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Utilizing large-scale Monte Carlo simulations, we investigate an unconventional two-component classical
plasma in two dimensions which controls the behavior of the norms and overlaps of the quantum-mechanical
wave functions of Ising-type quantum Hall states. The plasma differs fundamentally from that which is associated
with the two-dimensional XY model and Abelian fractional quantum Hall states. We find that this unconventional
plasma undergoes a Berezinskii-Kosterlitz-Thouless phase transition from an insulator to a metal. The parameter
values corresponding to Ising-type quantum Hall states lie on the metallic side of this transition. This result
verifies the required properties of the unconventional plasma used to demonstrate that Ising-type quantum Hall
states possess quasiparticles with non-Abelian braiding statistics.
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I. INTRODUCTION

Key properties of physical systems can sometimes be
understood by mapping them to seemingly unrelated ones.
A powerful example of this was provided by Laughlin, who
observed that the squared norm of his ν = 1/M fractional
quantum Hall trial wave function

�(zi) =
N∏

i<j

(zi − zj )M e− 1
4

∑N
i=1 |zi |2 (1)

(where zi = xi + iyi is a complex coordinate in the two-
dimensional plane) could be expressed as the Boltzmann
weight of a two-dimensional one-component plasma1:

‖�(zi)‖2 =
∫ N∏

i=1

d2zi |�(zi)|2 =
∫ N∏

i=1

d2zi e−βV1(zi ), (2)

where

V1(zi) = −Q2
1

N∑
i<j

ln |zi − zj | + Q2
1

4M

N∑
i=1

|zi |2 (3)

and Q2
1/T = 2M . This mapping allows properties such as

quasiparticle charge and braiding statistics to be determined
by appealing to the known properties of a one-component
plasma.

Recently, a similar plasma mapping was established2

for Ising-type quantum Hall states, such as the Moore-
Read (MR),3 anti-Pfaffian,4,5 and Bonderson-Slingerland (BS)
hierarchy6 states, which are likely candidates to describe Hall
plateaus in the second Landau level, in particular at filling
fraction ν = 5/2 (Refs. 7–10). In this case, the mapping is to a
two-dimensional (2D) two-component plasma, where the two
species of particles, w and z, carry not only different values

of charge, but also interact through two different interactions,
both of the Coulomb form, so the potential energy is

V (zi ; wa) = V1(zi) + V2(zi ; wa), (4)

V2(zi ; wa) = −Q2
2

N∑
i<j

ln |zi − zj | − Q2
2

N∑
a<b

ln |wa − wb|

+Q2
2

N∑
a,i

ln |zi − wa|, (5)

where Q2
2/T = 3. The z particles interact with each other

through the first Coulomb-like interaction, V1(zi), given in
Eq. (3) (and so does not depend on the wa coordinates).
Moreover, the z particles interact with each other and with
the w particles through the second Coulomb-like interaction,
through which the w particles also interact with each other,
according to V2(zi ; wa), given in Eq. (5). Note that V2(zi ; wa)
is the 2D Coulomb potential of the usual two-component
plasma (where the two species carry charge Q2 and −Q2,
respectively).

The z particles carry charge Q1 for the first interaction
and charge Q2 for the second interaction. The w particles
carry charge 0 for the first interaction and charge −Q2 for
the second interaction. For a plasma with N particles of each
species, neutrality is satisfied using a uniform background
density of type 1 charge, as in the second term in Eq. (3).
This unconventional plasma may be considered as an ordinary
neutral two-component gas with positive and negative charges
of magnitude Q2, where the positive charges are given an
additional charge of Q1 that is only felt by the other positive
charges and not the negative charges. An illustration of the
interactions between the two species in the system is shown in
Fig. 1.

We are thus led to consider a class of unconventional
plasmas parametrized by Q2

1/T and Q2
2/T . As mentioned
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FIG. 1. (Color online) Illustration of interactions between the
particles in the 2D system. The w particles only interact by the
second Coulomb-like interaction with charge −Q2, whereas the z

particles carry charge Q1 for the first Coulomb-like interaction and
Q2 for the second Coulomb-like interaction. Thus, the intraspecies
interaction among the w particles, shown in (a), and the interspecies
interaction between w and z particles, shown in (b), are given by
Q2 only, whereas the intraspecies interaction among the z particles,
shown in (c), are determined by Q1 in addition to Q2. Interactions
between the z particles and the neutralizing background are omitted
from the figure.

above, for MR Ising-type states with filling ν = 1/M , the
relevant values are Q2

1/T = 2M and Q2
2/T = 3. In this

plasma mapping, the zi particles in the plasma correspond
to the electrons in the MR wave functions and the wa particles
correspond to screening operators (fictitious particles). The
case Q1 = 0, Q2

2/T = 3 is relevant for the plasma mapping2

of 2D chiral p-wave superconductors.11 We note that whenever
Q1 = 0, our model is a special case of the well-known 2D
two-component plasma of equal and opposite charges.12–15

The screening properties of multicomponent 2D plasmas with
multiple Coulomb interactions of this kind are also important
for other physical systems, such as rotating multicomponent
Bose-Einstein condensates with interspecies current-current
(Andreev-Bashkin) interaction16,17 and some multicomponent
superconducting systems.18–20 In these systems the screening
properties and phase transitions determine superfluid and
rotational responses.

In this paper, we fix temperature to T = 1 and consider
the two most significant values of Q1, namely, Q1 = 0,2. We
investigate the screening and phase transition properties of
these plasmas as a function of varying Q2 by performing a
large-scale Monte Carlo simulation. Here a “screening phase”
means that the system has a screening length which is finite,
and exponentially decaying effective interactions. A system
with logarithmic effective interactions is one where screening
is defined to be absent. As a first check, we reproduce the
well-known result that, for Q1 = 0, there is a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition at Q2

2 = Q2
2,c ≈ 4,

as expected for a 2D two-component plasma of equal and oppo-
site charges. For Q2

2 < Q2
2,c, the charges are unbound and the

plasma screens, but for Q2
2 > Q2

2,c, the charges are bound into

dipoles and the interaction is not screened. Thus, for Q2
2 = 3,

the value relevant to 2D chiral p-wave superconductors, the
plasma screens. For Q1 = 2, we again find a BKT phase
transition at Q2

2 = Q2
2,c ≈ 4, with a plasma screening phase for

Q2
2 < Q2

2,c. The first Coulomb-like interaction is deep within
its screening phase and appears to have a negligibly small
effect on the screening of the second interaction. In both cases,
the critical values Q2

2,c are obtained by a finite-size scaling
fit of the Monte Carlo data to the BKT form. Our findings
demonstrate that the unconventional plasma which occurs in
the mapping for both a chiral p-wave superconductor and the
Ising-type quantum Hall states is clearly in the screening phase
(for both types of Coulomb interaction) and hence allows one
to discern the non-Abelian braiding properties of these states,
as explained in Ref. 2.

The outline of this paper is as follows. In the introductory
part of Sec. II, we present the model for the unconventional
plasma we will be studying in this paper. In Sec. II A,
we connect this to the Ising-type of quantum Hall states.
In Sec. II B, we explain its connection to two-component,
2D, Bose-Einstein condensates. In Sec. III A, we present a
formulation of the model on a sphere. In Sec. III B, we give
details of the Monte Carlo simulations, and in Sec. III C,
we present our results for the screening properties, as well
as our findings for the character of phase transition between
the dielectric nonscreening phase and the metallic screening
phase. In Sec. IV, we present our conclusions. Technical details
on the derivation of a generalized dielectric constant is given in
Appendix A . In Appendix B, we give a derivation of a relevant
higher-order response function that we use to characterize the
metal-insulator transition. In Appendix C, we present technical
details on the finite-size scaling we have used.

