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A gas of ultracold 6Li atoms (effective spin 1/2) confined to an elongated trap with one-dimensional properties
is a candidate to display three different phases: (i) fermions bound in Cooper-pair-like states, (ii) unbound
spin-polarized particles, and (iii) a mixed phase in which Cooper bound states and unpaired particles coexist. It
is of great interest to extend these studies to fermionic atoms with higher spin, e.g., for neutral 40K, 43Ca, 87Sr,
or 173Yb atoms. Within the grand-canonical ensemble, we investigated the μ versus H phase diagram (μ is the
chemical potential and H the external magnetic field) for S = 3/2, . . . ,9/2 for the ground state using the exact
Bethe ansatz solution of the one-dimensional Fermi gas with an attractive δ-function interaction potential. There
are N = 2S + 1 fundamental states: the particles can be either unpaired or clustered in bound states of 2, 3, . . .,
2S, and 2S + 1 fermions. The rich phase diagram consists of these N states and various mixed phases in which
combinations of the fundamental states coexist. Bound states of N fermions are not favorable in high magnetic
fields, but always present if the field is low. For S = 3/2, possible scenarios for phase separation are explored
within the local density approximation. For S = 3/2, the phase diagram for the superposition of a Zeeman and
a quadrupolar splitting is also discussed.
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I. INTRODUCTION

Spin-imbalanced ultracold 6Li atoms confined to different
geometries are spin-1/2 fermion systems displaying the
interplay of Cooper pairing and spin-polarization and have
been the subject of several recent studies.1–3 Confinement to
nearly one-dimensional tubes can be achieved if the ultracold
cloud of atoms is subjected to a two-dimensional optical
lattice, which defines a two-dimensional array of tubes.4

The tubes can be regarded as isolated if the confinement
by the laser beams is strong enough to suppress tunneling
between tubes. The scattering between atoms under transverse
harmonic confinement is subject to a confinement-induced
resonance.5 Fine-tuning this Feshbach-type resonance, the
interaction between the fermions can be made attractive and
its strength can be varied.6 The interaction is local and can
be approximated by a δ-function potential in space. The
confinement along the tube is roughly harmonic and weak;
it can be locally incorporated into the chemical potential.
Consequently, these systems of fermions are only locally
homogeneous and within the local density approximation
display phase separation with the variation of the chemical
potential along the tube.7,8

One-dimensional spin-1/2 gases have been extensively
studied theoretically. M. Gaudin9 and C. N. Yang10 extended
Bethe’s ansatz for the Heisenberg chain11 and Lieb and
Liniger’s results for the locally interacting gas of bosons12

to obtain the exact solution for a gas of spin-1/2 fermions
interacting via a δ-function potential. It was shown by Gaudin9

and later by Takahashi13 and Lai14 that for an attractive
interaction in the ground state, there are two classes of
solutions of the discrete Bethe ansatz equations, namely, real
charge and paired complex conjugated rapidities. The former

represent spin-polarized particles and the latter correspond
to bound states of the Cooper type. There are then three
possible homogeneous phases at very low T , the (1) fully
spin-polarized state (only real charge rapidities), (2) a phase
without polarization, where all particles are bound in Cooper
pairs, (only complex conjugated rapidities), and (3) a mixed
phase in which unpaired spin-polarized particles coexist with
Cooper pairs. The Cooper pairs are gapped (i.e., it requires
a critical field to breakup the bound states) and display
no long-range order. Similar results were obtained for the
Hubbard model with attractive U .15,16 The mixed phase
has been interpreted17 as the one-dimensional analog of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.18

Tubes with ultracold gases of atoms provide the unique
possibility to study fermion systems with a spin larger than
1/2, e.g., 40K (spin 9/2), 43Ca (spin 7/2), 87Sr (spin 9/2), or
173Yb (spin 5/2) atoms. With an attractive interaction, atoms
with spin S can form bound states of up to (2S + 1) particles,
extending this way the concept of Cooper pairs to larger
clusters.19 Consequently, the phase diagram will have more
possible pure and mixed phases. In this paper, we investigate
the phases that can arise in the ground state using the Bethe
ansatz solution of the one-dimensional fermion gas with
δ-function potential. Sutherland20 generalized M. Gaudin’s9

