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Dispersions, weights, and widths of the single-particle spectral function in the
normal phase of a Fermi gas
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The dispersions, weights, and widths of the peaks of the single-particle spectral function in the presence of
pair correlations, for a Fermi gas with either attractive or repulsive short-range inter-particle interaction, are
determined in the normal phase over a wide range of wave vectors, with a twofold purpose. The first one is to
determine how these dispersions identify both an energy scale known as the pseudogap near the Fermi wave
vector as well as an additional energy scale related to the contact C at large wave vectors. The second one is
to differentiate the behaviors of the repulsive gas from the attractive one in terms of crossing versus avoided
crossing of the dispersions near the Fermi wave vector. An analogy will also be drawn between the occurrence
of the pseudogap physics in a Fermi gas subject to pair fluctuations and the persistence of local spin waves in the
normal phase of magnetic materials.
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I. INTRODUCTION

Local order of short-range nature in the normal phase of
an ultracold Fermi gas above the superfluid temperature Tc

has recently been the subject of intense interest, owing to
experimental and theoretical advances, which have hinged on
this local order from different perspectives.

The experimental interest1,2 has mostly focused on the issue
of the pseudogap �pg, which is a low-energy scale that in
these systems evolves in temperature with continuity out of
the pairing gap present in the broken-symmetry (superfluid)
phase.3 On physical grounds, this continuous evolution is due
to the persistence of “medium-range” pair correlations, which
are the remnant above Tc of the long-range order below Tc.

The theoretical interest has been prompted, on the other
hand, by the introduction of a number of universal relations due
to Tan,4,5 which are due to the interparticle interaction being of
the contact type and affect several physical quantities. These
universal relations all depend on a coupling- and temperature-
dependent quantity named the contact C, which can in turn be
conveniently expressed in terms of a high-energy scale �∞.6

The fact that C specifies, in particular, the strength of “short-
range” pair correlations between opposite spins implies that,
in ultimate analysis, the high-energy scale �∞ associated with
C and the low-energy scale �pg associated with the pseudogap
both originate from the same kind of pair correlations, which
remain active above Tc even in the absence of long-range order.

In this paper, we aim at organizing these two energy scales
into a single wave-vector-dependent function �(k), of which
�pg represents the value about the Fermi wave vector kF and
�∞ its behavior for k much larger than kF , corresponding
to medium- and short-range pair correlations, in the order.
In practice, from the numerical calculations, it is meaningful
to determine the values of �(k) just in these two intervals,
namely, for k ≈ kF (obtaining �pg) and k � kF (obtaining
�∞). This wave-vector dependence arises even though the
interparticle interaction is of the contact type, which at the
mean-field level below Tc would instead give rise to a wave-
vector independent gap.

To this end, we shall analyze in detail the dispersions of
the peaks of the single-particle spectral function for various

couplings across the BCS-Bose-Einstein condensation (BEC)
crossover and temperatures above Tc, and show how they can
rather accurately be represented by BCS-like dispersions with
a characteristic “back bending” for the occupied states.1,2

These dispersions will be obtained within the t-matrix
approximation for an attractive interparticle interaction
following the approach of Ref. 7, which was recently applied
to account for the experimental data on ultracold Fermi gases.8

In addition, we will show that the weights of the two peaks
of the single-particle spectral function can also be described
by BCS-like expressions. Determining these weights will
also be useful to obtain the asymptotic value of �(k) for
large k, where tracing the dispersions may become ill defined
owing to the strong broadening of the large-k structure of the
single-particle spectral function at negative frequencies.

The importance of determining the weights (besides than
merely focusing on the existence of the pseudogap) is in line
with the emphasis that was given from the early days of the
BCS theory of superconductivity to the role of the “coherence
factors.” Their presence, in fact, made the BCS theory soon
accepted as the correct one, because it was then possible to
account for the counterintuitive outcomes of different experi-
ments that could otherwise not be understood only on the basis
of the occurrence of a gap in the single-particle spectrum.9,10

The crossed check between the dispersions and weights of
the two branches of the single-particle spectral function will
therefore represent a fingerprint of the survival in the normal
phase of typical BCS-like features due to strong pairing fluc-
tuations. Differences, however, between the broken-symmetry
phase below Tc and the pseudogap phase above Tc will mostly
appear in the widths of the peaks of the single-particle spectral
function, which are much broader above than below Tc as
expected in the absence of a truly long-range order.

In this context, we shall also resume an argument that was
raised in Ref. 11, according to which the occurrence of the
above mentioned back-bending for k � kF should not reflect
per se the presence of a pseudogap for k about kF . This
is because the structure at large k, which is related to the
contact C, can be found even in a normal gas with repulsive
interparticle interaction.
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Accordingly, we shall argue that the main differences,
between the features of the single-particle spectral function
for a Fermi gas with repulsive or attractive interaction in the
normal phase, appear actually for k about kF . Specifically, an
avoided crossing results in the dispersions of the two peaks of
the single-particle spectral function in the attractive case, while
a crossing occurs in the repulsive case. In the attractive case,
the energy spread of the avoided crossing is directly related
to the pseudogap energy scale �pg. On physical grounds,
this difference between avoided crossing and crossing is a
consequence of particle-hole mixing, which survives at a local
level in the attractive case when passing from below to above
Tc but is absent in the repulsive case.

The overall purpose here, therefore, is not to establish
specific criteria for the existence of a pseudogap phase in
a Fermi gas with attractive interaction. Rather, we shall be
interested in framing the total amount of information, which
can be extracted from the single-particle spectral function of an
interacting Fermi gas subject to pairing fluctuations above Tc,
into a unified picture where analogies and differences with
respect to a simple BCS-like description below Tc can be
emphasized.

It is, nevertheless, relevant to provide at this point an (albeit
concise) overview of the major relevant work done previously
by several groups on the issue of the pseudogap, also to recall
how this concept had developed in the context of a Fermi gas
with attractive interaction. The prediction for the existence
of a pseudogap in the normal phase of strongly interacting
ultracold Fermions was introduced in Ref. 12 within a two-
channel fermion-boson model and in Ref. 13 within a single-
channel fermion model, before the observation of superfluidity
in these gases. These works were, in turn, based on earlier
studies that applied the physics of the BCS-BEC crossover to
the high-temperature cuprate superconductors. In that context,
initial work interpreted the normal state of a superfluid in
the crossover regime between BCS and BEC as a phase of
uncorrelated pairs14 or as a spin-gap phase.15 Later, it was
shown that this phase reflects a normal phase pseudogap, which
displays peculiar features in the fermionic spectral function
that reflect the presence of a pairing gap in the superfluid
phase.7,16 Extensive theoretical work on the pseudogap issue
for a Fermi gas with attractive interaction was reported more
recently in Refs. 17–22.

Finally, in the present paper, a similarity will be high-
lighted between the pseudogap physics resulting from pairing
fluctuations above Tc and the persistence of spin waves over
limited spatial regions in the normal phase of ferromagnetic (or
antiferromagnetic) materials. Besides being of heuristic value
for envisaging the local order associated with the pseudogap,
this analogy evidences how the current debate about the
occurrence of a pseudogap in an ultracold Fermi gas retraces a
similar debate that went on for some time about the persistence
of spin waves in magnetic materials.

The paper is organized as follows. In Sec. II, the dispersions,
weights, and widths of the peaks in the single-particle spectral
function for the attractive case are studied in detail, to
determine how the energy scale associated with the pseudogap
about kF evolves for large k toward the energy scale associated
with the contact C. In Sec. III, the single-particle spectral
function for the repulsive case is contrasted with that for

the attractive case, to bring out the issue of the crossing
versus avoided-crossing of the dispersion relations about kF ,
which clearly differentiates between the two cases. In Sec. IV,
an analogy is drawn between the pseudogap physics and
the persistence of spin waves in magnetic materials, and a
suggestion is made for an additional experimental evidence for
the occurrence of a pseudogap. The Appendix gives analytic
details about the treatment of pair fluctuations in the repulsive
case to obtain the single-particle spectral function over a wide
range of k.