II. MODEL

The canonical partition function of the unconventional
plasma is written

Z =
∫ (

N∏
i=1

d2zi

) (
N∏

a=1

d2wa

)
e−V , (6)

where the potential energy V is given by the 2D Coulombic
interactions

V = Q2
2

N∑
a<b=1

vww(|wa − wb|)

+ (
Q2

1 + Q2
2

) N∑
i<j=1

vzz(|zi − zj |)

+Q2
2

N∑
a,i=1

vzw(|zi − wa|) + Vz,BG. (7)

Similar to the study of the 2D two-component neutral Coulomb
gas,12–15,21 we introduce a short-range hard-core repulsion
between all charges in the system. Treating all charges as
hard disks with the same diameter d that limits the range of
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the hard-core repulsion, the interaction between charges of the
same species is

vzz(|r|) = vww(|r|) =
{ ∞, |r| � d,

− ln |r|, |r| > d,
(8)

and the interaction between charges of different species is

vzw(|r|) =
{ ∞, |r| � d,

ln |r|, |r| > d.
(9)

In Eq. (7), wa are position vectors for the particles of
component w, and zi are position vectors for the particles
of component z. To ensure neutrality, the term Vz,BG includes
the interaction of the Q1 charges of type 1 for the z particles
with a neutralizing background charge density. In Ref. 2, this
background is a uniform negatively charged 2D disk with
charge density qBG

1 = −NQ1/A, where N/A = 1/2πM , that
yields

Vz,BG = 1

2

N∑
i=1

|zi |2. (10)

The particle-background and the background-background
interaction also yields uninteresting constant terms, which are
disregarded in Eq. (7).

We note that when Q1 = 0 we have the 2D two-component
neutral Coulomb plasma, which is well-studied both analyt-
ically and numerically.12–15,25–30 At low dipole density, this
system will undergo a BKT transition, which is a charge-
unbinding transition from a low-temperature state where
charges of opposite signs form tightly bound dipoles to a
high-temperature state in which a finite fraction of charges are
not bound in dipoles, but rather form a metallic state. In the
low-temperature phase, this Coulomb gas is an insulator and
the dielectric constant ε (see, for instance, Refs. 26, 31, and 32
and Appendix A for a formal definition of ε) is finite. In the
high-temperature phase, the existence of free charges yields
a conductive gas with an infinite value of ε. At the critical
temperature Tc, when tightly bound dipoles start to unbind,
there is a universal jump in the inverse dielectric constant
from a nonzero value in the insulating phase to zero in the
metallic phase,

ε−1 =
{

4Tc, T → T −
c ,

0, T → T +
c .

(11)

The screening properties that follow are that the Coulomb gas
is able to perfectly screen test charges in the metallic phase
when there are free charges in the system, whereas there is no
screening in the insulating dielectric phase. In this work, we
focus our attention on the low-dipole-density regime, so we
do not go into detail on the physics in the 2D two-component
neutral Coulomb gas at higher densities. However, we note
that when density is increased, the critical point of the BKT
transition is shifted toward lower temperatures.14,15,28,29

Another well-studied case is when Q2 = 0, for which
the model reduces to the 2D one-component plasma (for
the z particles only). Early numerical studies of this system
found a weak first-order melting transition at Q2

1/T ≈ 140
from a state where the charges form a triangular lattice with
quasi-long-range translational and long-range orientational

order to a fluid plasma state.33–36 These results were, in a
sense, contrasting with the defect-mediated melting theory of
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) that
predicts melting from a solid to a liquid via two BKT tran-
sitions and an intermediate hexatic phase with no translational
order and quasi-long-range orientational order.12,37–39 Other
studies of 2D melting point in favor of the KTHNY theory,40–43

suggesting that the nature of melting transition may depend on
details in the interatomic potential or that finite-size effects and
lack of equilibration might lead to erroneous conclusions in
earlier works. There are also studies that argue for the absence
of a phase transition to a low-temperature solid phase in the 2D
one-component plasma with repulsive logarithmic interactions
because the crystalline state would be unstable to proliferation
of screened disclinations for any T > 0 (Refs. 44–47).

A. Ising-type quantum Hall states

The unconventional 2D two-component plasma studied
here is mapped to inner products of trial wave functions for the
MR quantum Hall states using conformal field theory (CFT)
methods, as explained in Ref. 2. In particular, this mapping
utilizes the Coulomb gas description of CFTs48,49 together
with a procedure for replacing holomorphic-antiholomorphic
pairs of contour integrals in screening charge operators for 2D
integrals.2,50

The MR states’ wave functions can be written as a product
of correlation functions of fields from the Ising and U(1)
CFTs. In particular, the MR ground-state wave function for
N electrons is

�(z1, . . . ,zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj )M e− 1
4

∑N
i=1 |zi |2 ,

(12)

where the Pfaffian of an antisymmetric matrix A is given by

Pf(Ai,j ) ≡ 1

N !!

∑
σ∈SN

sgn(σ )
N/2∏
k=1

Aσ (2k−1),σ (2k). (13)

Here SN is the symmetric group, σ is one of the permutation
elements in SN , and sgn(σ ) is the signature of σ . The Pf( 1

zi−zj
)

portion of this wave function is produced from the correlation
function of ψ fields in the Ising CFT, while the Laughlin-type
portion

N∏
i<j

(zi − zj )M e− 1
4

∑N
i=1 |zi |2 (14)

is produced from the correlation function of vertex operators
in the U(1) CFT.

The Laughlin-type portion of the MR wave functions can
be mapped to charges of type 1, similar to Laughlin’s plasma
mapping. The mentioned CFT methods provide identities such
as ∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

=
∫ N∏

a=1

d2wa

N∏
a<b

|wa − wb|3

×
N∏

i<j

|zi − zj |3
N∏
a,i

|wa − zi |−3, (15)
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which allow the Pfaffian portion of the MR wave functions to
be mapped to charges of type 2. This allows one to write the
norm of the MR ground-state wave function as the partition
function of the unconventional 2D two-component plasma of
Eq. (4),

‖�(z1, . . . ,zN )‖2 =
∫ N∏

i=1

d2zi |�(z1, . . . ,zN )|2

=
∫ N∏

a=1

d2wa

N∏
i=1

d2zi e−V , (16)

with Q2
1 = 2M and Q2

2 = 3. More generally, one can also
construct a similar, but more complicated mapping between
inner products of wave functions of the MR states with
quasiparticles, as explained in Ref. 2. In this case, the
quasiparticles map to fixed “test” objects in the plasma that
carry electric charge of type 1 and can carry both electric
and magnetic charges of type 2 (and also changes the number
of screening operators, that is, w particles in the plasma, to
maintain neutrality). (The charges of types 1 and 2 carried by
the quasiparticles are typically some fractions of the charges
Q1 and Q2 carried by the z particles.)

Strictly speaking, the right-hand side of Eq. (15) is divergent
for Q2

2 = 3 (since the integrand diverges as |wa − zi |−3 as a w

particle approaches a z particle). It can be made well-defined
(and equal to the left-hand side) by replacing |wa − zi |−3

with |wa − zi |−α , evaluating the integrals for α < 2 and then
analytically continuing α to 3. On the other hand, we regularize
the divergences of Eq. (16) in this paper by using a hard-core
repulsion that forbids the particles from approaching each
other closer than a distance d, that is, replacing V in this
expression with that of Eq. (7). It should not matter how we
regularize the divergence in Eq. (16) as long as the probability
for z particles and w particles to sit right on top of each other
has measure zero. As we see in this paper, this is true for
Q2

2 < Q2
2,c ≈ 4, in which case the configurational entropy

to be gained by having z particles and w particles separate
overcomes the energy gained by having them on top of each
other. We refer to this as an “entropic barrier” for putting z

particles and w particles on top of each other. In contrast,
in Eq. (15), where only the wi’s are integrated over and the
zi coordinates are fixed, regularization by a simple hard-core
repulsion does not appear to be a suitable alternative to analytic
continuation. In this case, since the zi coordinates are fixed, the
entropic barrier is lower. Equivalently, there are fewer integrals
to compensate for the inverse powers. Thus, in Eq. (15), a
simple hard-core cutoff will not reproduce the left-hand side,
and one must use the analytic continuation procedure described
above.

B. Two-component rotating Bose-Einstein condensate
in two dimensions

In a rotating frame, a Bose-Einstein condensate in the
London limit is described by the uniformly frustrated XY

model,

H = ρ

2

∫
d2r

[
∇θ (r) − m

h̄
�(r)

]2
, (17)

where ρ = h̄2n/m for a condensate with mass m, phase θ ,
density n, and �(r) = � × r where � = �ẑ is the angular
velocity of the rotation. In 3D, this model is frequently used
to describe the melting of vortex-line lattices in extreme
type II superconductors and superfluids.51–54 By a duality
transformation, the model in Eq. (17) can be rewritten in terms
of vortex fields l to yield55,56

H = 1

2

∫
d2q[l(q) − (2π )2f δ(q)]

ρ

q2

× [l(−q) − (2π )2f δ(−q)], (18)

where f = 2�/φo is the vortex number density and φ0 =
2πh̄/m is the fundamental quantum unit of vorticity. This is a
one-component 2D classical Coulomb plasma where charges
correspond to nonzero values in the vortex field l(r) and the
quantity f now plays the role as the neutralizing background
number density.

