empty in equilibrium and δ = 0.
It is known that such model Hamiltonians generally lead to
bistable solutions.8,9 We emphasize that the model is not
only applicable to the solvated molecular junction but also
to the often employed experimental setting when the junction
is embedded into isolating or semiconductor molecular film.
In this case the surrounding molecular film can be considered
as a macroscopic dielectric environment.

The similar mean-field-type interaction between the
molecule and the solvent [Eq. (6)] can be also obtained
within the polaron model in the limit ω/� � 1 (here ω is
the frequency of a characteristic vibrational mode coupled to
the electrons and � is the broadening of the molecular level
due to coupling to the metal electrodes).10,11 In our case ω is
related to the dielectric relaxation of the solvent, which occurs
on the picosecond and slower time scales, so ω ∼ 0.001 eV.
For molecules interacting with the metal electrodes, � ∼ 0.1–1
eV, which makes the static, effective mean-field (i.e., the static,
average polarization of the solvent) approximation Eq. (6)
exactly valid for our case.

Thus, in the Born approximation, the Hamiltonian HM +
HMS is exactly reduced to a spin degenerate single-level
model with a local mean-field attractive interaction between
electrons, which can be controlled by the dielectric constant
of the environment. To describe electron transport through
the system we use Keldysh nonequilibrium Green’s-function
formalism.12,13 The exact nonequilibrium molecular popula-
tion 〈N〉 and electric current J become

〈N〉 = 2

π

∫
dω

�L(ω)fL(ω) + �R(ω)fR(ω)

[ω − ε − 2	(ω)]2 + [�(ω)]2
, (7)

J = 4

π

∫
dω

�L(ω)�R(ω)[fL(ω) − fR(ω)]

[ω − ε − 2	(ω)]2 + [�(ω)]2
. (8)

Here fL/R(ω) = [1 + e(ω−μL/R )/T ]−1 is the Fermi-Dirac distri-
bution for electrons in the electrodes, ε = ε0 − U (ε)(〈N〉 − δ)
is the effective energy of the molecular level, and 	 =
	L + 	R , � = �L + �R are the real and imaginary parts of
the electrode self-energy:


L/R =
∑
k∈l/r

t2
k

ω − εk + iη
= 	L/R(ω) − i�L/R(ω). (9)

The electrodes are modeled as a semi-infinite chain of atoms,
characterized by the voltage-dependent on-site energy μL,R =
±V/2 and the intersite hopping parameter Vh = 2.5 eV.
The expression for the electrode self-energy can be found,
for example, in Ref. 14. The electrode bandwidth [μL/R −
2Vh,μL/R + 2Vh] is half filled, so the Fermi energy coincides
with the on-site energy. The coupling between the left/right
electrode edge and the molecule is taken to be

√
Vh�0, where

�0 = �L(μL) = �R(μR) is the maximal broadening of the
molecular electronic level due to the coupling to the electrodes.
Below we focus on the case when ε0 is lower than the
electrode equilibrium Fermi energy. All our results also remain
qualitatively valid when ε0 is above the Fermi level.

To compute the current, we first should determine the
nonequilibrium molecular population 〈N〉. Since Eq. (7) is
nonlinear, it generally has multiple solutions. Figure 2 shows
the graphical solution of this equation. As we see, likewise
for the electron transport in the polaron model,9 depending on
the values of U (ε) and the molecular level energy ε0, Eq. (7)
can have one, three, or even five solutions (the nonequilibrium
fixed points). These multiple solutions may or may not be
steady states (i.e., the stable fixed point). Following our method
described in Ref. 15 we obtain the stability matrix and analyze
the real part of its spectrum to assess the asymptotic time
behavior of the fixed points. We find that only the two outer
and the middle solutions are stable in the five-solution case
(right panel in Fig. 2); i.e., they correspond to physically

FIG. 2. (Color online) Graphical solution of Eq. (7). The straight
lines are given by equation 〈N〉 = − ε

U (ε) + (2 + ε0
U (ε) ). Depending on

ε and ε0 there can exist one, three, or five fixed-point nonequilibrium
molecular populations. Filled circles represent stable steady-state
populations, while open ones correspond to unstable fixed-point
solutions of Eq. (7). Parameters: applied voltage bias V = 1.5 eV,
T = 300 K, �0 = 0.1 eV, R = 10 bohrs, ε = 50 (dotted lines), and
ε = 3 (dashed lines).
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realizable nonequilibrium steady-state populations. In the case
of three solutions (left panel in Fig. 2), the middle solution
is unstable and the other two fixed points are stable. We
note that our approach is immune from the criticism that the
observed multiple steady states are artifacts of the mean-field
and electron self-interaction.16 The effect of self-interaction is
physically present in our case, since an electron in the molecule
interacts with its own induced charge in the solvent.