II. THE ATTRACTIVE CASE: PSEUDOGAP
VERSUS CONTACT

In this section, we consider a homogeneous Fermi gas with
an attractive interaction v0δ(r − r′) of short range between
opposite spin atoms with equal populations, whose strength v0

can be eliminated in favor of the scattering length aF via the
relation

m

4 π aF

= 1

v0
+

∫ k0 dk
(2π )3

m

k2
. (1)

Here, m is the particle mass, k is a wave vector, and k0 is a
wave-vector cutoff that can be let → ∞ while v0 → 0 in order
to keep aF at a desired value (we set h̄ = 1 throughout).

Since v0 < 0, aF can be positive as well as negative,
and the dimensionless interaction parameter (kF aF )−1 ranges
from (kF aF )−1 � −1 in the weak-coupling (BCS) regime, to
(kF aF )−1 � +1 in the strong-coupling (BEC) regime, across
the unitary limit where |aF | diverges and (kF aF )−1 = 0. In
practice, the BCS-BEC crossover region of most interest is
limited to the interval −1 � (kF aF )−1 � +1.

In the superfluid phase, well below Tc, a description of the
BCS-BEC crossover results already at the mean-field level,
while in the normal phase above Tc, inclusion of pairing
fluctuations is required to get physically meaningful results.
Pairing fluctuations, in particular, turn the characteristic BCS
mean-field energy gap below Tc into a pseudogap above Tc, as
discussed next.

A. Mean-field description below Tc

The simplest description of the BCS-BEC crossover results
within mean field for temperatures T below Tc, by supple-
menting the equation for the BCS gap �,∫

dk
(2π )3

[
1 − 2f (Ek)

2Ek
− m

k2

]
= − m

4 π aF

, (2)

with the density equation

n =
∫

dk
(2π )3

{
f (Ek)

(
1 + ξk

Ek

)

+ [1 − f (Ek)](1 − ξk

Ek
)

}
. (3)

Here, Ek =
√

ξ 2
k + �2 with ξk = k2/(2m) − μ and f (E) =

[eE/(kBT ) + 1]−1 is the Fermi function (μ being the fermionic
chemical potential and kB the Boltzmann constant). Note that
the mean-field gap � does not depend on k = |k| owing to the
short-range nature of the interparticle interaction.
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FIG. 1. (Color online) Dispersion relations (left panels) and
corresponding weights (right panels) for three different couplings
as obtained at T = 0 within mean field (dashed-dotted lines) and at
Tc with the inclusion of pairing fluctuations (diamonds). Energies are
in units of EF .

When one looks at the structures of the single-particle
spectral function A(k,ω) within the BCS approximation, at
a given k, two sharp peaks appear centered at the frequency
values

ω = ±Ek (4)

with weights (1 ± ξk/Ek)/2, respectively.23

The dispersion relations (4) and the corresponding weights
are shown in Fig. 1 for three characteristic couplings across
the BCS-BEC crossover at zero temperature (dashed-dotted
lines). Here, EF = k2

F /(2m) is the Fermi energy with kF =
(3π2n)1/3.

B. Pairing fluctuations above Tc

The above picture gets somewhat modified when pairing
fluctuations beyond mean field are considered below Tc.24 It
is, however, above Tc that inclusion of pairing fluctuations
alters mostly the behavior of A(k,ω) from its trivial mean-field
description with � = 0, whereby only a single sharp peak of
unit weight survives consistently with a Fermi-liquid picture.9

In the context of the BCS-BEC crossover, a nontrivial
behavior of the spectral function (at and) above Tc results when
including pairing fluctuations within the t-matrix approxima-
tion. It is still possible to identify two peaks in A(k,ω) for
given k over an extended range of coupling and temperature,
by locating their positions and determining their weights and
widths. It is found that the positions of these peaks can be rather
well represented by a BCS-like dispersion of the form (4),
provided the mean-field � is replaced by a “pseudogap” value
�pg that remains finite above Tc. This finding was explicitly
demonstrated in Ref. 7 only for the dispersion relations not too
far from kF and on the BCS side of the crossover.

As an example, we report in Fig. 1 the dispersion relations
and weights of the two peaks of A(k,ω) at Tc for three

0

 0.2

 0.4

 0.6

 0.8

1

-2 -1.5 -1 -0.5 0  0.5 1  1.5 2

A
(k

,ω
)E

F

ω/EF

FIG. 2. (Color online) Single-particle spectral function A(k,ω) vs
ω at unitarity within mean field at T = 0 (dashed-dotted lines) and
with the inclusion of pairing fluctuations at Tc (full line), for the wave
vector where the maximum of the lower dispersion relation occurs in
both cases (see text).

couplings across the BCS-BEC crossover, obtained according
to the t-matrix approximation (diamonds).7 In all cases, the
similarity with the corresponding values obtained for these
quantities within mean field at T = 0 (dashed-dotted lines)
appears striking.

Marked differences appear instead for the widths of the
peaks of A(k,ω), when passing from the mean-field description
below Tc where they are deltalike, to the t-matrix description
(at and) above Tc where they are broad and overlapping.
This is shown in Fig. 2, where A(k,ω) is plotted versus ω at
unitarity for the wave vector where the maximum of the lower
dispersion relation occurs (that is, 0.76 kF within mean field
at T = 0 and 0.91 kF with the inclusion of pairing fluctuations
at Tc). This picture also evidences how a real gap at T = 0
transforms into a pseudogap at Tc, through a partial filling of
the spectral function in the region between the two peaks. In
the present paper, we shall dwell extensively on this and related
ideas.

The t-matrix approximation that we adopt in this paper to
obtain A(k,ω) above Tc corresponds to the following choice
of the fermionic self-energy:7

�(k,ωn) = −
∫

dq
(2π )3

kBT
∑

ν

	0(q,
ν)

× G0(q − k,
ν − ωn), (5)

where ωn = (2n + 1)πkBT (n integer) and 
ν = 2νπkBT (ν
integer) are fermionic and bosonic Matsubara frequencies,
in the order, G0(k,ωn) = (iωn − ξk)−1 is the bare fermionic
single-particle Green’s function, and 	0(q,
ν) is the particle-
particle ladder given by

−	0(q,
ν)−1 =
∫

dk
(2π )3

[
kBT

∑
n

G0(k,ωn)

× G0(q − k,
ν − ωn) − m

k2

]
+ m

4πaF

.

(6)
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The single-particle spectral function is then obtained
through analytic continuation iωn → ω + iη to the real fre-
quency axis (η = 0+):

A(k,ω) = − 1

π

Im�(k,ω)

[ω − ξk − Re�(k,ω)]2 + [Im�(k,ω)]2 .

(7)

The shape of A(k,ω) versus ω thus depends crucially on the
interplay between Re�(k,ω) and Im�(k,ω) for the chosen
value of k = |k|.

A derived quantity of interest is the single-particle density
of states:

N (ω) =
∫

dk
(2π )3

A(k,ω) . (8)

The averaging that this definition introduces on A(k,ω) over
an extended range of k can be of support to the presence of a
pseudogap, in cases when the two peaks of A(k,ω) strongly
overlap just in the range of k where the two branches of the
dispersion come close to each other (cf. Fig. 1). In these cases,
in fact, a strict definition of the pseudogap as a depression
of the spectral weight just in this range of k would lead one
to conclude that pseudogap phenomena were absent in the
single-particle excitations, while they still appear clearly over
a more extended range of k.

C. Inputs from experiments on ultracold Fermi atoms

The original motivation for looking at A(k,ω) has been
the issue of “preformed pairs” in high-temperature (cuprate)
superconductors, before the occurrence of the BCS-BEC
crossover was explicitly demonstrated with ultracold Fermi
atoms (cf., e.g., Ref. 25).

In this context, the interest in the detailed shape of A(k,ω)
above Tc across the BCS-BEC crossover has considerably
raised lately, after a new measurement technique was in-
troduced to probe directly the single-particle excitations of
a Fermi gas.1 Intensity maps were thus obtained for the
single-particle excitation spectra, relating the single-particle
energy to the wave vector. More recently, new measurements
performed over an extended temperature range above Tc

2

have revealed a BCS-like dispersion with a characteristic
“back-bending” close to kF , which identifies a pseudogap
energy scale and persists well above Tc.