and C. N. Yang’s10 Bethe ansatz solution (for spin 1/2) to an
arbitrary number of colors N = 2S + 1 [SU(N ) symmetry].
For an attractive interaction, Takahashi21 derived the integral
equations for the ground-state density functions for bound
states of up to N = 2S + 1 particles. The space extension of
these bound states was further studied by C. H. Gu and C. N.
Yang.22 The classification of states, the thermodynamics, the
ground-state properties, and elementary excitations of the gas
have been derived by Schlottmann23,24 for both attractive and
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repulsive potential and arbitrary number of colors. Introducing
different chemical potentials for each of the colors, these
results are valid for an arbitrary level splitting of the N -fold
multiplet.23–25 The results for the δ-function potential model
as well as other integrable models, have been extensively
reviewed in Ref. 25. In this paper, we use this solution to
study the phase diagram for a gas of fermionic atoms with
effective spins of S = 3/2, 5/2, 7/2, and 9/2 constrained to
a tube. The numerical effort and the complexity of the phase
diagram rapidly increase with S. As a consequence of Pauli’s
exclusion principle, the bound states must involve particles all
with different spin components (otherwise the δ potential is not
active due to nodes in the wave function). There are N basic
states, namely, bound states of N , N − 1, . . ., two particles, and
unbound particles. The phase diagram will have many mixed
phases, which can have up to N coexisting basic states. Some
results of Ref. 24 were rederived in Ref. 26 for S = 3/2 and
used to discuss the phase diagram for fixed density of particles,
strong attractive coupling (Tonks-Girardeau gas limit) and
Zeeman as well as quadrupolar splittings.

A two-body interaction for spin larger than 1/2 does not
necessarily have to have SU(N ) symmetry. Spin-3/2 fermion
models with contact interactions in any dimension display a
generic SO(5) symmetry without tuning parameters.27 The
Hubbard variant for S = 3/2 has been studied via Monte
Carlo algorithms in Ref. 28 and was applied to investigate the
competing orders in one-dimensional optical traps in Ref. 29.
Several integrable one-dimensional continuum models for the
low-density limit displaying pairing have been constructed
for bosonic and fermionic systems. In Ref. 30, a model for
spin-1 bosons with exchange interaction is proposed and
solved exactly via nested Bethe ansätze for the ground state
and thermodynamics. An extension of this model to SO(5)
symmetry for spin-3/2 fermions has been proposed and solved
in Ref. 31; the authors obtain the thermodynamic equations
and discuss the spectrum of elementary excitations. Further
extensions to models with hidden Sp(2s + 1) and SO(2s + 1)
symmetries for high spin-s fermions and bosons, respectively,
can be found in Ref. 32. The influence of a pure quadratic
Zeeman effect (quadrupolar splitting) on the Mott-insulator
phases of hard-core one-dimensional spin-3/2 fermions has
been studied via DMRG, leading to a rich phase diagram.33

There are several other theoretical studies of ultracold spin-
1/2 atoms in one-dimension. The direct imaging of the density
profiles of the spatially modulated superfluid phases in atomic
fermion systems were obtained by solving the Bogoliubov-
de Gennes equation.34 The pairing states were investigated
on a lattice by means of the density matrix renormalization
group method in Ref. 35; this study leads to a fourth possible
phase (in addition to the paired, unpaired polarized and the
mixed phases) consisting of a metallic shell with free spin-
down (i.e., reversed spins) fermions moving in a fully filled
background of spin-up fermions. The crossover from three-
dimensional (FFLO phase) to one-dimensional (mixed phase)
behavior is addressed in Ref. 36, where the phase diagram for
a weakly interacting array of tubes is calculated. A quantum
Monte Carlo study of one-dimensional trapped fermions with
attractive contact interactions was presented in Ref. 37. Finally,
using the Bethe ansatz, the low-temperature thermodynamics
was calculated in Refs. 38 and 39.

The rest of the paper is organized as follows. In Sec. II,
we present the model and the discrete Bethe ansatz equations
for periodic and open boundary conditions for fermions of
arbitrary S. In Sec. III, we present the numerical solution of
the Bethe ansatz equations for S = 3/2, the phase diagram for
a Zeeman splitting and the local density profile along the trap.
In Sec. IV, we present the numerical solution of the Bethe
ansatz equations for spins S = 5/2, 7/2, and 9/2 for a pure
Zeeman splitting and the corresponding phase diagrams. In
Sec. V, we investigate for S = 3/2 the case where in addition
to the Zeeman effect there is a quadrupolar splitting. Although
it is not clear if nonlinear Zeeman splittings are of relevance to
ultacold atoms in one dimension, it is an instructive situation
to study which has been considered in Refs. 30, 26, and 33.
Conclusions are presented in Sec. VI.

II. MODEL AND BETHE ANSATZ

The Hamiltonian for a gas of nonrelativistic particles with
(2S + 1) colors (spin S) interacting via an attractive δ-function
potential is

H = −
Np∑
i=1

∂2

∂x2
i

− 2|c|
∑
i<j

δ(xi − xj ) , (1)

where xi are the coordinates, Np is the total number of
particles, and c is the interaction strength. By fine tuning the
confinement-induced resonance,5 the interaction can become
attractive and its strength can be varied. Here, h̄2/2m, where
m is the mass of the particles, has been equated to one, or
alternatively it has been scaled into H and c.

