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Single-photon nonlinear optics with Kerr-type nanostructured materials
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We employ a quantum theory of the nonlinear optical response from an actual solid-state material possessing
an intrinsic bulk contribution to the third-order nonlinear susceptibility (Kerr-type nonlinearity), which can
be arbitrarily nanostructured to achieve diffraction-limited electro-magnetic-field confinement. By calculating
the zero-time-delay second-order correlation of the cavity field, we set the conditions for using semiconductor
or insulating materials with near-infrared energy gaps as an efficient means to obtain single-photon nonlinear
behavior in prospective solid-state integrated devices, alternative to ideal sources of quantum radiation such as,
e.g., single two-level emitters.

DOI: 10.1103/PhysRevB.85.033303 PACS number(s): 42.50.Ar, 42.65.−k, 78.67.Pt

Quantum information processing based on photonic plat-
forms is one of the most promising routes toward a fully inte-
grated technology exploiting the laws of quantum mechanics.1

In this context, many quantum optical tasks, such as single-
photon switches and two-qubit quantum gates, would require
strong photon-photon interactions—ultimately at the single-
photon level—to be engineered in solid-state devices.2 Besides
being of practical interest for prospective applications in
quantum photonics, strongly correlated photonic systems
promise fascinating perspectives for a number of theoretical
proposals concerning the many-body behavior of complex
nonlinear and tunnel-coupled devices.3–5

Cavity quantum electrodynamics (CQED) is the most
straightforward way of obtaining single-photon nonlinear
behavior, thanks to the underlying anharmonicity introduced
by a single atomiclike emitter into a high-finesse resonator.6,7

It has been shown experimentally with single caesium atoms
strongly coupled to a Fabry-Pérot resonant mode8 that such
a system is able to block the transmission of a single photon
when another photon is present in the cavity: a photon blockade
effect.9 The quantum efficiency of this process is operationally
determined by the degree of antibunching in the second-order
correlation function for the emitted radiation, after resonant
excitation of the CQED system.10 Analogous effects have been
measured in solid-state systems with quantum dots coupled to
dielectric resonators, both under nonresonant11 and resonant12

excitation conditions.
The photon blockade can be realized when two photons

inside a resonant system produce a nonlinear shift of its
resonance, Unl, that is larger than the line broadening induced
by losses and the decoherence rate, �, as shown in Fig. 1.
Theoretical proposals to achieve single-photon nonlinearities
in solid-state systems usually rely on enhanced light-matter
coupling of some dipole-allowed transition, where material
excitations can provide the required quantum anharmonicity.
Strong Kerr-type nonlinearities are predicted for single atomic-
like transitions coupled to high-quality resonators13,14 or in
strongly confined polaritonic systems.15,16 For semiconductor
microcavities, strong coupling of single photons mediated by
enhanced second-order nonlinearity [χ (2)] has been theoreti-
cally discussed.17 It has also been predicted that suitably engi-
neered coupled cavities can considerably relax the requirement
on the condition that the effective nonlinear interaction be

larger than the fundamental resonance linewidth.18,19 However,
owing to the intrinsically small value of the third-order
nonlinear susceptibilities [χ (3)] in ordinary bulk media,20 it
is commonly accepted that appreciable resonance shifts for
nonlinear materials in their transparency optical range would
require a macroscopically large number of photons.

In this work, we challenge the latter idea by quantitatively
showing that a realistic nanostructuring of an ordinary nonlin-
ear medium is able to produce very large effective nonlinear
susceptibilities, ultimately sensitive at the single-photon level.
From a canonical quantization of the classical nonlinear optical
response for a single mode of the electromagnetic field, we
solve the quantum master equation for the system density
matrix, where the real part of χ (3) is related to the effective
photon-photon interaction energy21 and losses of the resonator
mode, such as coupling to free space modes or two-photon
absorption, are fully taken into account.