This finding gives us motivations for extending the the-
oretical analysis of Ref. 7 for the dispersions of the peaks
of A(k,ω) across the unitary region, although the widths of
the peaks can increase considerably with respect to the BCS
side, reflecting the fact that quasiparticle excitations may be
poorly defined. Specifically, the combined experimental and
theoretical analysis of Ref. 8 suggests to concentrate our efforts
in the coupling range approximately between (kF aF )−1 = 0
and 0.4.

D. Emergence of the contact in A(k,ω)

Yet, it was pointed out11 that the persistence of the back-
bending for large k (�kF ) is dominated by interaction effects
that do not reflect the pseudogap close to kF . Rather, it
is connected with the universal k−4 tail of the wave-vector

distribution n(k) of a dilute Fermi gas, whose coefficient is
given by the Tan’s contact C.4,5

This property can be readily verified within the t-matrix
approximation that we use to obtain A(k,ω). When k2/(2m)
or |ωn| are much larger than the energy scales kBT and |μ|, in
fact, the self-energy (5) can be approximated by

�(k,ωn) � − 1
2 nf 	0(k,ωn) − �2

∞ G0(k, − ωn). (9)

Here,

nf = 2
∫

dk
(2π )3

nf (k) (10)

with

nf (k) = kBT
∑

n

eiωnη G0(k,ωn) (11)

is the free density associated with G0 for given μ, and

�2
∞ =

∫
dq

(2π )3
kBT

∑
ν

ei
νη 	0(q,
ν) (12)

is the square of the high-energy scale introduced in Ref. 6 that
was mentioned in the Introduction. The two terms on the right-
hand side of the approximate expression (9) originate from the
singularities in the complex frequency plane of the single-
particle Green’s function G0 and of the particle-particle ladder
	0, in the order, once the sum over the Matsubara frequency in
the expression (5) of the fermionic self-energy is transformed
into a contour integral.

Analytic continuation iωn → ω + iη to the real frequency
axis then results into the following approximate expression for
large k:

A(k,ω) �
(

1 − �2
∞

4 ξ 2
k

)
δ(ω − ξk) + �2

∞
4 ξ 2

k

δ(ω + ξk), (13)

which presents indeed a well-defined structure at the negative
frequency ω = −ξk. One obtains, correspondingly,

n(k) =
∫ +∞

−∞
dω f (ω) A(k,ω) � �2

∞
4 ξ 2

k

≈ (m �∞)2

k4
, (14)

yielding the relation C = (m �∞)2 between the contact C and
�∞, which will be extensively used below.

In practice, the structure of A(k,ω) for negative real
ω at large k is not deltalike but spreads over a sizable
frequency range. This difference from the approximate result
(13) stems from the noncommutativity between taking the
analytic continuation and performing the large-k expansion
of the self-energy, as recalled in the Appendix. Neverthe-
less, the actual structure of A(k,ω) for negative ω pre-
serves the same total area �2

∞/(4 ξ 2
k ) found above in the

expression (13).

E. Connecting the two energies �pg and �∞

With these premises, it seems natural to frame the low-
energy scale �pg and the high-energy scale �∞ into a unified
physical picture, in which they emerge from A(k,ω) in the
two distinct ranges of wave vectors k ≈ kF and k � kF ,
respectively. To this end, we shall extend to the unitary limit
and beyond the analysis that was limited in Ref. 7 to the
BCS side of the unitary region, by following the dispersions,
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weights, and widths of the peaks of A(k,ω) from k = 0,
through k ≈ kF , and up to k � kF , even in cases when these
peaks appear quite broad and overlapping.

On physical grounds, the evolution, from �pg when k ≈ kF

to �∞ when k � kF , is expected on the basis of a (local
in space and transient in time) order that is established by
pair fluctuations above Tc, in the absence of long-range order
(as described by mean field below Tc). This is in line with
the definition of the contact C (and thus of �∞) through the
short-range behavior of the pair-correlation function between
opposite spins,4 which corresponds to k � kF , while the
pseudogap �pg is expected to depend on pair correlations that
are established more extensively over medium range, which
corresponds to k ≈ kF .

As a consequence, we expect the “pseudogap physics” to be
associated with pair correlations which are built at intermediate
distances of the order of k−1

F , while the “contact physics” with
pair correlations that survive even at smaller distances (�k−1

F ).
Both quantities �pg and �∞ are thus affected by the same sort
of pair correlations in the particle-particle channel, to which
the t-matrix approximation that we adopt in this paper provides
an important contribution. This is because the particle-particle
ladder propagator [given by Eq. (6) in the attractive case and
by Eq. (A4) in the repulsive case] generalizes to a many-body
environment the two-body t-matrix, which describes two-body
binding and scattering of unbound particles at the same
time.

Within this approximation, (the square of) �∞ is defined
from Eq. (12) as a wave vector and frequency averaging of
the particle-particle ladder propagator. The wave vector and
frequency structures of the same propagator give also rise to
the pseudogap �pg, which then emerges as a characteristic
low-energy scale in the single-particle excitations.

Consistently with this physical picture of locally established
pair correlations, we expect �pg to survive above Tc over
a more limited temperature range than �∞, since thermal
fluctuations act first to destroy the order established over
intermediate distances. Our analysis about the characteristic
features of the spectral functions will accordingly be extended
over a meaningful temperature interval above Tc.

F. Working procedures

Working experience on the single-particle spectral function
suggests us to identify the low-energy scale �pg in the
range 0 � k � 2 kF , while the high-energy scale �∞ can be
extracted with sufficient accuracy already from the not too
extreme range 2 kF � k � 4 kF . In a more extreme range of k

(�4 kF ), in fact, it would become quite difficult to determine
A(k,ω) for large negative ω.

Owing to the shape of the ω-structures of A(k,ω) for given
k, different strategies need to be adopted in the above two
ranges of wave vectors. Namely, in the range 0 � k � 2 kF ,
the shape of the two peaks of A(k,ω) permits, in practice, to
both follow their dispersions for varying k and identify their
weights in terms of the total area they comprise. In the range
2 kF � k � 4 kF , on the other hand, the structure of A(k,ω)
at negative frequencies is so broad that only its total area can
be reasonably identified.

1. Range 0 � k � 2 kF

Let us first consider the range 0 � k � 2 kF . Here, the
dispersions that we are able to determine independently for
the two peaks at positive and negative frequencies are fitted,
respectively, by the BCS-like expressions:

ω(±)(k) = ±

√√√√(
k2

2m
− k2

L(±)

2m

)2

+ �2
pg(±), (15)

where a different pseudogap energy �pg is introduced for the
upper (+) and lower (−) branches. The fitting identifies, in
addition, the locations kL(+) for the “up bending” of the upper
branch and kL(−) for the “down bending” of the lower branch.26

The fittings are carried out by a χ2 analysis. We have found
that kL(+) is consistently smaller than kL(−) in all situations we
have examined.

Because the peaks at negative and positive frequencies are,
in general, broad and partially overlapping with each other, we
have chosen to determine operatively their weights at a given k

by integrating A(k,ω) from −∞ up to ω = 0 and from ω = 0
up to +∞, in the order. We then fit these values obtained for
several k by the BCS-like expressions:

v(k)2 = 1

2

⎡
⎣1 −

k2

2m
− μeff√(

k2

2m
− μeff

)2 + �2
pg(−)

⎤
⎦ (16)

for the lower branch at negative frequencies, and

u(k)2 = 1

2

⎡
⎣1 +

k2

2m
− μeff√(

k2

2m
− μeff

)2 + �2
pg(+)

⎤
⎦ (17)

for the upper branch at positive frequencies. Here, �pg(±) are
the pseudogap energies already determined from the fitting
(15) to the dispersions, and μeff is a new parameter common
to the two branches, which is determined from the position
where the weights cross. We shall find that the value of√

2mμeff is intermediate between kL(+) and kL(−) obtained
from the dispersions (15) of the two branches, consistently
with enforcing a common value μeff in Eqs. (16) and (17).

Note that the expressions (16) and (17) do not require a
priori the sum u(k)2 + v(k)2 to be unity, as it would be the
case for the coherence factors in a strict BCS description.
Deviations of the sum of the expressions (16) and (17) from
unity can thus be taken as a test for the validity of the effective
BCS description that we are attempting to establish in the
normal phase close to Tc.