Extending to two components, a model for a rotating two-
component Bose-Einstein condensate with a generic Andreev-
Bashkin drag interaction57–59 reads

H = 1

2

∫
d2r

{ ∑
i=1,2

mini

(
h̄∇θi

mi

− �

)2

−√
m1m2nd

(
h̄∇θ1

m1
− h̄∇θ2

m2

)2
}

, (19)

where now m, n, and θ is given an index that denotes
the component and nd is the drag density. This model has
recently been studied in three dimensions.16,17 By a duality
transformation, we arrive at the following 2D Coulomb
plasma:

H = 1

2

∫
d2q[li(q) − (2π )2fiδ(q)]

Rij

q2

× [lj (−q) − (2π )2fjδ(−q)], (20)

where fi = 2�/φ0,i , φ0,i = 2πh̄/mi , li is the vortex field of
component i,

R = h̄2

⎛
⎝ 1

m1

(
n1 −

√
m2
m1

nd

)
1√

m1m2
nd

1√
m1m2

nd
1

m2

(
n2 −

√
m1
m2

nd

)
⎞
⎠, (21)

and an implicit sum over repeated component indices i, j is
assumed. By setting h̄ = mi = 1 such that f1 = f2 = f , and
absorbing a factor 2πβ in the density coefficients, we see
that the two-component Bose-Einstein condensate in Eq. (19)
with n1 = 0, n2 = Q2

1, and nd = −Q2
2 corresponds to the

unconventional two-component Coulomb plasma in Eq. (7).
Thus, the unconventional Coulomb plasma has a counterpart
in a two-component Bose-Einstein condensate with a negative
nondissipative drag interaction. However, note that in order
to preserve a fixed number of charges when going from the
plasma description in Eq. (7) to the phase description in
Eq. (19), we have to fix the number of vortices to only include
rotationally induced vortices. In principle, in the BEC problem,
the system can thermally excite vortex-antivortex pairs, but that
process can be substantially suppressed by going beyond the
phase-only model in Eq. (19) and introducing an additional
energy penalty associated with vortex cores.
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III. MONTE CARLO SIMULATIONS

A. Considerations for a spherical surface

Computer simulations of Coulomb interactions are gener-
ally difficult to perform due to the long-ranged nature of the
interaction. Several techniques have been presented to deal
with the complications that arise.60–62 We have performed
large-scale Monte Carlo simulations of the system described
in Eqs. (6) and (7) on a spherical surface. For other simulations
on a spherical surface, see Refs. 14, 34, 43–46, and 63. This
may seem like a brute-force approach since the workload of
the simulations scales as O(N2). However, the benefit is that
there are no boundaries, the implementation is relatively easy,
and there is no need to constrain the particles to move on a
lattice. However, one must also be aware that simulation results
may differ due to effects induced by topology. For instance,
the triangular crystalline ground state of a 2D one-component
plasma will necessarily include a number of dislocations and
disclinations on a sphere. These defects are not present in the
ground state when the one-component plasma is located on
the plane.45,64

We consider a sphere with radius R, with origin defined as
the center of the sphere such that all particle position vectors
wa and zi are radial vectors with fixed magnitude R in three
dimensions. The distance between the particles is measured
along the chord14,63

|ri − rj | = 2R sin

(
ψij

2

)
, (22)

where

ψij = arccos(r̂i · r̂j ) (23)

is the chord angle between the two particles at ri and rj with
unit vectors r̂i and r̂j , respectively. We may now rewrite the
model in Eq. (7) on the surface of a unit sphere as

V = 1

2

[
Q2

2

N∑
a<b=1

ṽww(ŵa · ŵb) + Q2
2

N∑
a,i=1

ṽzw(ẑi · ŵa)

+ (
Q2

1 + Q2
2

) N∑
i<j=1

ṽzz(ẑi · ẑj )

]
, (24)

with interactions given by

ṽzz(r̂i · r̂j ) = ṽww(r̂i · r̂j )

=
{ ∞, ψij � d/R,

− ln(1 − r̂i · r̂j ), ψij > d/R,
(25)

and

ṽzw(r̂i · r̂j ) =
{ ∞, ψij � d/R,

ln(1 − r̂i · r̂j ), ψij > d/R.
(26)

Note that the interaction Vz,BG in Eq. (7) between the
neutralizing background and the excess charge of type 1
becomes a constant term on the sphere, so we disregard it
in Eq. (24).

The dimensionless density of particles on the sphere is given
by the packing fraction η = Ns/A, where s = A sin2(d/4R)
is the area of a hard disk of diameter d on the sphere of area
A = 4πR2. In the simulation, we use a unit sphere with R = 1.

As explained in Appendix A, in order to account for
screening properties when particles interact by two interac-
tions simultaneously, we measure a general inverse dielectric
constant, ε−1

(a1,a2), given by

ε−1
(a1,a2) = a2

1ε
−1
11 + 2a1a2ε

−1
12 + a2

2ε
−1
22 , (27)

where

ε−1
μν = δμν − π

A
〈Mμ · Mν〉, (28)

is a type-specific inverse dielectric constant, a1 and a2 are
type-dependent weights for the contributions of the different
ε−1
μν (which are determined by the values of both types of

charge carried by the test particles for which screening is being
measured), and where M1 and M2 are the dipole moments for
charges of type 1 and type 2, respectively, given by

M1 = Q1R

N∑
i=1

ẑi , (29)

M2 = Q2R

(
N∑

i=1

ẑi −
N∑

a=1

ŵa

)
. (30)

Note that the type 2 inverse dielectric constant, ε−1
22 , is

the same dielectric constant as was used when studying
the two-component neutral Coulomb plasma on a spherical
surface.14,63 In addition to measuring the screening properties,
the inverse dielectric constant may be used to identify the
existence of a BKT transition if it exhibits a universal
discontinuous jump at the critical point, according to Eq. (11).

In addition to the inverse dielectric constant, we also
measure the fourth-order modulus, γ (Refs. 65 and 66).
This quantity may be used to verify a discontinuous jump
in the inverse dielectric constant without making any a priori
assumptions regarding the character of the phase transition. As
explained in detail in Appendix B, a negative γ at the phase
transition in the thermodynamic limit implies that the inverse
dielectric constant jumps to zero discontinuously. As for the
inverse dielectric constant, we use a general fourth-order
modulus to account for the two interactions,

γ(a1,a2) =
2∑

μ,ν,ρ,σ=1

aμaνaρaσ γμνρσ , (31)

where

γμνρσ =
(

π

R2

)2

[〈MμMν〉〈MρMσ 〉
−3〈Mμ,zMν,zMρ,zMσ,z〉]. (32)

The explicit derivation of Eqs. (31) and (32) is given in
Appendix B .

B. Details of the Monte Carlo simulations

The Monte Carlo updating scheme consists of trial moves
for one or two particles at the same time, to a randomly chosen
new location on the surface of the sphere. The change in the
action Eq. (24) was calculated and the move was accepted or
rejected according to the Metropolis-Hastings algorithm.67,68

The trial moves were performed in three different ways. The
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first way was to move a single particle to a new random location
uniformly over the total surface. The second way was to move
a single particle to a new random location uniformly within
some short distance, adjusted to yield a high acceptance rate.
The last trial move was to move a nearest-neighbor pair of one
z particle and one w particle together, to a random new location
uniformly within some short distance, adjusted to yield a high
acceptance rate, and with a random new orientation. In order
to straightforwardly ensure detailed balance, we additionally
required the two particles to mutually be nearest neighbors in
both the old and the new configuration. To ensure ergodicity,
the pair move must be mixed with a number of single-particle
moves. All of these moves were found to be essential in order
to have fast thermalization as well as short autocorrelation
times for the cases considered here. Pseudorandom numbers
were generated by the Mersenne-Twister algorithm69 and the
sampled data were postprocessed using Ferrenberg-Swendsen
reweighting techniques.70,71

C. Results

Motivated by its relevance to the fractional quantum Hall
effect (in particular, the ν = 1/2 MR state), we focus on
analyzing the screening properties of this system at Q1 = 2
(M = 2)2. We also perform simulations in the neutral two-
component Coulomb gas case at Q1 = 0 (M = 0) in order to
provide a check on the numerics, as well as for comparison
with the Q1 = 2 case. Furthermore, the system is also studied
for a number of values of the packing fraction, η to extract the
screening properties in the low-density limit.