Throughout this work, we adopt the classical nonlinear
optics notation in International System (SI) units.20 The
nonlinear optical response to the applied electric field of a
generic dielectric material is given by

Di(r,t) = ε0εij (r)Ej (r,t) + ε0
[
χ

(2)
ijk(r)Ej (r,t)Ek(r,t)

+χ
(3)
ijkl(r)Ej (r,t)Ek(r,t)El(r,t) + · · · ], (1)

where we employ the usual sum rule over repeated indices
labeling the three spatial coordinates. This relation defines the
relative dielectric permettivity tensor of the medium, εij (r) =
δij + χ

(1)
ij (r). We will now specify the nonlinear response to

the case of a single mode of the electromagnetic field inside
a centrosymmetric medium; i.e., we assume χ

(2)
ijk(r) = 020

and only consider Kerr-type nonlinear effects due to the χ (3)

tensor elements in Eq. (1). We assume an isotropic medium,
i.e., a spatially dependent but scalar dielectric response,
εij (r) → ε(r). The canonical quantization of a single mode
of the electromagnetic field in a generic spatially dependent
nonlinear medium is obtained after expressing the quantized
field operators for a single cavity mode as

Ê(r,t) = i

(
h̄ω0

2ε0

)1/2 [
â

�α(r)√
ε(r)

e−iω0t − â† �α∗(r)√
ε(r)

eiω0t

]
(2)

and B̂(r) = (−i/ω0)∇ × Ê(r), where â (â†) defines the
destruction (creation) operator of a single photon in the
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FIG. 1. (Color online) (a) Scheme of a resonator made of a Kerr-
type nonlinear material, which is resonantly driven by a coherent field
and undergoes a single-photon blockade. (b) Energy level diagram
(h̄ = 1) giving rise to the emission of single-photon Fock states from
the cavity.

mode and �α(r) is the normalized three-dimensional cavity
field profile satisfying the condition

∫ |�α(r)|2dr = 1. From
the classical expression of the time-averaged total-energy
density in the mode, Hem = 1

2

∫
[E(r) · D(r) + H(r) · B(r)]dr

(assuming H = B/μ0 in a nonmagnetic medium), a nonlinear
second-quantized Hamiltonian can be eventually obtained:

Ĥ = h̄ω0â
†â + Ĥnl. (3)

The linear part is the expected Hamiltonian of a single
harmonic oscillator (neglecting the zero-point energy). In
the nonlinear part we only retain the Kerr-type terms,22

Ĥnl = Unlâ
†â†ââ, with the photon-photon interaction given

by

Unl = D(h̄ω0)2

8ε0

∫
dr α∗

i (r)
Re

{
χ

(3)
ijkl(r)

}
ε2(r)

α∗
j (r)αk(r)αl(r),

(4)

with degeneracy D = 6. Equation (4) is a general expression
for the nonlinear shift induced by the Kerr effect at the
single-photon level, for an arbitrary spatially modulated field
confinement, such as photonic crystal or pillar microcavities
made of ordinary nonlinear semiconductor materials.23 Even
if the full expression should be applied to the specific case
of interest for given nonlinear tensor components, we can
simplify Eq. (4) to give some quantitative estimates:24

Unl � 3(h̄ω0)2

4ε0

χ (3)

ε2
r

∫
|�α(r)|4dr = 3(h̄ω0)2

4ε0Veff

χ (3)

ε2
r

, (5)

where the effective cavity mode volume is defined as V −1
eff =∫ |�α(r)|4dr within our formalism. To have order-of-magnitude

results, we assume constant values for the average real part of
the nonlinear susceptibility and relative dielectric permittivity,
χ (3) and εr , respectively. We neglect self-consistent nonlinear
effects on the cavity field profile induced by the Kerr
nonlinearity itself (e.g., field expulsion from the cavity region),
which could renormalize the effective value of Unl.