Concerning, finally, the widths of the peaks of A(k,ω), they
will be conventionally determined as the full widths at half
maximum. Whenever necessary, however, these values will be
compared with the numerical values obtained alternatively by
a two-Lorentzian fit to the peaks of A(k,ω), a procedure which
is of course more reliable the more these peaks are separated
in frequency.

The BCS-like expressions (15), (16), and (17) are meant
to test the persistence of a BCS-like description in the normal
phase of a Fermi gas with an attractive pairing interaction. In
addition, the presence in Eq. (15) of the “Luttinger wave vec-
tors” kL(±) highlights the persistence of an underlying Fermi
surface for the single-particle excitations, which represents the
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last remnant of what would be a Fermi-liquid description of
the Fermi gas if attractive pairing interactions above Tc would
not be considered.8 Nevertheless, the large widths associated
with the peaks of A(k,ω) represent per se an evidence that
a Fermi-liquid description above Tc does not apply in the
presence of pairing fluctuations.

2. Range 2 kF � k � 4 kF

In this range, the structure at negative frequencies in
A(k,ω) becomes so spread and broad that it is meaningless
to determine its dispersion numerically and then try to fit it
by an expression similar to Eq. (15). In this case, however, it
remains meaningful to determine the total area of the broad
structure at negative ω over a chosen mesh of k and then make
a χ2 fit to these values through the following expression, which
is inspired by Eq. (13):

v(k)2
large = �2

large

4
(

k2

2m
− μlarge

)2 , (18)

where �large and μlarge are fitting parameters to be determined
in this range of “large” k.

In practice, it is convenient to set μlarge at the corresponding
value of the thermodynamic chemical potential μ from the
outset (thus leaving �large as the only fitting parameter). This
is because in the coupling range of interest μlarge is small
enough that it becomes meaningless to extract it from the
denominator of Eq. (18) where k2/(2m) dominates in this range
of k.

We will check whether the value of �large determined in this
way coincides with the value of �∞ obtained independently
by the expression (12), and how it differs from the value �pg(−)

of the pseudogap obtained above near the region of the back
bending of the lower branch.

G. Results for dispersions, weights, and widths

We pass to determine the quantities of interest according to
the procedures outlined above. We shall specifically consider
the two coupling values (kF aF )−1 = 0 and 0.25 as representa-
tives of the coupling range where pseudogap phenomena are
expected to be maximal. Two representative temperatures will
also be considered for each coupling.

Figure 3 shows the dispersion relations and weights of the
two peaks of A(k,ω) at Tc when (kF aF )−1 = 0 in the range
0 � k � 2 kF , as obtained from the numerical calculation
based on Eq. (7) and from the fits obtained according to
Eqs. (15)–(17). In this case, the fitting parameters are kL(−) =
0.78 kF and �pg(−) = 0.83EF for the lower branch and
kL(+) = 0.62 kF and �pg(+) = 0.74EF for the upper branch
while μeff = 0.41EF is quite close to the corresponding value
of the thermodynamic potential μ = 0.365EF obtained within
the t-matrix approximation. (The results of the numerical
calculations have already been reported in the central panels
of Fig. 1, although with the different purpose of comparing
them with the mean-field description at T = 0.)

In this case, the BCS-like fits are excellent for the
dispersions and quite good for the weights, especially near
the value k = 0.64 kF where the weights exchange with one
another. Note also that, while the numerical values of the
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FIG. 3. (Color online) Dispersions (upper panel) and corre-
sponding weights (lower panel) at unitarity and T = Tc. Circles
(squares) and full (dashed) lines represent the results of the numerical
calculation and of the BCS-like fits for the lower (upper) branch at
negative and positive frequencies, respectively. Energies are in units
of EF .

weights for each value of k are specular to each other about one
half, the fitted values are not always so indicating deviations
from their sum being unity.

This success of a BCS-like interpretation for the dispersions
and weights of the peaks should be complemented by the
further information about their widths. This is done in Fig. 4,
where in the upper panel, the shape of A(k,ω) at Tc and
(kF aF )−1 = 0 is shown explicitly for several wave vectors,
while in the lower panel, the corresponding widths of the
peaks at negative and positive frequencies are reported over a
wider set of wave vectors.

In all cases, the widths are rather large (being comparable to
EF ) and show strong deviations from what would be expected
for a Fermi-liquid picture, according to which they should
acquire a minimum value at about kF . These deviations from
a Fermi-liquid picture are of course expected for a Fermi gas
with attractive interaction, taking further into account that at
unitarity the value of Tc is a considerable fraction of the Fermi
temperature TF , whereas a Fermi-liquid description holds only
for T � TF .27

The above analysis of pseudogap phenomena around kF is
expected to remain meaningful for temperatures larger than
Tc, but not exceeding the pair-breaking temperature scale T ∗
where a “preformed-pair scenario” is bound to fade away.
In particular, at unitarity, the value of T ∗ (as estimated
by the mean-field critical temperature) is about twice the
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FIG. 4. (Color online) Unitarity limit and T = Tc.
Upper panel: A(k,ω) vs ω for the wave vectors
k = (0.6,0.7,0.8,0.9,1.0,1.1,1.2) kF corresponding to the peaks at
negative frequency from top to bottom (here full and dashed lines
alternate to help the analysis of the figure). Lower panel: Widths (in
units of EF ) of the peaks at negative (circles) and positive (squares)
frequencies.

value of Tc given by the t-matrix approximation we are
considering.13,28 As a representative case of a temperature
above Tc, Fig. 5 shows the dispersions and weights obtained
from A(k,ω) at unitarity and T = 1.2 Tc. The fitting param-
eters are now kL(−) = 0.99 kF and �pg(−) = 0.48EF for the
lower branch and kL(+) = 0.69 kF and �pg(+) = 0.62EF for
the upper branch while μeff = 0.48EF (to be compared with
the thermodynamic value μ = 0.39EF ).

Note that in this case, the analysis of the dispersion of
the lower branch had to be interrupted over a non-negligible
interval of k about kF , because in this interval, the structure of
A(k,ω) at negative frequencies is almost completely masked by
the stronger structure at positive frequencies. This represents
a signal that pseudogap phenomena are beginning to fade
away at this temperature. We have nevertheless performed
a BCS-like fit to the part of the dispersion that can still be
clearly identified, as shown by the full curve in the upper
panel of Fig. 5. By our procedure, no problem instead arises
in identifying the corresponding weights reported in the lower
panel of Fig. 5, which follow again a BCS-like dispersion
although with less accuracy than those shown at Tc in Fig. 3.
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FIG. 5. (Color online) Dispersions (upper panel) and weights
(lower panel) at unitarity and T = 1.2 Tc. Conventions are as in Fig. 3.

The corresponding shapes of A(k,ω) vs ω for a chosen
set of k across kF are shown explicitly in the upper panel
of Fig. 6, from which one can appreciate the phenomenon
mentioned above, when the structure of A(k,ω) for the lower
branch becomes a shoulder attached to the structure of the
upper branch. The corresponding broadenings of these two
structures are reported in the lower panel of Fig. 6, which
reinforces our conclusion about the non-Fermi-liquid nature
of the system.

A question naturally arises, about whether or not these
profiles of A(k,ω) still allow one to identify the presence of a
pseudogap in the crucial range of wave vectors about kF . As
the upper panel of Fig. 5 shows, in fact, an overall BCS-like fit
to the lower branch can be attempted even in this case, because
the two structures of A(k,ω) remain distinct from each other
away from kF .

The relevance of this restricted interval about kF can be
strongly reduced by averaging the profiles of A(k,ω) over all
wave vectors, in the way it is done in the definition (8) of the
single-particle density of states N (ω). Figure 7 shows a plot of
N (ω) vs ω at unitarity for several temperatures at and above
Tc.29 For increasing T , the depression of N (ω) near ω = 0
well survives for T = 1.2 Tc at which the dispersion of the
lower branch near kF in Fig. 5 had to be interrupted, and
progressively disappears for temperatures somewhat below
the pair-breaking temperature scale T ∗. That the depression
of density of states survives at temperatures higher than the
crossover temperature where the pseudogap features disappear
in the spectral function was previously discussed in Refs. 16
and 18. At about T ∗, N (ω) for ω = 0 coincides (within a few
percent) with its noninteracting value evaluated at the same
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FIG. 6. (Color online) Unitarity limit and T = 1.2 Tc. Upper
panel: A(k,ω) vs ω for the same wave vectors as in the upper panel of
Fig. 4. Lower panel: widths (in units of EF ) of the peaks at negative
(circles) and positive (squares) frequencies.

temperature and chemical potential, indicating that all effects
of pairing have faded away at ω = 0 (although they will persist
at higher temperatures for ω � −EF , indicating the survival
of the “contact” even at quite high temperatures30). The density
of states obtained within mean field at zero temperature is also
reported for comparison in Fig. 7, and shows two sharp peaks
located at ±� with � = 0.69 EF .