Let us now establish the range of key physical parameters—
dielectric constant ε, molecular size R, and molecular level en-
ergy ε0, which allow the existence of multiple nonequilibrium
steady states. For presentation purposes we assume that the
molecular level broadening, �0, as well as the temperature are
much smaller than applied voltage V . Therefore the molecular
population [Eq. (7)] (solid lines in Fig. 2) can be approximated
by a steplike function of energy ε. Then, we can readily
determine analytically the conditions on ε0 and U (ε) when
Eq. (7) has only one solution. In Fig. 3 we show the domain
where multiple steady states exist for the case ε0 < 0. The case
ε0 > 0 can be considered in the same way, and the resulting
multistability domain is a mirror reflection of that in Fig. 3
across the abscissa axis.

In Fig. 4, we show the behavior of the level population
and the current as a function of applied voltage. Due to the
presence of multiple steady states, both the population and the
electron current demonstrate a hysteresis behavior. The width
of the hysteresis loop is proportional to U (ε) and, therefore,
it can be controlled by the dielectric constant. It should be
emphasized that the solvent-induced hysteresis loop can be
observed at moderate applied voltages where the molecular
device is still mechanically stable. Moreover, the nonlinearity
in the molecule-solvent interaction leads to NDR features
in the current-voltage characteristic (the drop in the current
represented by the dashed line at around 1 eV of applied
voltage in Fig. 4). The NDR appears when one of the electrode
chemical potentials crosses the position of the molecular level.
Then, due to the subsequent shift in the level energy caused by

FIG. 3. (White domain) Values of ε0 and U (ε) where the multiple
steady-state solutions exist (�0/V � 1). Dashed lines determine the
domain boundary, and they are ε0 = −0.5V , ε0 = −U + 0.5V , ε0 =
−U − 0.5V , ε0 = −2U + 0.5V , and U = 1/2R.

FIG. 4. (Color online) Population-voltage and current-voltage
characteristics. Parameters are T = 300 K, ε0 = −1.6 eV, R =
10 bohrs, ε = 50, and �0 = 0.1 eV. Three curves correspond to three
possible roots of Eq. (7): solid line, upper root; dashed line, lower
root; and dash-dotted line, middle root.

the electronic population change, the level moves away from
the current-carrying window between the chemical potentials.
In the case of ε0 < −0.5U (ε), shown in Fig. 4, the NDR takes
place when we begin with the empty level. When ε0 lays above
−0.5U (ε) (ε0 < 0) the NDR also takes place, but in this case
we need to start from the initially fully occupied level.

The NDR in the wet molecular circuit turns out to be
sensitive to the dielectric constant of the environment. Figure 5
shows the dependence of the NDR peak position on the dielec-
tric constant of the solvent. The increase of the solvent polarity
shifts the peak toward the higher voltages. This effect is very
robust. It does not require an artificial tuning of the model
parameters and holds at very large ranges of temperatures. The
temperature dependence of the NDR peak (inset in Fig. 5) is
consistent with experimental observations,17,18 and in contrast
to the polaron model explanation of NDR9 does not require
unphysical values for the parameters.

We would like to comment here on the importance of
the time scales. Depending on the relative time scales of
measurements and transitions between stable fixed points,
the multistability can result in merely noise associated
with the jumps between steady states or it can lead to
hysteresis and NDR.19 To be experimentally resolved the
transition rate between multiple steady states should be
smaller than the typical observation time. In our case
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FIG. 5. (Color online) NDR peak voltage value as a function of
the dielectric constant for two different temperatures. Parameters are
ε0 = −2.0 eV, R = 10 bohrs, and �0 = 0.01 eV. Inset: NDR in the
current-voltage characteristic for ε = ∞.

the transition between steady states is determined by the very
slow diffusive reorganization of the solvent, which opens a
possibility for experimental realization of the proposed effects.

In conclusion, we have presented a theoretical model to
describe the environmental control of the electron-transport

properties of wet molecular junctions. The interaction between
the molecule and solvent leads to effective attraction between
electrons which is governed by the dielectric constant of the
surrounding solvent. The natural separation of electronic and
solvent time scales makes the mean-field consideration exact
for our model. We used Keldysh nonequilibrium Green’s func-
tions to obtain a nonlinear equation for molecular population
and electric current. Depending on the dielectric constant, the
inherent nonlinearity of molecule-solvent interactions induces
multiple nonequilibrium steady states with corresponding
hysteresis in molecular I-V characteristics as well as NDR.
We identify the physical range of solvent and molecular
parameters which allows the appearance of multiple steady
states. The temperature effects on the NDR peak are in
qualitative agreement with the available experimental data.
We demonstrated that the dielectric constant of the solvent can
be used as a control parameter which regulates the position of
the NDR peak.
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