For the two cases of Q1 and the values of Q2 studied
below, the quantities ε−1

11 and ε−1
12 were found to be zero, within

statistical uncertainty and except for a small finite-size effect
when system size N was small. Thus, we focus on the results
for ε−1

22 as this was the only term in Eq. (27) that contributed
to the general inverse dielectric constant, ε−1

(a1,a2). This means
that screening properties of particles that interact with charges
of both types, are determined by the charges of type 2, only.
Note also that when ε−1

11 = 0, the unconventional Coulomb
plasma will screen test particles with charge of type 1,
only.

In Fig. 2, we plot ε−1
22 in the relevant range of Q2

2 when the
two-component neutral Coulomb gas (Q1 = 0) is known to
have a BKT transition. At small values of Q2

2, the system is in
the screening phase where ε−1

22 ≈ 0. The reason for the ≈ sign
rather than an equal sign is that there is a mainly size-dependent
offset from ε−1

22 = 0, because perfect screening is not possible
with a small number of charges. For large Q2

2 there is a phase
in which charges of different components form tightly bound
dipoles and the Coulomb gas turns into an insulator where
ε−1

22 ≈ 1. Here there is a mainly density-dependent offset from
ε−1

22 = 1 because the polarizability of the system increases
with density, since the hard-core diameter d yields a minimum
distance between the charges in the dipoles. The plot in Fig. 2
indeed shows that the charge-unbinding transition is dependent
on the number of particles in the system, as well as the size of
the hard disk charges. When N increases, the onset of a finite
value in ε−1

22 moves to higher values of Q2
2. However, when

we reduce η, the value of Q2
2 at onset of ε−1

22 becomes smaller.

N = 200
N = 100
N = 50

η = 5 · 10−6
η = 5 · 10−5
η = 5 · 10−4

Q2
2

−1 2
2

4.543.532.521.51

1

0.8

0.6

0.4

0.2

FIG. 2. (Color online) Plot of the inverse dielectric constant ε−1
22

for the model in Eq. (7) with Q1 = 0 and 1 � Q2
2 � 4.8. Results are

presented for three different values of packing fraction η and three
different values of system size N .

Thus, this figure illustrates that understanding the behavior in
both limits N → ∞ as well as η → 0 is not straightforward.

In Fig. 3, results for the same case as in Fig. 2 are presented,
but with Q1 = 2. The results for Q1 = 0 and Q1 = 2 are
very similar, both qualitatively and quantitatively. Thus, the
screening properties with respect to charge of type 2 of
the unconventional Coulomb plasma when Q1 = 2 are very
similar to the well-studied two-component neutral Coulomb
gas.

To get a qualitative picture of the type 2 charge binding
of the unconventional plasma, three snapshots of the charge
configuration when Q1 = 2, η = 5 × 10−4, and N = 200 is
given in Fig. 4. When Q2

2 = 1, deep into the screening phase
of the system (see Fig. 3), most charges are free and only
a small fraction of the charges may be said to form closely
bound dipoles. At Q2

2 = 3, which is the relevant value for the
Ising-type quantum Hall states, the system is closer to the

N = 200
N = 100
N = 50

η = 5 · 10−6
η = 5 · 10−5
η = 5 · 10−4

Q2
2

−1 2
2

4.543.532.521.51

1

0.8

0.6

0.4

0.2

FIG. 3. (Color online) Plot of the inverse dielectric constant ε−1
22

for the model in Eq. (7) with Q1 = 2 and 1 � Q2
2 � 4.8. Results are

presented for three different values of packing fraction η and three
different values of system size N .
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Q2
2 = 5

Q2
2 = 3

Q2
2 = 1

FIG. 4. (Color online) Snapshots of the charge configuration at
Q2

2 = 1,3,5 when Q1 = 2, η = 5 × 10−4, and N = 200. Red markers
(solid circles) are w particles, while blue markers (open circles) are
z particles. The marker diameters are about 5 times larger than hard
disk diameter d .

unbinding transition and a larger fraction (though not all) of
the particles are bound in dipoles. At Q2

2 = 5, deep in the type
2 insulating region, all particles form closely bound dipoles
and the ability to screen type 2 test charges is lost.

Although it is clear from Figs. 2 and 3 that there is a
transition between a screening phase and an insulating phase,
it is not easy to spot the transition point in the curves in these
figures, which look rather smooth. Therefore, we must make
some assumptions about the nature of the transition in order
to identify it.

Q1 = 2
Q1 = 0

η

Q
2 2
,c

0.0020.00150.0010.00050

5

4.8

4.6

4.4

4.2

4

3.8

FIG. 5. (Color online) The critical value of Q2
2 found by curve

fitting to Eq. (33) with two free parameters. Results are presented for
four values of the packing fraction η and for Q1 = 0 and Q1 = 2.
Fourteen system sizes in the range 20 � N � 2000 have been used.

For the case Q1 = 0, where the transition is known to be
a BKT transition, it is natural to follow a method that was
proposed in Ref. 72. At the BKT critical point, ε−1

22 scales
logarithmically with N for large N . It takes the following
finite-size scaling form:

ε−1
22 (N ) = ε−1

22 (∞)

[
1 + 1

ln(N ) + C

]
, (33)

where ε−1
22 (∞) is the value of ε−1

22 (N ) when N → ∞ and C

is an undetermined constant. Least-squares curve-fitting to
Eq. (33) may be performed for various sizes N with C and
ε−1

22 (∞) as free parameters at fixed values of Q2
2. The critical

point is then estimated as the value of Q2
2 which exhibits the

best fit to Eq. (33). Additionally, for a BKT transition, the
value of ε−1

22 (∞) obtained at the best fit, must correspond with
the universal jump condition, Q2

2,cε
−1
22 (∞) = 4 [cf. Eq. (11)].

Details of this procedure are given in Appendix C .
For Q1 = 2, motivated by the similarity between Figs. 2

and 3, we assume that the transition is also a BKT transition.
We again look for the Q2

2 value at which the system best fits
Eq. (33). Since we are able to find a value at which there is
a very good fit to this form, we conclude that our assumption
was justified.

In Fig. 5, we present results for the critical coupling Q2
2,c for

four different densities η = 0.0002,0.0005,0.001,0.002 for
Q1 = 0 and Q1 = 2. The results for Q1 = 0 reproduce the
main features of the two-component Coulomb gas, namely,
that Q2

2,c = 4 when density is low and that Q2
2,c increases

when density increases. These results also correspond well
with earlier results in Refs. 14 and 15. When Q1 = 2, we find
that the behavior of the critical temperature is very similar to
the Q1 = 0 case, within statistical uncertainty. In addition, in
Fig. 6, results for the corresponding value of the parameter
ε−1

22 (∞) at the critical point is presented. The values for
both Q1 = 0 and Q1 = 2 are close to the universal value of
Q2

2,cε
−1
22 (∞) = 4 for the BKT transition. Since the results for

Q1 = 0 (the standard Coulomb-plasma BKT-transition case)
and Q1 = 2 are essentially the same, we suggest that the
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Q1 = 2
Q1 = 0

η

Q
2 2
,c

−1 2
2
(∞

)

0.0020.00150.0010.00050

4.4

4.2

4

3.8

3.6

FIG. 6. (Color online) The universal jump value determined by
curve fitting to Eq. (33) with two free parameters. Results are
presented for four values of the packing fraction η and for Q1 = 0
and Q1 = 2. Fourteen system sizes in the range 20 � N � 2000 have
been used.

charge-unbinding transition for the unconventional Coulomb
plasma indeed is a BKT transition in the sense that the type 2
inverse dielectric constant ε−1

22 exhibits logarithmic finite-size
scaling and a discontinuous jump with a universal value, as
predicted by the BKT renormalization equations.

As an additional verification of the discontinuous jump in
the BKT transition, we also study the fourth-order modulus
γ(a1,a2), presented in Eqs. (31) and (32). As for the general
inverse dielectric constant, we found that the only contributing
term in the sum of Eq. (31) is the term with all indices equal
to 2, γ2222. Illustrating the typical behavior of this quantity,
results for γ2222 for a number of sizes when η = 5 × 10−4

and Q1 = 2 are presented in Fig. 7. Typically, γ2222 exhibits a
dip at a value of the coupling that can be associated with the
transition. As explained in Appendix B, a negative and finite
dip in the limit when N → ∞ signals the discontinuous jump
in ε−1

22 that is a characteristic feature of a BKT transition. To
this end, the size of the dip in γ2222 is plotted as a function

N = 800
N = 400
N = 200
N = 100
N = 50

Q2
2

γ
2
2
2
2

4.543.532.5

0

-5

-10

-15

-20

FIG. 7. (Color online) The fourth-order modulus γ2222 as a
function of coupling Q2

2 for five different system sizes N , when
Q1 = 2 and η = 5 × 10−4.