It is important to extend the above analysis past the
unitarity limit to the BEC side of the crossover (but still
before the pseudogap turns into a real gap associated with
the binding energy of the composite bosons that form in the
BEC limit). To this end, Fig. 8 shows the dispersions and
weights at Tc for the coupling (kF aF )−1 = 0.25, together with
the corresponding BCS-like fits where now kL(−) = 0.77 kF

and �pg(−) = 1.09EF for the lower branch and kL(+) =
0.28 kF and �pg(+) = 0.91EF for the upper branch while
μeff = 0.09EF (which in this case almost coincides with the
thermodynamic value). Compared with Fig. 3, the dispersions
have now become quite flat in the range 0 < k � kF , while
the two weights cross at smaller value of k. At even stronger
couplings, the lower dispersion bends down and the upper
dispersion bends up already at k = 0 while the weights always
remain well separated from each other for all k [as it is shown
in the lower panels of Fig. 1 for the coupling (kF aF )−1 =
1.0].

For completeness, Fig. 9 shows the corresponding shapes
of A(k,ω) across kF (upper panel) as well as the broadenings
of two structures of A(k,ω) (lower panel).
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FIG. 7. (Color online) Density of states per spin component vs
ω calculated at unitarity within the t-matrix approximation for the
temperatures: T = Tc (full line), T = 1.2 Tc (long-dashed line), T =
1.4 Tc (short-dashed line), and T = 1.65 Tc (dot-dashed line). In the
present case, T ∗ ≈ 2 Tc. The dotted line shows the corresponding
mean-field result when T = 0. The noninteracting value mkF /(2π 2)
of N (ω = 0) at T = 0 is used for normalization.

When the coupling increases toward the BEC regime, the
pair-breaking temperature T ∗ increases more markedly than
Tc

13,28 and pairing fluctuations are accordingly expected to
affect A(k,ω) over a progressively wider temperature range
above Tc. We then report in Fig. 10 the dispersions and widths
of the two branches of A(k,ω) for the coupling (kF aF )−1 =
0.25 and the higher temperature T = 1.4 Tc. Again, a signal
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FIG. 8. (Color online) Dispersions (upper panel) and weights
(lower panel) at T = Tc for the coupling (kF aF )−1 = 0.25. Conven-
tions are as in Fig. 3.
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FIG. 9. (Color online) Coupling (kF aF )−1 = 0.25 and T = Tc.
Upper panel: A(k,ω) vs ω for the same wave vectors as in the upper
panel of Fig. 4. Lower panel: widths (in units of EF ) of the peaks at
negative (circles) and positive (squares) frequencies.

that the pseudogap is beginning to fade away emerges from
the analysis of the dispersion for the lower branch, which
has to be interrupted about kF . The fitting parameters are
now kL(−) = 1.03 kF and �pg(−) = 0.60EF for the lower
branch and kL(+) = 0.25 kF and �pg(+) = 0.86EF for the
upper branch while μeff = 0.09EF (to be compared with
the thermodynamic value μ = 0.14EF ). The corresponding
shapes of A(k,ω) across kF and the broadenings of two
structures of A(k,ω) are shown, respectively, in the upper and
lower panels of Fig. 11.

Beginning with Fig. 2, we have often emphasized that
one of the major characteristics of the two structures of
A(k,ω) (at and) above Tc is their substantial broadening, which
may hinder in practice a straightforward identification of the
pseudogap about kF in cases when these structures strongly
overlap with each other. In these cases, however, one may
resort to a two-Lorentzian fit of the two structures of A(k,ω),
which helps separating them. This is shown in Fig. 12, where
the dashed lines represent the two Lorentzians. For instance,
by this type of fit, our previous estimates for the weight (0.29)
and width (0.93EF ) of the structure of A(k,ω) at k = 0.9 kF

corresponding to the lower branch are replaced by 0.28 and
0.77EF , in the order. Comparable deviations are obtained in
the other cases. These results thus confirm the validity of our
previous analysis where the weights and widths were extracted
from A(k,ω) in a simpler fashion.

The numerical values of the dispersions, weights, and
widths that were reported in the previous figures were all
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FIG. 10. (Color online) Dispersions (upper panel) and weights
(lower panel) at T = 1.4 Tc for the coupling (kF aF )−1 = 0.25.
Conventions are as in Fig. 3.

obtained from the detailed profiles of the single-particle
spectral function A(k,ω), which were also shown in the same
figures. It may also be of use, however, to organize the spectra
of A(k,ω) for a range of k and ω into a single intensity plot.
This is done in Fig. 13(a) for the same set of temperatures
and couplings considered in the previous figures. Similar
intensity plots were presented in Refs. 18 and 19. Note that the
logarithmic scale, used here like in the experimental works,1,2

makes the back-bending more evident when compared with
the intensity plots presented in Refs. 18 and 19. For the sake of
comparison with those references, we also report in Fig. 13(b)
the same intensity plots in a linear scale.

Thus far we have concentrated our attention to the range
0 � k � 2 kF where the pseudogap physics manifests itself.
We pass now to discuss the more asymptotic range 2 kF �
k � 4 kF where the contact physics emerges. To this end, we
adopt the procedure outlined in Sec. II F and determine the
parameter �large from the expression (18) with μlarge fixed at
the corresponding value of the chemical potential.

Figure 14 shows the weights of the structure of A(k,ω)
at negative ω for the values of coupling and temperature
considered so far, as determined numerically (circles) over
a mesh of values of k in the range 2 kF � k � 4 kF and then
fitted (full lines) in terms of the expression (18).

These fits are also compared with an expression of the
form (18), where now the low-energy scale �pg(−) that was
previously determined in the range 0 � k � 2 kF replaces
�large (dashed lines). The appreciable deviations from the
numerical values of the weights that result show that the high-
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FIG. 11. (Color online) Coupling (kF aF )−1 = 0.25 and T =
1.4 Tc. Upper panel: A(k,ω) vs ω for the same wave vectors as in
the upper panel of Fig. 4. Lower panel: widths (in units of EF ) of the
peaks at negative (circles) and positive (squares) frequencies.

energy scale �∞ can be distinguished from the low-energy
scale �pg(−) by inspecting the shape of A(k,ω) in different
ranges of k. Note in particular that, as soon as the temperature
is increased above Tc, �pg(−) becomes rapidly smaller than
�∞. This is consistent with our expectation that �∞, being
associated with local pair correlations of shorter range with
respect to �pg, survives at higher temperatures.

A direct comparison of the temperature dependence of
�large and �pg(−) is shown in Fig. 15 for the two couplings
previously considered. Here, squares represent the values of
�large obtained from the fittings reported in Fig. 14, circles are
the values of �∞ obtained independently from the expression
(12), and triangles are the values of �pg(−) determined from
the fittings (15) to the dispersions.

It is evident from this figure that �pg(−) is a much faster
decreasing function of temperature than �∞, which reflects the
slow decay of the contact C at high temperature.30 Note also
that some discrepancy arises between the values of �large and
�∞ at increasing temperature. This is due to the fact that for
increasing temperature, the interval of k from which �∞ can
confidently be extracted should be centered progressively at a
larger value of k, while in Fig. 15 we have kept it at 2 kF � k �
4 kF for all temperatures. In any case, the difference between
�large and �∞ is significantly smaller than that between �∞
and �pg(−). Note finally that at unitarity, �pg(−) and �∞
almost coincide with each other close to Tc. In this case, a
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FIG. 12. (Color online) Two-Lorentzian fits (dashed lines) of
A(k,ω) vs ω (full lines) at unitarity and T = Tc, when k/kF =
(0.6,0.9,1.2) from top to bottom.

single value can be effectively associated with the two energy
scales.