A. Bethe equations for periodic boundary conditions

The states of the coordinate Bethe ansatz are plane waves
constructed from the two-particle scattering matrix. This
scattering matrix satisfies the so-called Yang-Baxter triangular
relation, which is a necessary condition for integrability. As
a consequence of the triangular relation, many-particle scat-
tering processes can be factorized into two-particle processes
and the order in which the individual scattering processes take
place can be interchanged (the order becomes arbitrary).

The generalization of the Gaudin-Yang9,10 solution to more
than two colors20 consists of an iterative application of the
Bethe-Yang hypothesis (generalized Bethe ansatz), such that
one color is eliminated at each step, leading to N = 2S + 1
nested Bethe ansätze. Each Bethe ansatz gives rise to a
new set of rapidities, {kj }, j = 1, · · · ,Np for the charges
(coordinate Bethe ansatz) and {�(l)

α }, l = 1, · · · ,N − 1, with
α = 1, · · · ,M (l) for the internal degrees of freedom (spin).
Here, M (l) is the number of rapidities in the lth set and α is the
running index within each set. All rapidities within a given set
have to be different to ensure linearly independent solutions.
Consider fermions of spin S with Zeeman splitting and let us
denote by NS−m the number of particles with spin component
m. We have then NS−m1 � NS−m2 if m1 > m2 and define

M (i) =
S∑

m=−S+i

NS+m, M (0) = Np, M (2S+1) = 0, (2)
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such that Np � M (1) � · · · � M (2S) � 0. As a consequence of
the SU(N ) invariance of the model, the nested Bethe ansätze
for periodic boundary conditions yield the following sets of
coupled equations:20,23,25

exp(ikjL) =
M (1)∏
β=1

e
(
kj − �

(1)
β

)
, j = 1, . . . ,Np, (3)

M (l−1)∏
β=1

e
(
�(l)

α − �
(l−1)
β

) M (l+1)∏
β=1

e
(
�(l)

α − �
(l+1)
β

)

= −
M (l)∏
β=1

e
[(

�(l)
α − �

(l)
β

)
/2

]
, α = 1, . . . ,M (l)

l = 1, . . . ,2S, (4)

where

e(x) = x − i 1
2 |c|

x + i 1
2 |c| , (5)

�
(0)
j ≡ kj , and L is the length of the box. The energy and the

momentum of the state are given by

E =
Np∑
j=1

k2
j , P =

Np∑
j=1

kj . (6)

B. Bethe equations for open boundary conditions

Equations (3) and (4) are derived for the standard periodic
boundary conditions. Tubes, however, are not periodic and
better represented by open or reflecting boundary conditions.
A particle reaching the boundary is then reflected undergoing
kj → −kj but without changing its energy. The corresponding
reflection matrix satisfies reflection equations with the two-
particle scattering matrix, extending the Yang-Baxter equa-
tions. All matrices can be diagonalized simultaneously.40,41

The total length of a period is now 2L, where L is the length
of the trap. It is convenient to write the Bethe equations in a
form similar to Eq. (4) by letting the indices j and α run from
−Np to Np and −M (l) to M (l), respectively.42,43 The Bethe
ansatz equations for open boundary conditions are then

exp(i2kjL)e(kj ) =
M (1)∏

β=−M (1)

e
(
kj − �

(1)
β

)
,

(7)
j = −Np, . . . ,Np,

e
[(

�(l)
α /2

)] M (l−1)∏
β=−M (l−1)

e
(
�(l)

α − �
(l−1)
β

)

×
M (l+1)∏

β=−M (l+1)

e
(
�(l)

α − �
(l+1)
β

) = −[
e
(
�(l)

α

)]2

×
M (l)∏

β=−M (l)

e
[(

�(l)
α − �

(l)
β

)
/2

]
, α = −M (l), . . . ,M (l) ,

l = 1, . . . ,2S . (8)

Hence, there are twice as many rapidities and the box is also
twice as large, leaving the density of rapidities unchanged.
The main difference between open and periodic boundary
conditions is then the independent factors in Eqs. (7) and (8),
which contribute with 1/L terms to the rapidity densities. This
is very similar to the effect of magnetic impurities in a chain.
Also, for periodic boundary conditions, the Bethe states are
plane waves, while for open boundary conditions they are
standing waves. The energy and momentum are still given by
Eq. (6). The open boundary Bethe equations for the present
model were derived previously by Oelkers et al.44

C. Classification of states and energy potentials

For an attractive interaction and large L, the solutions of the
discrete Bethe equations can be classified according to (i) real
charge rapidities, belonging to the set {kj }, associated with
unpaired propagating spin-polarized particles, (ii) complex
spin and charge rapidities, which correspond to bound states
of particles with different spin components, and (iii) strings of
complex spin rapidities, which represent bound spin states.23,25

States in class (iii) are not represented in the ground state; these
states correspond to excited states and are not considered here.
This classification of states is completely analogous to that of
the Anderson impurity of arbitrary spin in the U → ∞ limit45

(see also Refs. 46–49) and the one-dimensional degenerate
supersymmetric t-J model.50

Since only particles with different spin components are
scattered, i.e., experience an effective attractive interaction,
we may build bound states of up to (2S + 1) particles. A
bound state of n (n � N = 2S + 1) is characterized by one
real ξ (n−1) rapidity and, in general, complex �(l) rapidities,
l < n − 1, given by21

�(l)
p = ξ (n−1) + ip|c|/2, l � n − 1 � 2S,

(9)
p = −(n − l − 1), − (n − l − 3), . . . ,(n − l − 1) .