0.010.0010.0001
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Q1 = 0

N−1
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2
2
2
2
,m

in
|

0.0060.0050.0040.0030.0020.0010

18

16

14
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10

8

6

4

2

0

FIG. 8. (Color online) The size of the dip in the fourth-order
modulus |γ2222,min| as a function of inverse system size N−1. The
packing fraction is η = 5 × 10−4, and results for Q1 = 0 and Q1 = 2
are shown. The inset shows the results on a log-log scale. System
sizes in the range 60 � N � 10 000 are used.

of inverse system size N−1 in Fig. 8 in the case when η =
5 × 10−4. The size of the dip |γ2222,min| decreases when N

increases toward the thermodynamic limit. However, assuming
power-law dependence of |γ2222,min|, the positive curvature in
the log-log plot indicates a nonzero value of |γ2222,min| when
N → ∞, verifying a discontinuous jump in ε−1

22 , as expected
for a BKT transition. Again, we find that the results for Q1 = 2
are very similar to Q1 = 0.

We also associate the coupling value of the minimum in the
dip in γ2222 with the critical point and the results are shown
in Fig. 9 in the case when η = 5 × 10−4. Clearly, the position
of the dip moves toward higher values of Q2

2 when the system
size increases. However, the evolution toward N−1 = 0 is too
slow to make a sharp determination of Q2

2 in this limit, as also
noted before.65,66 With this method, we are not able to verify
that Q2

2,c ≈ 4.4, as was found above in Fig. 5 for this density.

0.010.0010.0001

4

3

Q1 = 2
Q1 = 0

N−1

Q
2 2

0.0060.0050.0040.0030.0020.0010

4.5

4

3.5

FIG. 9. (Color online) The coupling value at the minimum of the
dip in the fourth-order modulus as a function of inverse system size
N−1. The packing fraction is η = 5 × 10−4, and results for Q1 = 0
and Q1 = 2 are shown. The inset shows the results on a log-log scale.
System sizes in the size 60 � N � 10 000 are used.
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Q1 = 0
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,c

0.0020.00150.0010.00050
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3.8

FIG. 10. (Color online) The critical value of Q2
2 found by curve

fitting to Eq. (33) with one free parameter. Results are presented for
five values of the packing fraction η and for two values of Q1.

By assuming a universal value of the discontinuous jump
for a BKT transition, we may determine the critical point of
the BKT transition using Eq. (33) with only one free parameter
as described in Appendix C . The results are given in Fig. 10.
The critical values of Q2

2 are very similar to what was obtained
in Fig. 5, but are determined with greater accuracy. For both
cases, the critical point appears at higher Q2

2 when density
increases. However, Q2

2,c is systematically lower at Q1 = 2
compared to Q1 = 0.

For the range of small densities that we have investigated,
the Monte Carlo results for the unconventional Coulomb
plasma with Q1 = 2 are rather conclusive. This plasma un-
dergoes a charge-unbinding transition that should be regarded
as a BKT transition in the sense that the inverse dielectric
constant of type 2 exhibits the well-established signatures of
a BKT transition. Specifically, there is a density-dependent
critical point Q2

2,c that separates a phase where particles of
different species form bound pairs at high values of Q2

2 from
a phase where particles of different species are free at low
values of Q2

2. For test particles carrying type 2 charge, the
high-Q2

2 phase is unscreened, whereas the low-Q2
2 phase is

screened.
The results presented so far show that the behavior when

Q1 = 0 and Q1 = 2 are quite similar. However, in the phase
with bounded dipoles, when charges of type 2 are not screened,
the cases Q1 = 0 and Q1 = 2 behave rather differently. We
first consider the case when Q1 = 0. When charges are
bound, this system consists of N dipoles that interact by
dipole-dipole interactions. Consequently, these dipoles tend to
form clusters with increased dipole strength, that is, higher
values of the coupling or the density.15,29 In Fig. 11, a
snapshot of a Q1 = 0 configuration with N = 200, Q2

2 = 7,
and η = 2 × 10−3 is shown, where some dipoles are seen to
form clusters. In the case when Q1 = 2, the type 2 interactions
are effectively reduced to dipole-dipole interactions, similar
to the Q1 = 0 case. However, the logarithmic interactions of
type 1 charges remain. Neglecting the weaker dipole-dipole
interactions among dipoles of type two, the dipoles now

Q1 = 2

Q1 = 0

FIG. 11. (Color online) Snapshots of the charge configuration at
Q1 = 0 and Q1 = 2 when Q2

2 = 7, η = 2 × 10−3, and N = 200. Red
markers (solid circles) are w particles and blue markers (open circles)
are z particles. The marker diameters are about 2.5 times larger than
hard disk diameter d .

essentially form elementary constituents with charge Q1

interacting logarithmically. Effectively, the two-component
unconventional plasma is reduced to a one-component plasma
where the particles carry charge of type 1 and a (neutral)
dipole of type 2. When Q1 = 2 this plasma is in the liquid
state; that is, the tightly bound dipoles do not form an ordered
state with a broken translational or orientational symmetry.
Also, the logarithmic interaction of type 1 charge will prevent
the dipoles from forming clusters. A snapshot of the state
with bounded dipoles when Q1 = 2 is shown in Fig. 11
and the qualitative difference from the case when Q1 = 0
is clearly seen. Quantitatively, this is seen by the behavior
of ε−1

22 , presented in Fig. 12. When Q1 = 0, dipole-dipole
interactions at short distances will reduce the fluctuations in
the dipole moment resulting in a weakly increasing ε−1

22 inside
the bounded phase. On the other hand, when Q1 = 2 the
logarithmic interaction of type 1 charge will keep the dipoles at
some distance from each other, thus the fluctuations of a dipole
are not much restricted by the surrounding dipoles. Moreover,
the strength of the dipoles increases with Q2

2 and a reduction
in ε−1

22 follows. The qualitative difference between the cases
Q1 = 0 and Q1 = 2 is an effect due to the minimum separation
of charges at finite density originating with the hard cores, and
it will vanish in the limit η → 0.

024520-9



EGIL V. HERLAND et al. PHYSICAL REVIEW B 85, 024520 (2012)
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FIG. 12. (Color online) Plot of the type 2 inverse dielectric
constant for Q1 = 0 and Q1 = 2 with N = 100, η = 5 × 10−3 in
the range 3 � Q2

2 � 12.

IV. CONCLUSIONS

We have shown that the unconventional Coulomb plasma
analyzed in this paper, where particles can carry two distinct
types of Coulombic charge, will screen test particles with
charges of both types for the case most relevant for the plasma
analogy of Ising-type fractional quantum Hall states, that is,
when there is one species of particles that carry type 1 charge
Q1 = 2 (M = 2) and type 2 charge Q2 = √

3 and another
species of particles that carry only type 2 charge −Q2. For test
particles carrying both types of charge, screening will cease
to occur at Q2

2 = Q2
2,c ≈ 4 in the limit of small density, when

Q1 = 2. For higher values of Q2
2, the system will continue to

screen test particles that carry only type 1 charge, but will not
be able to screen test particles with type 2 charge.

One striking feature of these results is that Q2
2,c and the

critical behavior at this point hardly seem to depend on Q1

when density is small. This implies that the role of the type 1
interaction (which corresponds, in quantum Hall wave function
language, to the Laughlin-Jastrow factor which accounts for
the filling fraction of the system) is simply to maintain the
zi particles in a liquid state. Since its critical point is very
far away, the type 1 interaction leads to a weak, smooth
dependence on Q1. The physics in the transition at Q2

2,c is then
dominated by the type 2 interaction. We therefore conjecture
that our results hold for all reasonable values of M , not only
M = 0 and 2, the cases which we have studied here, but also
M = 1 (which may be relevant to ultracold trapped bosons)
and larger values of M , possibly all the way up to or near
the critical value Mc ≈ 70, below which the one-component
plasma of Eq. (3) is in the metallic phase.33–36
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APPENDIX A: GENERALIZING THE INVERSE
DIELECTRIC CONSTANT FOR MULTIPLE

INTERACTIONS

In the unconventional plasma with two components that
interact with two different Coulomb-like interactions, we are
free to insert test particles that may interact with different
charge strength through both interactions simultaneously. Here
we generalize the inverse dielectric constant for such test
particles. For consistency, we also perform the derivation on
the surface of a sphere by expanding in spherical harmonics.
For a similar derivation, but with one interaction only and on
a planar geometry, see Refs. 31 and 32.