The experimental configuration for the photon blockade
can be modeled by adding a coherent pumping term to obtain

the standard Kerr-type Hamiltonian that is usually employed
in quantum optics:24

Ĥ = h̄ω0â
†â + Unlâ

†â†ââ + Fe−iωLt â† + F ∗eiωLt â, (6)

where 	 = F/h̄ is the coherent pumping rate at the laser
frequency ωL. Losses in the system are quantified either
through the intrinsic cavity decay rate, κ , or nonlinear
absorption processes, such as the two-photon absorption (TPA)
rate, γTPA. The first is due to coupling of the resonant
mode to free space modes, material absorption, or scattering
from roughness, and defines the cavity quality (Q) factor as
Q = ω0/κ; the latter is related to the imaginary part of the
nonlinear susceptibility. Such loss mechanisms are taken into
account within a density-matrix master-equation formalism in
Markov approximation:

ρ̇ = i

h̄
[ρ,Ĥ ] + L1(κ,ρ) + L2(γTPA,ρ), (7)

where L1 = κ[âρâ† − â†âρ/2 − ρâ†â/2] and L2 =
γTPA[â2ρ(â†)2 − (â†)2â2ρ/2 − ρ(â†)2â2/2] are the linear
and nonlinear Liouvillian operators, respectively. In classical
nonlinear optics, TPA is quantitatively defined by an
intensity-dependent absorption coefficient, αTPA = βI ,
where β is measured in m/W and is well known for many
semiconductor or insulator materials.20 Such a quantity is
related to a loss rate, γTPA = βcI/2nr , where n2

r = εr and I

is the field intensity in the cavity.25

The figure of merit (FOM) quantifying the single-photon
nonlinear behavior of the cavity mode is the normalized
zero-time-delay second-order correlation, defined as g(2)(0) =
〈â†2â2〉/〈â†â〉2. Single photons are released from the cavity at
the bare frequency, ω0. In the weak resonant excitation limit
(	/κ 
 1) a closed analytic solution for the model considered
is found after truncating the Hilbert space to the n = 2 Fock
state:5

g(2)(0) = 1 + 4(�E/h̄κ)2

1 + 4(�E + Unl)2/h̄2κ
2 , (8)

where �E = h̄(ωL − ω0) = h̄�ω. For g(2)(0) → 0 we have
an almost ideal single-photon source,21 which occurs when
Unl/(h̄κ) � 1. From Eqs. (5) and (8), FOM = Q2/V 2

eff is the
relevant figure of merit to be optimized.

The steady-state value of g(2)(0) can also be calculated
numerically through a quantum average on ρss, which is the
density matrix corresponding to the eigenvalue λss = 0 in the
linear eigenvalue problemLρ = λρ.26 Convergence is ensured
by truncating the Hilbert space to a large number of photons
(up to 50 in this work). A close agreement between analytic and
numerical solutions is reported in Fig. 2, where we show g(2)(0)
in the low-pumping regime as a function of the confinement
volume and pump/cavity detuning, respectively. Results are
plotted for different values of the ratio χ (3)/ε2

r , which is
a material-dependent quantity. We assume an operational
energy, h̄ω0 = 1 eV, as representative of typical near-infrared
applications, and a realistic quality factor Q = 106 (see
discussion below). As shown in Fig. 2(a), for Veff 
 λ3

0 the
system exhibits a strong antibunching, which is the signature
of single-photon blockade. For materials with larger χ (3)/ε2

r

ratios, the condition for achieving nonlinear behavior at the
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FIG. 2. (Color online) Numerical (symbols) and analytic (full
lines) solutions for the zero-time-delay second-order correlation for
different χ (3)/ε2

r values. (a) Dependence on effective confinement
volume of the cavity field with parameters h̄ω0 = 1 eV, �ω = 0, and
Q = 106. (b) Dependence on the detuning between the driving field
and cavity resonance, for Veff = 0.01μm3 and parameters as before.
Numerical results are calculated with 	/κ = 0.01.

single-photon level is quantitatively relaxed, making it possible
to observe strong antibunching even for Veff ∼ λ3

0. Figure 2(a)
emerges then as a useful road map to quantitatively assess,
for a specific nanostructured material, the combined effect
of third-order susceptibility and the confinement volume on
getting a nonlinear response at the single-photon level. A
realistic value Veff = 0.01 μm3 can be assumed for diffraction-
limited confinement volumes, i.e., Veff ∼ (λ0/2nr )3, where
nr can display values between 2 and 4, depending on the
semiconductor or insulator material under investigation.20 In
Fig. 2(b), we show g(2)(0) as a function of pump/cavity
detuning and a fixed value of the confinement volume. At
a large χ (3)/ε2

r ratio, the maximum antibunching is obtained
for �ω ∼ 0. At positive detunings, the bunching is due to the
driving laser hitting the two-photon resonance of the cavity
[see the scheme in Fig. 1(b)].15 Again, in this low-pumping
regime the quantitative behavior of g(2)(0) obtained from the
numerical solution is closely reproduced analytically.