These spin and charge strings form classes (i) and (ii), which
are present in the ground state.23 The real rapidities ξ (n−1) have
all to be different and satisfy the Fermi-Dirac statistics, i.e., the
states are either occupied or empty. (For S = 1/2, the bound
states are frequently called Cooper pairs, although this analogy
is not rigorous.) In the ground state, the rapidities are densely
distributed in the interval [−Bl,Bl] and we denote with ε(l)(ξ ),
l = 0,1, . . . ,2S, the dressed energy potentials (entering the
Fermi-Dirac distribution). The N = 2S + 1 energy potentials
satisfy the following coupled linear integral equations:24,25

ε(l)(ξ ) = Dl(ξ ) −
2S∑

q=0

∫ Bq

−Bq

dξ ′Klq(ξ − ξ ′)ε(q)(ξ ′), (10)

where the Dl(ξ ) are the driving terms and Klq(ξ ) the
integration kernel. The kernel can be written in a compact
form:24

Klq(ξ ) =
∫

dω

2π
exp[iξω − (l + q − pl,q)|ωc|/2]

× sinh[(pl,q + 1)ωc/2]
/

sinh(ωc/2), (11)
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where pl,q = min(l,q) − δl,q . Note that Klq(ξ ) = Kql(ξ ). The
driving terms are given by24,25

Dl(ξ ) = (l + 1)

[
ξ 2 − l(l + 2)

12
c2 − μl

]
, (12)

where μl is the chemical potential for the bound states
involving (l + 1) particles. The μl determine the integration
limits Bl through the condition that ε(l)(±Bl) = 0, since
occupied states correspond to ε(l)(ξ ) < 0, and for empty states,
the quantity is positive. For a pure Zeeman splitting, we obtain

μl = μ + 2S − l

2
H. (13)

Here, μ and H are the chemical potential and the Zeeman
splitting, playing the role of the Lagrange parameters for
the conservation of the total number of particles and the
magnetization.

In terms of

an(x) = 1

π

n|c|/2

x2 + n2c2/4
(14)

the kernel for S = 3/2 reduces to

K00 = 0, K01 = a1, K02 = a2, K03 = a3,

K11 = a2, K12 = a1 + a3, K13 = a2 + a4,
(15)

K22 = a2 + a4, K23 = a1 + a3 + a5,

K33 = a2 + a4 + a6.

Note that if all the ε(l) in Eq. (10) are rescaled to ε(l)/c2, μ to
μ/c2, H to H/c2, all Bl to Bl/|c|, and ξ to ξ/|c|, the equations
are universal, i.e., independent of the magnitude of |c|. Hence,
within the framework of the grand canonical ensemble, without
loss of generality, it is sufficient to present the results for |c| =
1. The problem has then only two independent parameters,
namely, H and μ.

An ultracold atom system is inherently inhomogeneous
since the diameter of the tube gradually changes with position
from the center of the trap to its boundaries. As a consequence
of the changing diameter of the tube, the quantization in the
plane transversal to the tube gradually changes the zero of
energy. This change can be represented by a harmonic potential
of frequency ωho, so that the actual local chemical potential μ

is a function of x given by

μ(x) + 1
2mω2

hox
2 = const. (16)

Within the local density approximation, it is μ(x) that enters
the Bethe equations (10)–(13). The solution is then exact for
the one-dimensional system, but approximate for the trap. This
approximation4,7,8 is expected to be good since the variation of
μ with x is slow. The approximation neglects the quantization
of the harmonic confinement, which is treated classically and
locally incorporated into the chemical potential.

Fluctuations in the particle density arise due to the x

dependence of μ and due to possible weak Josephson tunneling
between tubes. It is then necessary to solve the Bethe equations
in the grand canonical ensemble rather than for the canonical
ensemble, i.e., at constant number of particles. The results
within the canonical ensemble are not universal, because the
constraint of fixed number of particles invalidates the scaling
with |c| discussed above. The above integral equations for

S = 3/2 were solved for constant number of particles in
Ref. 26.