When an external test charge field is inserted in the system,
the free energy in the system will change according to the
effective interaction among the test charges,

�F [δq] =
∫

d�

∫
d�′ ∑

μ,ν

δqμ(θ,φ)U eff
μν (r̂ · r̂′)δqν(θ ′,φ′).

(A1)

Here the effective interaction between charges of type μ and ν,
is assumed to be of the form U eff

μν = U eff
μν (r̂ · r̂′), δqμ(θ,φ) is the

test charge field for charges of type μ, and the integrations are
over the solid angle d�. To correctly model the test particles
as carrying charge of different types, we write

δqμ(θ,φ) = aμ δq ρ(θ,φ), (A2)

where aμ is a type-dependent factor that accounts for the
relative strength of charges of different types. For instance,
the choice (a1,a2) = (Q1/MQ2,1) = (

√
2/3M,1) describes

the test charges corresponding to quasiholes in the MR state,
as given in Eq. (125) in Ref. 2, which map to particles in the
plasma that carry charge Q1/2M = 1/

√
2M of type 1 and

charge Q2/2 = √
3/2 of type 2. Moreover, in Eq. (A2) δq is a

common charge factor for all types such that aμ δq is the total
charge of type μ carried by a test particle (which means that
δq = √

3/2 in the example above), and ρ(θ,φ) is the density
field of the test particles.

It is now convenient to expand the interaction and density
fields in spherical harmonics. The test particle density field is
expanded by

ρ(θ,φ) =
∞∑
l=0

l∑
m=−l

ρm
l Ym

l (θ,φ), (A3)

where

Ym
l (θ,φ) =

√
(2l + 1)(l − m)!

4π (l + m)!
P m

l (cos θ ) eimφ, (A4)
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and P m
l (x) are the associated Legendre polynomials. The

coefficients are given by

ρm
l =

∫
d�ρ(θ,φ)Ym∗

l (θ,φ). (A5)

The effective interaction is expanded by using the addition
theorem for spherical harmonics,

U eff
μν (r̂ · r̂′) =

∞∑
l=0

4π

2l + 1
U eff

μν,l

l∑
m=−l

Y m∗
l (θ,φ)Ym

l (θ ′,φ′).

(A6)

Here U eff
μν,l are the Legendre coefficients of the interaction,

given by

U eff
μν,l = 2l + 1

2

∫ π

0
dθ sin θ U eff

μν (cos θ )Pl(cos θ ), (A7)

where Pl(x) is the Legendre polynomial of order l. Now
Eq. (A1) is written

�F [δq] = δq2
∞∑
l=0

4π

2l + 1

∑
μ,ν

aμU eff
μν,laν

l∑
m=−l

ρm∗
l ρm

l . (A8)

Hence, in the limit when the test charge field is infinitesimal,
δq → 0, we find that

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
∞∑
l=0

8π

2l + 1

∑
μ,ν

aμU eff
μν,laν

l∑
m=−l

ρm∗
l ρm

l .

(A9)

This derivative can also be calculated by inspection of the
partition function of the system perturbed with the external
test charge field. With F [δq] = − ln Z[δq] and a potential
energy on the form V [δq] = V0 + V1[δq], where V0 is the
potential energy of the unperturbed system and V1[δq] is the
contribution due to the test charge field, we find that

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
〈

∂2V1[δq]

∂δq2

∣∣∣∣∣
δq=0

〉

−
〈(

∂V1[δq]

∂δq

∣∣∣∣
δq=0

)2
〉
. (A10)

Here we have also used that ∂F [δq]/∂δq|δq=0 = 0, and
the brackets denote statistical average with respect to the
unperturbed system. The test charges δqμ(θ,φ) will interact
with each other as well as with the charge field qμ(θ,φ). As
for the test charge field, the charge field is expanded according
to Eq. (A3) to yield

V1[δq] =
∫

d�

∫
d�′ ∑

μ

[qμ(θ,φ) + δqμ(θ,φ)]

×U (r̂ · r̂′)δqμ(θ ′,φ′)

=
∞∑
l=0

4π

2l + 1
Ul

∑
μ

aμ

l∑
m=−l

δq ρm∗
l

(
qm

μ,l + aμδq ρm
l

)
,

(A11)

where U (r̂ · r̂′) is the bare interaction, expanded by Eq. (A6)
with coefficients Ul . Performing the derivatives in Eq. (A10)

yields

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
∞∑
l=0

8π

2l + 1
Ul

∑
μ,ν

aμδμνaν

l∑
m=−l

ρm∗
l ρm

l

−
∞∑
l=0

4π

2l + 1
Ul

∞∑
l′=0

4π

2l′ + 1
Ul′

∑
μ,ν

aμaν

×
l∑

m=−l

l′∑
m′=−l′

ρm∗
l ρm′

l′
〈
qm

μ,lq
m′∗
ν,l′

〉
. (A12)

We introduce the dielectric function εμν,l by

U eff
μν,l = ε−1

μν,lUl, (A13)

and by comparing Eqs. (A9) and (A12), the inverse dielectric
function is found to be

ε−1
μν,l = δμν −

(
l∑

m=−l

ρm∗
l ρm

l

)−1 ∞∑
l′=0

2π

2l′ + 1
Ul′

×
l∑

m=−l

l′∑
m′=−l′

ρm∗
l ρm′

l′
〈
qm

μ,lq
m′∗
ν,l′

〉
. (A14)

Moreover, since the bare interaction is only dependent on
the distance between the charges, U = U (r̂ · r̂′), we have that
〈qm

μ,lq
m′∗
ν,l′ 〉 = 〈qm

μ,lq
m′∗
ν,l′ 〉δll′δmm′ , which yields

ε−1
μν,l = δμν −

(
l∑

m=−l

ρm∗
l ρm

l

)−1
2π

2l + 1
Ul

×
l∑

m=−l

ρm∗
l ρm

l

〈
qm

μ,lq
m∗
ν,l

〉
. (A15)

Additionally, the property that the bare interaction is distance
dependent, only, yields an interaction Ul that is independent of
m. Hence, the correlator 〈qm

μ,lq
m∗
ν,l 〉 must be m independent as

well, 〈qm
μ,lq

m∗
ν,l 〉 = 〈q0

μ,lq
0
ν,l〉. The dielectric function thus reads

ε−1
μν,l = δμν − 2π

2l + 1
Ul

〈
q0

μ,lq
0
ν,l

〉
. (A16)

The dielectric constant εμν is now found in the long-
wavelength limit of the dielectric function. On a spherical
surface, this corresponds to setting l = 1 in the dielectric
function, that is, εμν = εμν,1. Thus, the dielectric constant is

ε−1
μν = δμν − 2π

3
U1

〈
q0

μ,1q
0
ν,1

〉
. (A17)

So far, only a few assumptions are made regarding the
bare interaction U (r̂ · r̂′) and the charge field qμ(θ,φ). To
apply Eq. (A17) for the system under consideration in this
paper, we invoke U (r̂ · r̂′) = − ln(1 − r̂ · r̂′) to find U1 = 3/2
by Eq. (A7). Moreover, the charge field is modeled as point
charges in a uniform background,

qμ(θ,φ) = qBG
μ +

N∑
i=1

eμ,i

δ(θ − θi)δ(φ − φi)

sin θ
, (A18)

where qBG
μ = −(

∑
i eμ,i)/(4π ) is the uniform background

ensuring charge neutrality for charges of type μ, eμ,i is the
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charge of type μ in particle i, and the sum is over all N

particles of the unperturbed system. Now, using Eq. (A5), the
actual coefficient of the charge field is found to be

q0
μ,1 =

√
3

4π

Mμ,z

R
, (A19)

where Mμ = ∑N
i=1 eμ,i r̂i is the total dipole moment for

charges of type μ. Finally, by inserting these results in
Eq. (A17), the inverse dielectric constant is found to be

ε−1
μν = δμν − π

A
〈Mμ · Mν〉, (A20)

where 〈Mμ,zMν,z〉 = 〈Mμ · Mν〉/3 by assuming isotropy.
When there are test charges with multiple interactions, there

are multiple contributions to the change in free energy as seen
in Eq. (A1). To account for all contributions to the increase in
free energy, we construct a generalized dielectric constant by

ε−1
(a1,a2,...)