The results shown in Fig. 2 may represent a useful
guide to quantum photonics experiments employing ordinary
nonlinear materials, whose relevant figure of merit for single-
photon nonlinear behavior can be predicted for any specific

TABLE I. Third-order nonlinear optical coefficients of different
semiconductor and doped glass materials at specific wavelengths in
the near infrared.

Material Re{χ (3)} (m2/V2) β (m/W) nr λ (μm)

Si27–29 0.45 × 10−18 10−11 3.4 1.55
Ge29 4 × 10−18 10−8 4.0 2.5
GaAs27 0.6 × 10−18 10−10 3.4 1.54
SiO2/Ge30 1.4 × 10−18 4 × 10−10 2 0.8
SiO2/Si-nc31 2.1 × 10−18 5 × 10−10 1.74 1.55
SiO2/Ag32 7 × 10−16 1.5 × 10−11 1.8 1.06

nanostructuring-based confinement. For example, diffraction-
limited electro-magnetic-field confinement can be achieved
by using photonic crystal nanocavities, in which a number of
remarkable figures of merit have been already demonstrated
experimentally (for a recent review, see Ref. 33). Quite
interestingly and related to the present work, most of such
achievements have been obtained by using highly nonlinear
materials, such as silicon (Si) or gallium arsenide (GaAs). The
typical order of magnitude for the χ (3) tensor elements of these
materials is in the range Re{χ (3)} ∼ 10−19 − 10−18 m2/V2.20

However, even larger χ (3) values can be found in certain
glasses doped with nanoparticles, chalcogenide glasses, or
other polimeric materials.20 We refer to Table I for a few
recent experimental references on the nonlinear coefficients of
some Kerr-type materials in the near infrared, which we have
collected from published works and converted in SI units.
Most of these materials can be nanostructured to fabricate
solid-state nanocavities. Ultra-high-Q factors in excess of 106

have been experimentally shown, corresponding to a photon
lifetime within the cavity region on the order of one to few ns,
and 108 has been predicted through design optimization.33

Designs to achieve sub-diffraction-limited mode volumes,
on the order of Veff ∼ (λ/2nr )3, have been also proposed.34

Further reduction of the confinement volume, well below the
diffraction limit, has been predicted for suitably engineered
nanostructures.35 Thanks to these unprecedented figures of
merit, strong enhancement of the nonlinear optical response
due to χ (3) nonlinearity has been already shown in GaAs-
and Si-based photonic crystal cavities around λ ∼ 1.5 μm,
respectively.36

To quantitatively assess the role of TPA on the g(2)(0) as
a function of the pumping strength, we have numerically
calculated this figure of merit for realistic values of the
nonlinear coefficients. We assume a simple normalized mode
profile α(r) = N exp(−x2/2σ 2

x − y2/2σ 2
y )cos(π/d)z, where

the normalization factor N = (2/πσxσyd)1/2. This functional
form is a good approximation for a photonic crystal confine-
ment in the (x,y) plane (Gaussian envelope function) and
index confinement in the transverse direction, such as the one
that can be obtained with a point defect in a triangular lattice
on a planar membrane of thickness d.33 From our definition
of effective mode volume we have Veff = 4πσxσyd/3. As
illustrative examples, we show results in Fig. 3 for two different
Kerr-type materials. In Fig. 3(a) we assume a high-index
(nr ∼ 3.4) and strongly nonlinear medium, with a typical
TPA coefficient in the telecom band.20 In such a case, we
can assume realistic confinement lengths on the order of
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FIG. 3. (Color online) Single-photon nonlinear behavior as a
function of the driving strength for a nanocavity made of (a) a
high-index Kerr-type medium with Re{χ (3)} = 10−18 m2/V2, εr =
10, β = 10−10 m/W, and Veff = 10−3 μm3 or (b) a low-index,
strongly nonlinear material with Re{χ (3)} = 10−16 m2/V2, εr = 4,
β = 10−11 m/W, and Veff = 10−2 μm3. In both cases, h̄ω0 = 0.8 eV
(λ0 = 1.55 μm). The results are shown for (a) Q = 107 (full line)
and Q = 108 (dashed line) and (b) Q = 106 (full line) and Q = 107

(dashed line).