However, the two energy scales soon deviate from each
other not only for increasing temperature above Tc, but also
away from unitarity on the two sides of the crossover. For
instance, in the BCS regime, �∞ = 2π |aF |n/m for T �
(ma2

F )−1 while the pseudogap is exponentially small in the
coupling parameter (kF aF )−1. In the BEC regime, on the other
hand, �∞ =

√
4πn/(m2aF ) for T � (ma2

F )−1 while in this
case, the “real” gap in the single-particle excitations is equal
half the value of the binding energy (ma2

F )−1 of a composite
boson.6

It should be mentioned in this context that, by the alternative
t-matrix approach of Ref. 19, a trace of the pair-fluctuation
propagator [quite similar to Eq. (12) for �2

∞] was interpreted
as representing (the square of) a pseudogap energy for all
couplings and temperatures above Tc, thus making in practice
the high-energy scale �∞ and the low-energy pseudogap �pg

to coincide with each other. This marks a difference between
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(b)

(a)

FIG. 13. (Color online) Intensity plots for the single-particle
spectral function at given temperature and coupling, in (a) logarithmic
and (b) linear scale. The thin white line identifies the dispersion of
the lower branch as determined in the previous figures.

the approach of Ref. 19 and the present one, which keeps
instead the two energy scales �∞ and �pg distinct from each
other.

III. THE REPULSIVE CASE: CROSSING VERSUS
AVOIDED CROSSING

We pass now to consider the occurrence of the two energy
scales �pg and �∞ from a different perspective, which
emphasizes the differences one finds near kF for the two
branches ω(±)(k) when considering a Fermi gas with attractive
or repulsive interparticle interaction. These differences are
related to the presence near kF of a finite or vanishing value
of �pg, while the behavior of ω(±)(k) for k � kF , which is
related to �∞, remains essentially the same in the two cases.

Accordingly, we shall contrast the behavior near kF that
will result from the single-particle spectral function A(k,ω) for
the repulsive case, with that identified already in the previous
section for the attractive case. In this way, we shall significantly
extend the discussion given in Ref. 11 on A(k,ω) for the
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FIG. 14. (Color online) Weights of A(k,ω) at negative ω (circles)
are fitted according to the expression discussed in Sec. II F (full lines)
for different couplings and temperatures. Dashed lines correspond to
what would be obtained by using in that expression the numerical
values of the low-energy scale �pg(−).

repulsive case that was there considered only for large values,
k � kF .

A. Specular comparisons

To make a meaningful comparison, we consider the
attractive case with aF < 0 and the repulsive case with aF > 0
for the same value (kF |aF |)−1 of the dimensionless coupling.
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FIG. 15. (Color online) Temperature dependence of �large

(squares), �∞ (circles), and �pg(−) (triangles) in units of EF for the
couplings (kF aF )−1 = 0 (upper panel) and (kF aF )−1 = 0.25 (lower
panel).

024517-11



F. PALESTINI, A. PERALI, P. PIERI, AND G. C. STRINATI PHYSICAL REVIEW B 85, 024517 (2012)

In the Appendix, we provide the necessary analytic details for
the less familiar repulsive case, at the level of the t-matrix
approximation that we use in the numerical calculations.

As we have already discussed, one can not only determine
the dispersions of the two peaks of A(k,ω) but also keep track
of their weights. In the attractive case considered in Sec. II,
this combined information has resulted in the phenomenon
of avoided crossing that typically occurs when two quantum
levels with the same symmetry evolve as a function of a
parameter.31 In this case, pairing fluctuations induce above Tc

the same kind of particle-hole mixing, which is characteristic
of the BCS theory below Tc.9 This mixing, in turn, makes the
two branches of A(k,ω) to share the same symmetry (being
partially particle-like and, partially, hole-like), in such a way
that no crossing of the two dispersions occurs (the region of
their minimum approach being, by definition, associated with
the pseudogap).

The phenomenon of avoided crossing has to be contrasted
with what happens instead in a Fermi liquid, a system where
particle and hole excitations do not mix. In this case, the two
branches of A(k,ω) are expected to cross each other at kF ,
where they abruptly exchange their weights in a similar fashion
to what occurs typically for a crossing.31

As emphasized in Ref. 11, when k � kF , the occurrence
of two branches in A(k,ω) in the place of a single one,
even for a Fermi liquid, stems from the requirement that for
k � kF , the wave-vector distribution n(k) at zero temperature
has a tail ∝ C/k4, in accordance with Tan’s argument.4,5

However, the branch at negative ω has an extremely small
(albeit nonvanishing) weight, as we shall explicitly verify for
a Fermi gas with a short-range repulsion.

B. Working procedures

It is discussed in the Appendix that an appropriate choice of
the parameters k0/kF , (kF aF )−1, and mkF v0 entering Eq. (1)
has to be made for the repulsive case. In particular, when
exploring the region k � kF in order to extract the quantity
�∞, the values of k should not be smaller than, say, 4 kF

(a value consistent with the plots reported in Fig. 3 of
the second of Ref. 30, where the contact C was calculated
numerically within the t-matrix approximation). If we choose
mkF v0 not larger than ten for speeding up the summations
over the Matsubara frequencies, from Eq. (A1), we obtain
(kF aF )−1 � 4.4 to be an optimal value of the coupling to
the purpose. These values for the parameters have also been
used in Fig. 21 of the Appendix, where the area of the peak
of A(k,ω) at negative energies yields the value �∞/EF =
0.1102. As expected in this rather extreme weak-coupling
regime, a corresponding calculation made for the attractive
case with coupling (kF aF )−1 = −4.4 yields the comparable
value �∞/EF = 0.0860 [cf. Eq. (A14)].

On the other hand, when exploring the region k ≈ kF to
focus on the issue raised above about “crossing versus avoided
crossing,” in the repulsive case, the coupling (kF aF )−1 should
not exceed, say, the value 1.5. Otherwise, in the corresponding
calculation for the attractive case, it would be extremely
difficult to detect numerically the occurrence of an avoided
crossing when (kF aF )−1 becomes smaller than −1.5. When

(kF aF )−1 = 1.5, the value of mkF v0 has to be pushed up to 20
to get k0/kF (= 1.37) larger than kF as required.

C. Results for dispersions, weights, and widths

Figure 16 compares dispersions, weights, and widths of
the two structures of A(k,ω) close to kF , as obtained in the
repulsive case with (kF aF )−1 = 1.5 and T = 0 (left panels)
and in the attractive case with (kF aF )−1 = −1.5 and T =
Tc = 0.0576 TF (right panels). This comparison highlights
and contrasts the essential characteristics found in A(k,ω)
for a Fermi liquid with no pseudogap (left panels) and for
a non-Fermi liquid with a pseudogap (right panels), at the
corresponding values of (kF |aF |)−1. Note in particular that

(i) the crossing at kF of the dispersions of the two structures
of A(k,ω) in the repulsive case (left-upper panel) contrasts with
the avoided crossing in the attractive case (right-upper panel),
whereby the two branches exchange their role and remain
separated by the amount 2�pg (in the present case, the wave
vector kL at which the avoided crossing occurs between the
two branches in the attractive case is quite close to kF ).

(ii) The behavior of the spectral weights associated with the
two structures of A(k,ω) (for ω < 0 and ω > 0, respectively)
shows an abrupt exchange at kF in the repulsive case (left-
middle panel), which is typical of a level crossing, while a
smooth evolution over a spread δk such that δk2/(2m) ≈ �pg

results in the attractive case (the size of δk is represented
by a double arrow in the right-middle panel). (In the present
case, �pg/EF = 0.012.) We have further verified that the
size of the abrupt jump Z(�0.89) of the weight at kF in
the repulsive case coincides (within 5%) with the value
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FIG. 16. (Color online) Dispersions, weights, and widths ex-
tracted from the two features of A(k,ω) near kF for a Fermi
system with (kF aF )−1 = 1.5, mkF v0 = 20, k0 = 1.37kF , and T = 0
(left panels), and (kF aF )−1 = −1.5 and T = Tc = 0.0576 TF (right
panels). Energies are in units of EF . Full (dashed) lines correspond to
the structure of A(k,ω) at ω < 0 (ω > 0). The meaning of the double
arrow is explained in the text.
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obtained from Fermi liquid theory,27 which is related to the
(retarded) self-energy according to the expression Z−1 =
1 − {∂Re[�(k,ω)]/∂ω}k=kF ,ω=0.