III. PHASE DIAGRAM FOR S = 3/2
FOR ZEEMAN SPLITTING

In this section, we discuss the phase diagram for a pure
Zeeman splitting of the levels for the case S = 3/2. The set of
equations (10)–(13) is solved numerically by iteration. In this
case, the energy potential ε(0) corresponds to unpaired particles
with spin-component Sz = 3/2, the energy ε(1) to bound pairs
with spin-components Sz = 3/2 and Sz = 1/2, the potential
ε(2) to bound states of three particles of spin components
Sz = 3/2, Sz = 1/2, and Sz = −1/2, respectively; and finally,
ε(3) to bound states of four particles all with different spin
components. We denote these states with roman numbers, I,
II, III, and IV, respectively. These states can coexist in mixed
phases, for example, we denote with I + IV the coexistence of
unpaired and bound states of four particles and with I + II + III
a phase where all states except four-particle bound states are
present.

The phase diagram of μ(x) versus H for |c| = 1 and
S = 3/2 is shown in Fig. 1. Other values of |c| can be
reduced to this phase diagram by adequately scaling μ and
H . Note that all phase boundaries are given by the zero
of some energy potential. The phase boundaries are then
crossover lines, which are accompanied by a square-root
singularity of one of the densities of states (one-dimensional
van Hove singularity) in analogy to a Prokovskii-Talapov
transition.51 For small magnetic fields, all particles are bound
in four-particle bound states (generalized Cooper pairs). The
shaded area is the region where all bands are empty (system
without particles). With increasing field, other phases become
realized. At very large magnetic fields and/or for low values of
μ (small number of particles), the phase IV is not favorable.
For large μ and intermediate magnetic fields, all four bands are

0 2 4 6 8 10
H

-2

0

2

4

6

IV

I
I+II

I+II+III

I+II+III+IV

I+IV
I+II+IV

FIG. 1. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 3/2 with |c| = 1. The shaded area cor-
responds to the empty system (no particles). The roman numbers
denote the number of particles involved in a bound state. Regions
with more than one roman number are mixed phases with coexisting
bound states. Note that in the vertical axis, μ is a function of x as
given by Eq. (16).
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
H

-2.0

-1.5

-1.0

0.0

0.5

1.0

IV

I I+II

I+II+III

I+II+III+IV

I+IV
I+II+IV

I+III+IV

FIG. 2. Expanded view of the ground-state phase diagram μ

vs H of Fig. 1 for a homogeneous fermion gas of spin S = 3/2
with |c| = 1 to show the multiple phases for the low-density
region. The shaded area corresponds to the empty system (no
particles).

populated and hence spin-polarized unbound particles coexist
with all possible bound states. This phase diagram can be
compared to the one obtained in Ref. 26 (Figs. 3 and 4) for
fixed number of particles (canonical ensemble). For a pure
Zeeman splitting and as a function of field, these authors
obtain crossovers from phase IV to I + IV to I. A constant
number of particles corresponds to a curve μ(H ) in Fig. 1.
The strong-interaction limit considered in Ref. 26 corresponds
to a low particle density. The sequence of phases we then
expect from Fig. 1 is also IV to I + IV to I, in agreement with
Ref. 26.

Figure 2 shows the expanded view of the region for small
μ and H , which displays multiple crossovers. For larger μ,
there is a small region where the phase I + III + IV is stable.
As mentioned above, the harmonic confinement of the trap
can be treated quasi-classically and can be absorbed into the
chemical potential via Eq. (16).52 The chemical potential then
decreases as we move from the center of the trap toward the
boundaries. Hence we move downward along a vertical line on
the phase diagram. This can give rise to phase separation along
the length of the trap. For instance, for H = 2 for a sufficiently
high density of atoms, at the center of the trap the phase with all
bound states coexisting (I + II + III + IV) would be favored,
then moving toward the end points (in either direction) of
the trap, first the four-particle bound states disappear (phase
I + II + III), then the bound states of three particles (phase
III) are depopulated and polarized unbound particles coexist
with bound pairs (phase I + II), and finally a fully polarized
gas phase (I) is possible. For H = 1, on the other hand, we
again could have the I + II + III + IV phase at the center of
the trap and by moving to the boundaries we would observe
the I + II + IV mixed phase, then the I + IV phase and finally
unbound fully polarized atoms (I).

The local density profile as a function of x for the different
phases for H = 1.5 is displayed in Fig. 3, where Eq. (16) was
used to parametrize the chemical potential in a trap of length
L. Given μ(0) and μ(L/2), i.e., the chemical potential at the

0.0 0.2 0.4 0.6 0.8 1.0
x/(L/2)

0.0

0.1

0.2

0.3

0.4

n q I+II+III+IV

I+II

I+II

I

+III

n
3

n
0

n
1

n
2

H=1.5

N
t
/5

M/2

M/2

N
t
/5

FIG. 3. (Color online) Density profile within the local density
approximation for H = 1.5, μ(0) = −0.7, μ(L/2) = −2.0, and S =
3/2. The position along the trap is given by Eq. (17). The three
crossovers between phases are shown by the thin vertical lines. The
densities nq of bound states of q + 1 particles (or polarized unbound
particles if q = 0) are given by the solid (n3), dashed (n2), dotted
(n1), and dash-dotted (n0) curves. The density of the total number of
particles Nt (red curve) and the magnetization density M (blue curve)
as a function of x are also shown. Note that the scales of Nt and M

are reduced by a factor of five and two, respectively.