σx,y � λ0/(4nr ) and d = λ0/(2nr ), which gives an optimistic
Veff � 0.001 μm3 for wavelengths on the order of λ0 = 1 μm.
In Fig. 3(b) we assume a low-index (nr ∼ 2) material with
a sizable Kerr nonlinearity and negligible TPA coefficient at
telecom wavelengths (such as silica with metal nanoparticles;
see Table I). In such a case, the confinement lengths can
be σx � λ0/(2nr ), σy � λ0/(10nr ), and d = λ0(/2nr ), where
one exploits the slot waveguide confinement at least along
one direction.35 With these numbers at hand, we can again
assume Veff � 0.01 μm3 for this case. These results clearly
show that efficient single-photon nonlinear behavior can be
achieved with ordinary Kerr-type media and that such behavior
is robust with respect to nonlinear sources of dissipation
such as TPA. In particular, we notice that in Fig. 3(a)
TPA contributes a nonlinear quality factor QTPA � 108 for
	/κ � 102, which means that its effects become relevant
only for strong pumping strength and very large ω0/κ ∼ 108.
Realistic Q factors on the order of 107 can already give clear
signatures of single-photon nonlinear behavior and sizable
antibunching with such high-index media. On the other hand,
the stronger nonlinearity of doped glasses, together with
their negligible TPA effects at telecom wavelengths, make
these materials extremely interesting for quantum photonics

applications. From Fig. 3(b), Q factors on the order of 106

are already sufficient to give an almost ideal single-photon
source, provided the confinement volume is as low as the one
assumed.

So far, we have assumed continuous wave excitation, i.e.,
	 = 	(t). Common solid-state single-photon sources exploit
the reduced lifetime of a quantum emitter in a cavity, allowing
single-photon generation on demand at high repetition rates
through pulsed excitation.1 A single-photon source based on
the simple scheme of Fig. 1 has the potential advantage of
working at arbitrary wavelengths (determined by the cavity
resonance), with a radiative time scale solely determined by the
cavity mode characteristic parameters, thanks to the basically
instantaneous nature of χ (3) processes.20 Thus, in a pulsed
excitation scheme the requirements on the resonant laser
source are determined by the constraints on the pulse duration
(h̄/Unl < �t < κ−1) and period (�T � 5κ−1) preserving the
photon blockade.9,15 From the results shown in Fig. 2(b),
the device would also be tolerant to possible fluctuations
of the laser center frequency around the cavity resonance,
which are normally smaller than the cavity linewidth in
standard near-infrared laser sources. With a Q � 106, i.e.,
κ−1 ∼ 1 ns, and Unl of a few μeV, the pulse duration should be
between 0.1 and 1 ns, while the maximum repetition rate would
be limited to a few hundred MHz, which is comparable to the
fastest single-photon source on demand recently demonstrated
with solid-state quantum emitters.37 The potential repetition
rate can be further increased by relaxing the requirements on
the Q factor, i.e., by increasing Unl through reduction of the
cavity mode volume, anticipating much more controllability
and flexibility as compared to single quantum emitters.

In summary, we have shown that future quantum photonics
applications can strongly benefit from the capability of
nanostructuring ordinary Kerr-type materials to achieve sub-
diffraction-limited electro-magnetic-field confinement. The
growing interest in integrated quantum photonics,38 and the
possibility of fully exploiting the mature complementary
metal-oxide semiconductor-based technology to build room-
temperature and intrinsically flexible single-photon devices is
likely to produce new research avenues based on the present
proposal in the near future.
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