(iii) The large differences between the widths of the two
structures of A(k,ω) in the repulsive case that persist across
kF (left-lower panel) strongly deviate from the attractive case
(right-lower panel), where the widths of the two branches
reflect into each other at kF .

It should be remarked that the coupling (kF aF )−1 = −1.5,
we have used to obtain the right panels of Fig. 16, is somewhat
extreme, because very close to kF , the sum of the widths
of the two peaks of A(k,ω) exceeds their separation and the
two peaks merge in a single one. To continue discerning
two separate peaks in this narrow range of wave vectors
near kF (specifically, from k � 0.95kF up to k � 1.5kF ), a
two-Lorentzian fit to the single broad peak is required.

An example of this fit is shown at kF in the upper panel of
Fig. 17, where the peak at higher energy (short-dashed line) has
larger weight than the peak at lower energy (long-dashed line)
since kF > kL (consistently with the right panels of Fig. 16).
Typical values of the χ2 fit to isolate the two Lorentzians do
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FIG. 17. (Color online) Upper panel: two-Lorentzian fit (short-
and long-dashed lines) of the single broad feature of A(k = kF ,ω)
(full line) in the attractive case with (kF aF )−1 = −1.5 and T = Tc.
Lower panel: density of states vs ω for an attractive Fermi gas at T =
Tc with (kF aF )−1 = −1.5 (dashed line), and for a repulsive Fermi gas
at T = 0 with (kF aF )−1 = 1.5 (full line). The values of v0 and k0 are
the same of Fig. 16. The dotted line shows the result for a free Fermi
gas.

not exceed 10−5. It is through this kind of fit that we were able
to identify the value of the pseudogap �pg reported above,
even in this rather extreme situation.

Although in the attractive case near kF the two peaks of
A(k,ω) merge apparently into a single one as a consequence
of their broadening, the single-particle density of states N (ω)
given by Eq. (8) still maintains a well pronounced feature about
ω = 0 due to the underlying pseudogap. This is evidenced
by the dip occurring in the dashed line of the lower panel
of Fig. 17 corresponding to the attractive case, whose width
is about 0.1EF . By contrast, the dip is absent in the full
line in the lower panel of Fig. 17, which corresponds to the
repulsive case and reproduces near ω = 0 the free-fermion
result per spin component (dotted line) whereby A(k,ω) =
δ(ω − ξk).

The identification of the pseudogap is more direct when
considering values less extreme than (kF aF )−1 = −1.5 for the
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FIG. 18. (Color online) Dispersions, weights, and widths at T =
Tc extracted from the two peaks of A(k,ω) about kL/kF = 0.997 ±
0.001 in the attractive case with (kF aF )−1 = −0.8. Energies are in
units of EF . The inset shows the profiles of A(k,ω) vs ω for three
wave vectors k/kF = (0.980,0.992,1.004) that correspond to dashed,
full, and dotted lines, in the order.
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attractive coupling, for which two distinct peaks in A(k,ω)
can be distinguished even near kL. This is shown in Fig. 18
near kF for the coupling (kF aF )−1 = −0.8 still on the BCS
side of the crossover, for which we get �pg/EF = 0.127 ±
0.005. As already mentioned, even when the two peaks can be
clearly distinguished in the region of the avoided crossing, a
two-Lorentzian fit improves the accuracy of the determination
of the dispersions, weights, and widths associated with these
peaks. Note from Fig. 18 that, already at this less extreme
coupling, moderate deviations from a simple BCS form arise
in the dispersions and weights.

IV. CONCLUDING REMARKS

In this paper, we have focused a great deal of our attention
on the “pseudogap physics,” which results near kF from the
effects of attractive pairing fluctuations above Tc. From a
careful analysis of the single-particle spectral function A(k,ω),
we have identified the essential characteristics of A(k,ω)
that can meaningfully be transposed above Tc starting from
a mean-field description below Tc, even in situations when
the interparticle coupling is quite strong. Accordingly, the
occurrence of a pseudogap has enabled us to carry over above
Tc in an approximate way concepts and results that are firmly
established below Tc, where a truly long-range order extends
over the entire system.

We have further contrasted the occurrence of the pseudogap
near kF , which produces a characteristic back bending of
the dispersion relation associated with the peak of A(k,ω) at
negative ω, with the eventual evolution of this peak for k � kF .
Along these lines, we have regarded the pseudogap energy
�pg as being associated with pair correlations established
in the system over intermediate distances of the order of
the interparticle spacing k−1

F , while the contact physics for
k � kF results from pair correlations of shorter range. We
have thus shown that attractive and repulsive pair correlations
have similar effects for k � kF but yield drastically different
results near kF .

To appreciate intuitively on physical grounds the oc-
currence of pseudogap phenomena established by attractive
pairing fluctuations above the critical temperature Tc of the
superfluid transition, it may be useful to draw an analogy
with the occurrence of damped spin waves, which are present
in ferromagnetic materials above the Curie temperature TC

when a strict long-range order is absent. As it is often
the case when dealing with phase transitions, examples
from magnetic transitions may help one envisaging related
phenomena occurring in different kinds of transitions.

In the case of a ferromagnet, what is lost above TC is the
long-range order, which organizes the spins over the whole
sample. Yet, the spins can remain organized over moderate
distances, so that spin-wave excitations may still propagate
over these distances. The lack of full long-range order
manifests itself in the damping of these “local” spin waves,
which broadens their frequency spectrum. Experimentally, it
has been long known since the work of Ref. 32 that spin
waves can survive in magnetic materials above the transition
temperature (see also the more recent work of Ref. 33
and the references quoted therein). The accepted physical
explanation for this effect is that a local magnetic order
may exist above the magnetic transition temperature, such

that spin waves can be supported over these length scales
although with a shortened lifetime (this is especially true in
low-dimensional systems, cf. Ref. 34). Quite interestingly,
experimental evidence has recently been collected that short-
range spin waves may even underlie the mechanism for
high-temperature superconductivity.35

With this analogy in mind, pseudogap phenomena in a
Fermi system with a mutual attractive interparticle interaction
can be envisaged as due to the persistence of a “local pairing
order” above the superfluid temperature Tc, which takes place
even when the (off-diagonal) long-range order is absent.
The local order, which is preserved by pairing fluctuations
above Tc, makes the single-particle excitation spectrum to
resemble the one below Tc, although with an appreciable
frequency broadening due to the temporal decay of these local
excitations, which cannot propagate over long distances in the
absence of long-range order.

In addition, this analogy may help one appreciating the
connection between the presence of a pseudogap at low energy
and the contact C at high energy,30 since they both derive from
the existence of spatial correlations between fermions with
opposite spins over moderate or else short distances.

It is, finally, relevant to recall that the persistence of
spin waves in the normal phase of magnetic materials had
spurred a strong debate in the literature, their evidence being
disputed in favor of a broadening of the energy distribution.36

Nevertheless, the existence of spin waves in the normal phase
was eventually accepted by the occurrence of new direct
experimental evidence.33

Something similar is apparently going on at present for the
occurrence of a pseudogap in the normal phase of a Fermi
gas with attractive interparticle interaction, its evidence from
momentum-resolved photoemission experiments1,2,8 having
been disputed in favor of a more conventional Fermi-liquid
picture from thermodynamic measurements.37 Similarly to
what happened for spin waves above TC in magnetic materials,
the current dispute about pseudogap phenomena above Tc

could possibly be brought to an end by a new evidence coming
from direct detection of the upper branch of the dispersion of
A(k,ω). This should be possible for a Fermi gas with attractive
interaction via the experimental technique of Ref. 1 once the
temperature is raised sufficiently to populate the upper branch,2

or for condensed-matter systems where hole-like bands may
give similar access to unoccupied state.
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APPENDIX: t-MATRIX APPROXIMATION FOR A DILUTE
FERMI GAS WITH REPULSIVE INTERACTION

For a repulsive interaction of strength v0 > 0, the cutoff k0

in Eq. (1) cannot be let → ∞ in order to have a (positive)
nonvanishing scattering length aF . For this reason, a potential
of finite range (≈k−1

0 ) has to be retained, without reaching the
limit of a truly contact potential. In this case, one expects quite
generally aF to be small, of the order of k−1

0 .38 Solving for k0
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in Eq. (1), one obtains

k0 = π

2 aF

− 2 π2

m v0
. (A1)

This relation sets the upper bound π/(2kF aF ) on k0/kF , which
is reached for very large values of mkF v0. In practice, we are
interested in determining the behavior of the structures of the
single-particle spectral function A(k,ω) for k ≈ kF or larger in
such a way that k0 should exceed these values of k. On the other
hand, too large values of mkF v0 (exceeding, say, 20) make the
numerical summation over the Matsubara frequency in Eq. (5)
exceedingly difficult. As a consequence, a compromise has
to be reached about the values of the coupling (kF aF )−1 and
mkF v0.