center and boundary of the trap, the position along the trap is
given by [from Eq. (16)]

x/(L/2) =
√

[μ(x) − μ(0)]/[μ(L/2) − μ(0)] . (17)

The density function of the rapidities is obtained from the
dressed energies ε(q)(ξ ) by differentiation with respect to μ,
i.e.,24,25

ρ
(q)
h (ξ ) + ρ(q)(ξ ) = − 1

2π

∂ε(q)(ξ )

∂μ
, (18)

where ρ(q)(ξ ) is the particle density and ρ
(q)
h (ξ ) the correspond-

ing hole density for bound states involving q + 1 particles. The
integral equations satisfied by the density functions are similar
to the ones for the dressed energy potentials, i.e., the integration
kernel and the integration limits are the same, but the driving
terms are Dl = (l + 1)/(2π ).21 After solving these equations
numerically, the number of bound states (or polarized unbound
particles if q = 0) per unit length are obtained from

nq =
∫ Bq

−Bq

dξρ(q)(ξ ) , (19)

Note that as a function of μ the densities vanish with a square-
root singularity that is characteristic of one-dimensional van
Hove singularities as can be seen in Fig. 3. The density of the
total number of particles is given by Nt = ∑2S

q=0(q + 1)nq and

the magnetization density by M = (1/2)
∑2S

q=0(q + 1)(2S −
q)nq . Both quantities are displayed in Fig. 3 (red and blue
curves, respectively) for the phase separation along the trap.
They also show the square root singularities, consequences of
the van Hove singularities in the densities, as a function of μ

each time there is a level crossing.
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FIG. 4. (Color online) Density of total number of particles Nt

(dashed) and the magnetization density M (solid) for S = 3/2 as a
function of magnetic field for three values of μ: μ = −0.5 (black),
μ = −1.0 (red), and μ = −1.5 (blue). At the crossovers from one
phase to another, a van Hove singularity is seen in both Nt and M .
The onset of the magnetization is proportional to (H − HC)1/2 with
the critical field depending on μ. This is seen in the inset where M2

is plotted vs H − HC , yielding a straight line in all three cases.

The density of the total number of particles Nt and the
magnetization density M as a function of magnetic field for
S = 3/2 and three values of μ is shown in Fig. 4. Every level
crossing is accompanied by a square-root dependence due to
the one-dimensional van Hove singularity in the density of
states. The onset of the magnetization is at a critical field
HC that depends on μ. In the inset of Fig. 4, we plot M2

versus H − HC , which follows a straight line, proving the
square root dependence of the magnetization. We can then
conclude that the transitions are level crossings, consequence
of a band being emptied, and independent on how the transition
is crossed (along μ or H or any straight line μ = aH + b) it
will give rise to a square-root singularity in the density of states.
These transitions are level crossings of the Prokovskii-Talapov
type.51 These conclusions are valid within the grand canonical
ensemble and a consequence that the dressed energy potentials
are all quadratic in the rapidity.

IV. PHASE DIAGRAM FOR SPIN S = 5/2,7/2, AND 9/2

In this section, we extend the solution of Eqs. (10)–(13) to
spins larger than 3/2. The procedure is quite similar to that of
S = 3/2, but the numerical effort grows rapidly with N , since
there are now N dressed energy potentials coupled by the
system of integral equations. The number of possible phases,
especially the mixed phases, also increases rapidly with N .
The phases are again denoted by roman letters and the empty
phases (no particles) is denoted by zero. The results are shown
in Figs. 5 (S = 5/2), 6 (S = 7/2), and 7 (S = 9/2).

Several common trends emerge by comparing Figs. 2 and
5–7. There are 2S nearly parallel boundary lines starting almost
vertically at the top of the phase diagram, which then have a
curvature to the right and leave the panels either at the bottom
right or the right side. These curves correspond to the zeros
of the dressed energy potentials ε(l) for l = 0, . . . ,2S − 1,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
H

-5

-4

-3

-2

-1

0

 µ

VI

I I+II

I+II+III

I+II+III+IV

I+II+V+VI

I+II+VI

0

S=5/2

I+II+III+IV+V

I+II+III+IV+V+VI
I+II+III+V+VI

I+II+III+VI

I+VI I+II+III+IV+VI

FIG. 5. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 5/2 with |c| = 1. The empty system (no
particles) in the lower left corner is denoted with 0. The Roman
numbers denote the number of particles involved in a bound state.
Regions with more than one roman number are mixed phases with
coexisting bound states. Note that in the vertical axis, μ is a function
of x as given by Eq. (16).

i.e., the states that are magnetic field dependent. The zero
of ε(2S), which corresponds to bound states of N particles and
is nonmagnetic, is the almost horizontal curve starting at the
left and leaving the panel at the right. This curve divides the
phase diagrams into two parts, namely, below that curve, there
are no clusters of N particles and above, these clusters are
always present.