=
∑
μ,ν

aμε−1
μν aν. (A21)

Notice that even though there is no bare interaction between
charges of different type, there may be nonzero cross terms
in Eq. (A1), as charges of different type are constrained to be
together within the same particle.

APPENDIX B: FOURTH-ORDER FREE
ENERGY DERIVATIVE

In Ref. 65 a method of verifying the discontinuous character
of the BKT transition was introduced by examining a higher-
order term in the free energy expansion in the XY model
when the system is perturbed with an infinitesimal phase
twist. Similarly, in Ref. 66, the method was applied in a 2D
logarithmic plasma. Here we show that the same idea also
applies when we perturb a logarithmic Coulomb plasma on a
spherical surface with an infinitesimal test charge field with
multiple types of Coulomb interactions.

Consider a system with particles interacting with different
charges of multiple types, as previously described. We now
choose to perturb this system with a neutral distribution of
test charge of multiple types, which has the form δqμ(θ ) =
aμδq cos(θ ), that is, a similar test particle density field as given
in Eq. (A2) but with ρ0

1 = √
4π/3 being the only nonzero

coefficient in the spherical harmonics expansion. This is a
convenient choice because it corresponds to the most long-
waved nonuniform test charge configuration on the surface of
a sphere, and hence, the prefactor of the second-order term in
the free energy expansion will be proportional to the inverse
dielectric constant, as we see below.

The test charges yield a contribution to the potential energy
as given by the l = 1 and m = 0 term in Eq. (A11),

V1[δq] = 4π

3
U1

∑
μ

aμδq ρ0
1

(
q0

μ,1 + aμδqρ0
1

)
. (B1)

We now consider how the system responds to the test
charges by a Taylor expansion of the free energy in the test
charge field around δq = 0,

�F [δq] = ∂F [δq]

∂δq

∣∣∣∣
δq=0

δq + ∂2F [δq]

∂δq2

∣∣∣∣
δq=0

δq2

2!

+ ∂3F [δq]

∂δq3

∣∣∣∣
δq=0

δq3

3!
+ ∂4F [δq]

∂δq4

∣∣∣∣
δq=0

δq4

4!
+ · · · .

(B2)

The change in the free energy �F [δq] must be invariant to
δqμ(θ ) → −δqμ(θ ), and hence, all odd-order derivatives in
Eq. (B2) are zero. From Appendix A [see Eqs. (A12), (A17),
and (A21)], the second-order free energy derivative is found
to be

∂2F [δq]

∂δq2

∣∣∣∣
δq=0

= 8π

3

(
ρ0

1

)2
U1ε

−1
(a1,a2,...)

. (B3)

The fourth-order derivative is

∂4F [δq]

∂δq4

∣∣∣∣
δq=0

= 3

〈(
∂V1[δq]

∂δq

∣∣∣∣
δq=0

)2〉2

−
〈(

∂V1[δq]

∂δq

∣∣∣∣
δq=0

)4〉

=
(

4π

3
ρ0

1U1

)4 ∑
μ,ν,ρ,σ

aμaνaρaσ

×[
3
〈
q0

μ,1q
0
ν,1

〉〈
q0

ρ,1q
0
σ,1

〉 − 〈
q0

μ,1q
0
ν,1q

0
ρ,1q

0
σ,1

〉]
.

(B4)

where brackets denote a statistical average with respect to the
unperturbed action. Inserting Eqs. (B3) and (B4) in Eq. (B2)
yields

�F [δq] = 8π

3

(
ρ0

1

)2
U1

[
ε−1

(a1,a2,...)

δq2

2!
+ γ(a1,a2,...)

δq4

4!
+ · · ·

]
,

(B5)

where

γ(a1,a2,...) =
∑

μ,ν,ρ,σ

aμaνaρaσ γμνρσ , (B6)

and

γμνρσ =
(

4π

3
U1

)3 (
ρ0

1

)2

2

[
3
〈
q0

μ,1q
0
ν,1

〉〈
q0

ρ,1q
0
σ,1

〉
− 〈

q0
μ,1q

0
ν,1q

0
ρ,1q

0
σ,1

〉]
. (B7)

Now, inserting ρ0
1 = √

4π/3 and assuming the charge field
in Eq. (A18) and a logarithmic bare interaction, U1 = 3/2,
yields

γμνρσ =
(

π

R2

)2

[〈MμMν〉〈MρMσ 〉−3〈Mμ,zMν,zMρ,zMσ,z〉],
(B8)

where 〈Mμ,zMν,z〉 = 〈Mμ · Mν〉/3 by assuming isotropy.

A. Stability argument

When δq = 0, the free energy of the system has a global
minimum, and hence the right-hand side of Eq. (B5) must
be greater than or equal to zero. Now, if γ(a1,a2,...) approaches
a nonzero negative value at the critical point in the thermo-
dynamical limit, the general inverse dielectric constant must
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simultaneously have a nonzero positive value for the ground
state to be stable. However, since ε−1

(a1,a2,...)
= 0 in the screening

phase, it follows that ε−1
(a1,a2,...)

must exhibit a discontinuous
jump at the critical point. Hence, investigation of γ(a1,a2,...)

may be used to verify a discontinuity in the inverse dielectric
constant, which is a necessary requirement for observing a
BKT transition.

APPENDIX C: THE FINITE-SIZE SCALING RELATION

The finite-size scaling relation of the BKT transition has
been used throughout this article to verify the universal jump in
ε−1

22 and to provide estimates for the critical coupling Q2
2,c. Here

some details to the curve fitting procedure and the goodness
of fit measure are presented.

1. Two free parameters

Least-squares curve fitting of the Monte Carlo results for
ε−1

22 to Eq. (33) may be performed with both ε−1
22 (∞) and C

as free parameters.28,30,72,73 If the transition is of the BKT
type, a good fit to Eq. (33) should be obtained at the critical
point. In addition, when ε−1

22 (∞) is free, no a priori assumption
on the value of the universal jump is made, thus a resulting
value of ε−1

22 (∞) that corresponds to the universal jump of
the BKT transition should be obtained. However, with two
free parameters, higher quality of the Monte Carlo statistics is
required to single out when they system is closely obeying the
behavior of Eq. (33).

We have employed the Marquardt-Levenberg algorithm
minimizing χ2 to the nonlinear fitting function in Eq. (33).
Specifically, χ2 is the sum of squared weighted residuals,

χ2 =
n∑

i=1

(
ε−1

22,Ni
− ε−1

22 (Ni)

σNi

)2

, (C1)

where n is the number of system sizes Ni , ε−1
22,Ni

is the

value of the inverse dielectric constant ε−1
22 obtained from

the Monte Carlo simulation at system size Ni , and σNi

is the corresponding error. For a good fit, we expect the
weight-normalized residuals, Yi = (ε−1

22,Ni
− ε−1

22 (Ni))/σNi
to

be Gaussian-distributed with mean μ(Yi) = 0 and variance
σ 2(Yi) = 1. Thus, to measure the goodness of the fit, we use
the Anderson-Darling test statistic A2 for the data set Yi to arise
from a normal distribution with μ(Yi) = 0 and σ 2(Yi) = 1:

A2 = −n − 1

n

n∑
i=1

(2i − 1){ln[�(Yi)] + ln[�(Yn+1−i)]},

(C2)

where �(Y ) is the standard normal cumulative distribution
function and where the data set Yi is ordered from low to high
values. A smaller value of A2 essentially means a better fit
between the data and the fit function.