At small fields, the system either has no particles (below
the ε(2S) = 0 line) or only bound states of N particles (above
that line). With increasing field then first unpaired particles

0.0 1.0 2.0 3.0 4.0
H

-10

-8

-6

-4

-2

0

 µ

VIII

I I+II

I+II+III

I+II+III+IV

I+III+IV+VII+VIII

0

S=7/2

I+II+III+IV+V

I-VIII

I+II+III+VII+VIII

I+II+III+VIII

I+VIII I+II+III+IV+VIII

I-VI

I-VII

I+II+VIII I+II+III+IV+V+VIII

FIG. 6. Ground-state phase diagram μ vs. H for a homogeneous
fermion gas of spin S = 7/2 with |c| = 1. The empty system (no
particles) in the lower left corner is denoted with zero. The roman
numbers denote the number of particles involved in a bound state.
Regions with more than one roman number are mixed phases with
coexisting bound states. For instance, the notation I–VI is a short-hand
notation for I + II + III + IV + V + VI, in which the phases from I to
VI coexist. Note that in the vertical axis, μ is a function of x as given
by Eq. (16).
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0.0 1.5 3.0 4.5
H

-14

-12

-10

-8

-6

-4

 µ

X

I I+II
I+II+III

I+II+III+IV

0

S=9/2

I-V

I-VIII

I+II+III+X

I+X

I+II+III+IV+X

I-VI

I-VIII+II+X

I-V+X
I-IX

I-X

I-VI+X
I-VII+X

I-V+IX+X

I-VI+IX+X

FIG. 7. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 9/2 with |c| = 1. The empty system (no
particles) in the lower left corner is denoted with zero. The roman
numbers denote the number of particles involved in a bound state.
Regions with more than one roman number are mixed phases with
coexisting bound states. For instance, the notation I–VI is a short-hand
notation for I + II + III + IV + V + VI, in which the phases from I to
VI coexist. Note that in the vertical axis, μ is a function of x as given
by Eq. (16).

(spin-component Sz = S) emerge, then paired particles (spin-
components Sz = S and Sz = S − 1) coexisting with unpaired
particles (and clusters of N particles if above the ε(2S) = 0
line), this is followed by the addition of bound states of three
particles, etc. This pattern is only changed above the ε(2S) =
0 line when many bound states coexist, due to several line
crossings. In the upper right corner of the phase diagrams, a
phase with all bound states coexisting is stable. This pattern
of the phase diagrams found for S � 9/2 is not expected to
change for spins larger than 9/2.

V. PHASE DIAGRAM FOR S = 3/2 WITH ZEEMAN AND
QUADRUPOLAR SPLITTING

For S > 1/2, level splittings other than the Zeeman effect
are possible. Here, we consider a quadrupolar splitting super-
imposed with the Zeeman effect. Nonlinear Zeeman splittings
have been considered previously26,33 in similar contexts. In
particular, in Ref. 26, Bethe ansatz equations for the same
model but a fixed number of particles (canonical ensemble)
were employed, while in the present paper, we consider the
grand canonical ensemble (variable number of particles). For
S = 3/2, the Zeeman and quadrupolar splittings are not the
most general case, since also octupolar splittings are possible.
It is not clear if such a situation (quadrupolar and octupolar
splittings) can be realized experimentally for ultracold atoms
in 1D, but the problem is theoretically sufficiently interesting
to be addressed.

The Hamiltonian for the level splitting is given by

Hspl = −HSz + D
[
3S2

z − S(S + 1)
]
, (20)

where D can be either positive or negative. To be specific, we
consider again the case S = 3/2. Note that the Hamiltonian (1)
commutes with Hspl, so that the Bethe states also diagonalize

H + Hspl. Keeping D fixed and as a function of H , Hspl

displays two level crossings; hence, we need to consider
three regions, namely, region (i) (H � 3|D|), region (ii)
(3|D| � H � 6|D|), and region (iii) (6|D| � H ). For D > 0,
the bound states I, II, III, and IV are then composed by
particles with the following Sz components; in region (i), (1/2),
(1/2,−1/2), (1/2,−1/2,3/2), and (1/2,−1/2,3/2,−3/2), re-
spectively, in region (ii), (1/2), (1/2,3/2), (1/2,3/2,−1/2),
and (1/2,3/2,−1/2,−3/2), respectively, and in region (iii),
(3/2), (3/2,1/2), (3/2,1/2,−1/2), and (3/2,1/2,−1/2,−3/2),
respectively. Region (iii) is then similar to the case of a pure
Zeeman splitting. Hence at the crossovers, the character of the
bound states changes. The corresponding chemical potentials
μi in Eqs. (10)–(13) are then

for region (i) (H � 3D) :

μ0 = μ + 3D + 3H/2,

μ1 = μ + 3D

μ2 = μ + D + H/6,

μ3 = μ,

for region (ii) (3D � H � 6D) :

μ0 = μ + 3D + 3H/2,

μ1 = μ + H

μ2 = μ + D + H/6,

μ3 = μ,

and for region (iii) (6D � H ) :

μ0 = μ + 3D + 3H/2,

μ1 = μ + H

μ2 = μ − D + H/2,

μ3 = μ.