To illustrate the method, Monte Carlo results for ε−1
22 at

14 different system sizes and the corresponding curve-fit
according to Eq. (33) are given in Fig. 13 for three different
values of Q2

2. Here η = 2 × 10−3 and Q1 = 0. Clearly, at
Q2

2 = 4.933, the fit between the data and the fit function is
better than for the two other cases. Moreover, in Fig. 14 the

Q2
2 = 5.049

Q2
2 = 4.933

Q2
2 = 4.850

N

− 1 2
2
( N

)

2000160012008004000

0.88

0.87

0.86

0.85

0.84

0.83

FIG. 13. (Color online) Plot of the size dependence in the inverse
dielectric constant ε−1

22 (N ) for 14 different system sizes in the range
20 � N � 2000 at three different values of the coupling Q2

2. The best
fit according to the fit function in Eq. (33) with two free parameters,
is given as the corresponding solid line in all three cases. The packing
fraction is η = 2 × 10−3 and Q1 = 0.

corresponding results for the goodness of fit parameter as well
as the results for the parameter ε−1

22 (∞) as a function of Q2
2

are shown. Indeed, the minimum in A2 indicates a critical
region where the data seem to follow the logarithmic finite
size scaling of ε−1

22 given in Eq. (33). Also note that this region
coincides with a value of Q2

2ε
−1
22 (∞) close to the universal

jump value of 4. With the minimum of A2 as a measure of
the critical point and with error estimates obtained by the
jackknife method, we find that Q2

2,c = 4.933 ± 0.012 and that
Q2

2,cε
−1
22 (∞) = 3.941 ± 0.023, less than 2% off the universal

number. The results in Figs. 5 and 6 are found by repeating
this procedure for different values of η and Q1.

Q2
2

−1
22 (∞)

A2

Q2
2

Q
2 2

− 1 2
2
(∞

)

A
2

4.2

4.1

4

3.9

3.8

3.7
5.0554.954.94.85

50

40

30

20

10

0

-10

FIG. 14. (Color online) Plot of the goodness of fit parameter A2

and the corresponding free parameter ε−1
2 (∞) obtained when curve

fitting to the critical finite-size relation given in Eq. (33). The results
are given as a function of Q2

2. System sizes N and η and Q1 are
the same as in Fig. 13. Error estimates are obtained by the jackknife
method.
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2. One free parameter

The procedure described in detail above with two free
parameters, may be performed with a fixed value of ε−1

22 (∞) =
4Q2

2,c and with C as the only free parameter. If the transition is
of the BKT type, a good fit to Eq. (33) should be obtained at the
critical point. This is a rather well-used method to determine
the critical point of a BKT transition.29,72,74,75 With only one
free parameter, Q2

2,c will be determined with greater accuracy
compared to the case when there are two free parameters.

3. Remarks

References 28 and 30 used χ2 as a goodness-of-fit parame-
ter. We also tried this, and the results for the critical coupling as
well as the corresponding parameter ε−1

22 (∞) were consistent

with A2 results within statistical uncertainty. However, we
found that error estimates were clearly underestimated with
χ2, probably due to overfitting.

The parameter C in the finite-size scaling relation [Eq. (33)]
is density dependent.76 Specifically, C increases when η

decreases. Hence, at the critical point, the finite-size scaling
slows down when η is lowered. Therefore, larger systems
N or better statistics are required to resolve the critical
scaling when η is small. In particular, curve fitting to
Eq. (33) was also performed for η = 5 × 10−5 in addition
to the densities presented in Figs. 5 and 6. However, in
this case the statistics were not good enough to resolve a
clear minimum in A2. Also note that there are higher-order
corrections76 to Eq. (33) that are not taken into account in this
work.
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46M. A. Moore and A. Pérez-Garrido, Phys. Rev. Lett. 82, 4078

(1999).
47P. A. McClarty and M. A. Moore, Phys. Rev. B 75, 172507

(2007).
48V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240, 312 (1984).
49G. Felder, Nucl. Phys. B 317, 215 (1989).
50S. D. Mathur, Nucl. Phys. B 369, 433 (1992).
51R. E. Hetzel, A. Sudbø, and D. A. Huse, Phys. Rev. Lett. 69, 518

(1992).
52S. Ryu and D. Stroud, Phys. Rev. B 57, 14476 (1998).
53P. Olsson and S. Teitel, Phys. Rev. B 67, 144514 (2003).
54S. Kragset, E. Babaev, and A. Sudbø, Phys. Rev. Lett. 97, 170403

(2006).
55E. Fradkin, B. A. Huberman, and S. H. Shenker, Phys. Rev. B 18,

4789 (1978).
56T. Chen and S. Teitel, Phys. Rev. B 55, 15197 (1997).
57A. F. Andreev and E. Bashkin, Sov. Phys. JETP 42, 164 (1975).

024520-14

http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1103/PhysRevB.83.075303
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevB.78.125323
http://dx.doi.org/10.1103/PhysRevLett.59.1776
http://dx.doi.org/10.1103/PhysRevLett.83.3530
http://dx.doi.org/10.1103/PhysRevLett.83.3530
http://dx.doi.org/10.1103/PhysRevLett.88.076801
http://dx.doi.org/10.1103/PhysRevLett.88.076801
http://dx.doi.org/10.1103/PhysRevLett.93.176809
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1103/PhysRevB.33.499
http://dx.doi.org/10.1063/1.471406
http://dx.doi.org/10.1063/1.471406
http://dx.doi.org/10.1103/PhysRevB.78.144510
http://dx.doi.org/10.1103/PhysRevB.78.144510
http://dx.doi.org/10.1103/PhysRevLett.101.255301
http://dx.doi.org/10.1103/PhysRevLett.101.255301
http://dx.doi.org/10.1103/PhysRevB.71.214509
http://dx.doi.org/10.1103/PhysRevB.71.214509
http://dx.doi.org/10.1103/PhysRevB.82.134511
http://dx.doi.org/10.1103/PhysRevB.82.134511
http://dx.doi.org/10.1103/PhysRevB.77.054512
http://dx.doi.org/10.1016/0375-9601(67)90906-1
http://dx.doi.org/10.1016/0375-9601(68)90451-9
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/PhysRevB.23.308
http://dx.doi.org/10.1103/PhysRevB.46.3247
http://dx.doi.org/10.1103/PhysRevB.55.522
http://dx.doi.org/10.1103/PhysRevB.55.2756
http://dx.doi.org/10.1103/PhysRevB.46.14598
http://dx.doi.org/10.1103/PhysRevB.52.4511
http://dx.doi.org/10.1016/0378-4371(82)90156-X
http://dx.doi.org/10.1007/BF01012609
http://dx.doi.org/10.1007/BF01012609
http://dx.doi.org/10.1103/PhysRevLett.50.2086
http://dx.doi.org/10.1103/PhysRevLett.73.480
http://dx.doi.org/10.1103/PhysRevLett.41.121
http://dx.doi.org/10.1103/PhysRevB.19.2457
http://dx.doi.org/10.1103/PhysRevB.19.1855
http://dx.doi.org/10.1103/PhysRevLett.74.4019
http://dx.doi.org/10.1103/PhysRevLett.74.4019
http://dx.doi.org/10.1103/PhysRevB.73.024113
http://dx.doi.org/10.1103/PhysRevE.78.041504
http://dx.doi.org/10.1103/PhysRevB.58.9677
http://dx.doi.org/10.1103/PhysRevB.48.374
http://dx.doi.org/10.1103/PhysRevB.55.3816
http://dx.doi.org/10.1103/PhysRevLett.82.4078
http://dx.doi.org/10.1103/PhysRevLett.82.4078
http://dx.doi.org/10.1103/PhysRevB.75.172507
http://dx.doi.org/10.1103/PhysRevB.75.172507
http://dx.doi.org/10.1016/0550-3213(84)90269-4
http://dx.doi.org/10.1016/0550-3213(89)90568-3
http://dx.doi.org/10.1016/0550-3213(92)90393-P
http://dx.doi.org/10.1103/PhysRevLett.69.518
http://dx.doi.org/10.1103/PhysRevLett.69.518
http://dx.doi.org/10.1103/PhysRevB.57.14476
http://dx.doi.org/10.1103/PhysRevB.67.144514
http://dx.doi.org/10.1103/PhysRevLett.97.170403
http://dx.doi.org/10.1103/PhysRevLett.97.170403
http://dx.doi.org/10.1103/PhysRevB.18.4789
http://dx.doi.org/10.1103/PhysRevB.18.4789
http://dx.doi.org/10.1103/PhysRevB.55.15197


SCREENING PROPERTIES AND PHASE TRANSITIONS IN . . . PHYSICAL REVIEW B 85, 024520 (2012)

58A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90, 100401
(2003).

59A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 92,
050402 (2004).

60J. W. Perram and S. W. de Leeuw, Physica A 109, 237 (1981).
61L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).
62A. C. Maggs and V. Rossetto, Phys. Rev. Lett. 88, 196402 (2002).
63J. M. Caillol and D. Levesque, J. Chem. Phys. 94, 597 (1991).
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