Similarly, one can obtain the chemical potentials for D <

0. The procedure is completely analogous to that used for

0.0 0.5 1.0 1.5 2.0 2.5 3.0
H
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1.0

 µ
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I+II+III+IV
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I+II+IVI+III+IV

II+IV

I+II+III+IV
I+II+III+IV

FIG. 8. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 3/2 with |c| = 1 and a quadrupolar splitting
D[3S2

z − S(S + 1)] for D = 1/3. The shaded area corresponds to
the empty system (no particles). Level crossings of the Zeeman and
quadrupolar terms occur at H = 3D and 6D.
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FIG. 9. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 3/2 with |c| = 1 and a quadrupolar splitting
D[3S2

z − S(S + 1)] for D = −1/3. The shaded area corresponds to
the empty system (no particles). Level crossings of the Zeeman and
quadrupolar terms occur at H = 3|D| and 6|D|.

magnetic impurities (degenerate Anderson model in the U →
∞ limit with Zeeman and crystalline field splittings).49

The phase diagram for D = 1/3 and −1/3 is shown in
Figs. 8 and 9, respectively. For these parameters the level
crossings are at H = 1 and H = 2. The level crossings
stabilize the I + III + IV and I + II + IV (II + III + IV) mixed
phases over the I + II + III + IV mixed phase. As discussed
above, the phase I + III + IV for H � 1 involves different
condensates than for H � 1. All phase boundaries are the
consequence of one of the four rapidity bands getting empty
and, hence, a transition involves a one-dimensional van
Hove singularity with the corresponding consequences on the
density of states and low-T specific heat. For small magnetic
fields, the phase is a mixture of two-particle and four-particle
bound states. For larger fields H , the four-particle bound states
are only favorable if the density of particles is high enough.
Also for intermediate magnetic fields the phase diagram for
D > 0 is very different from that of D < 0.

VI. CONCLUSIONS

We studied an ultracold gas of fermionic atoms with an
attractive contact potential by solving the corresponding Bethe
ansatz equations. We obtained the phase diagram for S = 3/2,
5/2, 7/2, and 9/2 in a magnetic field (μ versus H ) within the
grand canonical ensemble. For S = 3/2, four elementary states
can occur: (i) polarized unbound atoms with spin-component
Sz = 3/2, (ii) bound pairs of atoms with spin-components
Sz = 3/2 and Sz = 1/2, (iii) bound states of three particles

with spin-components Sz = 3/2, Sz = 1/2, and Sz = −1/2,
and (iv) bound states of four particles, one with each spin
component. For a general S, there are N = 2S + 1 such
elementary states. Mixed phases of different classes of bound
states dominate the phase diagram. For a given chemical
potential, the phases are homogeneous and display no long-
range order. The transitions between phases are crossovers of
the Prokovskii-Talapov type.51

There are several advantages of working in the grand-
canonical ensemble with fixed chemical potential, rather than
with a fixed number of particles.26 (1) By rescaling all
quantities in the integral equations for the dressed energy
potentials, ε(q), with the interaction strength |c|, one obtains
universal equations for the phase diagram μ versus H . Our
phase diagram shown in Figs. 1, 2, and 5–7 is then valid
for all attractive |c|. This is not the case if the total number
of particles is kept fixed. (2) From the general trends for
S � 9/2, we can draw conclusions of the μ versus H phase
diagram valid for all spins. (3) Since the diameter of the tube
gradually changes with position from the center of the trap
to its boundaries, the effective local chemical potential varies
along the tube. Within the local density approximation this
change can be represented by a harmonic potential and as a
consequence of the x dependence of μ there is an inherent
tendency of phase separation,4 i.e., the trap is inhomogeneous.
At different positions of the trap then different phases may
be realized and a sequence of transitions should be observed
along the trap. (4) Josephson tunneling between tubes and
interactions between particles in different tubes,17,36 may
give rise to a dimensional crossover from one dimension to
a higher dimension. This gives rise to long-range order of
quantities that are generalizations of Cooper pairs for S = 1/2
to higher spin. The system remains strongly anisotropic and
pure (there are almost no impurities) and is hence favorable
for inhomogeneities like modulations of the order parameter
of the FFLO type in the presence of an external magnetic field.

For S = 3/2, we also investigated the interesting situation
of a quadrupolar splitting superimposed with the Zeeman field.
In this case, the spin energy levels display two crossovers as
a function of the magnetic field. Hence the character of the
bound states before and after the crossover changes. In general,
bound states of four particles are not favorable for low particle
density or high magnetic fields.
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