A systematic way to deal with finite values of the cutoff
k0 and the positive interaction strength v0 is to introduce a
separable potential in k space of the form:

V (k,k′) = v0 θ (k0 − |k|) θ (k0 − |k′|), (A2)

θ (k) being the Heaviside step function. In this case, the
particle-particle ladder reads

	0(k,k′; q,
ν) = θ (k0 − |k|) θ (k0 − |k′|) 	̃0(q,
ν), (A3)

where

− 	̃0(q,
ν)−1 = 1

v0
+

∫
dk

(2π )3
θ (k0 − |k|)

× kBT
∑

n

G0(k,ωn) G0(q − k,
ν − ωn)

(A4)

takes place of the expression (6) that holds in the limit
k0 → ∞.

Finite values of k0 and v0 affect also the asymptotic behavior
of 	̃0(q,
ν) for large |q| and |
ν |, which is now given by

	̃0(q,
ν) � − v0 + α(q)

ξq − i
ν

(A5)

with

α(q) = v2
0

∫
dk

(2π )3
θ (k0 − |k|)[1 − f (ξk) − f (ξq−k)].

(A6)

The self-energy

�(k,ωn) = − θ (k0 − |k|)
∫

dq
(2π )3

kBT
∑

ν

	̃0(q,
ν)

× ei
νηG0(q − k,
ν − ωn)[2 − θ (k0 − |q − k|)]
(A7)

(with the distinct Hartree and Fock contributions) can then be
conveniently organized as follows:

�(k,ωn) = θ (k0 − |k|) [�0 + �′(k,ωn)]. (A8)

Here, �0 = v0nf /2 with nf given by Eq. (10) in the zero-
temperature limit of interest and for k0 >

√
2mμ, while

�′(k,ωn) = −
∫

dq
(2π )3

kBT
∑

ν

[	̃0(q,
ν) + v0]

×G0(q − k,
ν − ωn) [2 − θ (k0 − |q − k|)],
(A9)

where the convergence factor ei
νη has been dropped owing to
the 
2

ν decay of the summand for large |
ν |.
We are once more interested in the limit when k2/(2m)

or |ωn| are much larger than kBT and μ. In this limit, the
self-energy (A8) reduces to the form:

�(k,ωn) � −θ (k0 − |k|)[ 1
2nf 	̃0(k,ωn)

+�2
∞ G0(k, − ωn)

]
(A10)

in analogy to Eq. (9), where �2
∞ is still given by Eq. (12) with

	̃0(q,
ν) replacing 	0(q,
ν).
To obtain the single-particle spectral function according

to Eq. (7), analytic continuation iωn → ω + iη to the real
frequency axis needs to be performed. The imaginary part of
the retarded self-energy is now given by

Im�(k,ω) = −θ (k0 − |k|)
∫

dq
(2π )3

[2 − θ (k0 − |q|)]
× Im	̃0(k + q,ω + ξq) [f (ξq) + b(ω + ξq)],

(A11)

where b(E) = [eE/(kBT ) − 1]−1 is the Bose function, in terms
of which the real part Re�(k,ω) can be obtained via Kramers-
Kronig transform. To obtain the above expression, we have
used the spectral representation

	̃0(q,
ν) = − v0 −
∫ +∞

−∞

dω

π

Im	̃0(q,ω)

i
ν − ω
, (A12)

which generalizes to the present context an analogous expres-
sion considered in Ref. 7 for an attractive zero-range potential.

It is interesting to note in this context, that f (ξq) + b(ξq) =
0 in the zero-temperature limit, so that from Eq. (A11) one
obtains Im�(k,ω = 0) = 0 in that limit. The vanishing of
Im�(k,ω = 0) is characteristic of a Fermi liquid at zero tem-
perature for which a repulsive interaction is appropriate, and
distinguishes it from a Fermi system with attractive interaction
where superfluidity sets in at the critical temperature Tc. A
comparison of Im�(k,ω) over an extended range of ω about
ω = 0, for a repulsive interaction at T = 0 and an attractive
interaction at Tc, is shown in Fig. 19 when k = |k| = kF for
the characteristic couplings (kF aF )−1 = ±1.5, in the order.

These differences in Im�(k,ω) between the repulsive and
attractive cases result in marked differences in the single-
particle spectral function A(k,ω), as shown in Fig. 20 over
an even more extended range of ω for three distinct values of
k about kF and with the same parameters of Fig. 19.

A comment about the structure of A(k,ω) at negative
ω for large k is in order at this point. Quite generally,
Im	̃0(k + q,ω + ξq) in the expression (A11) is nonvanishing
provided the condition

ω + ξq � (k + q)2

4m
− 2μ (A13)
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FIG. 19. (Color online) Imaginary part of the retarded self-energy
vs ω at k = kF for a Fermi gas with repulsive (upper panel) and attrac-
tive (lower panel) interactions. Upper panel: T = 0, (kF aF )−1 = 1.5,
mkF v0 = 20, and k0 = 1.37kF . Lower panel: T = Tc = 0.0576 TF

and (kF aF )−1 = −1.5.

is satisfied. In addition, when ω < 0, the sum of the Fermi and
Bose functions in Eq. (A11) requires that μ <

q2

2m
< μ − ω.

When ω < 0, both conditions imply that (k+q)2

4m
− 2μ < 0. For

large |k|, this means that |q| should be comparable with |k|,
and therefore that Im�(k,ω) of Eq. (A11) is nonvanishing
only for |ω| � (k)2

2m
− μ. A more stringent condition on the

frequency interval, where Im�(k,ω) �= 0 (and thus A(k,ω) �=
0) for ω < 0 and large |k| was considered in Ref. 11.

Some additional technical differences, between our ap-
proach and the treatment of Ref. 11 on the large-k behavior
of the single-particle spectral function for a Fermi gas with
repulsive interaction, need also be mentioned. In that work,
emphasis was given to the large-k behavior of A(k,ω) in
the repulsive case, to show that a structure at negative ω

develops also in this case whose spectral weight is proportional
to the contact C. For that purpose, it was sufficient to
consider coupling values (kF aF )−1 � +10 corresponding to
an extremely diluted situation, for which the details of the
interparticle potential of short range are irrelevant. In that limit,
it was possible in Ref. 11 to use for the particle-particle ladder
an expansion of the expression (6) up to second order in aF that
would hold, in principle, only in the attractive case. For these
rather extreme coupling values, the results obtained in Ref. 11
coincide with ours, which are obtained through a separable
potential with parameters k0 and v0 related via Eq. (A1). We
recall that our use of a separable potential is required by
the fact that we have extended the calculation of A(k,ω) in
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FIG. 20. (Color online) Imaginary part of the retarded self-energy
(left panels) and single-particle spectral function (right panels) vs ω

for three values of k, corresponding to a Fermi gas with repulsive
(full lines) and attractive (dashed lines) interactions with the same
parameters of Fig. 19. The logarithmic scale in the right panels
highlights the small weights of the tails.

the repulsive case down to much smaller values (≈ +1) of the
coupling (kF aF )−1, in order to be able to compare with the
corresponding results in the attractive case when k ≈ kF .

As a final comment, we warn that, by performing the
analytic continuation to the real-frequency axis directly
on the asymptotic form (A10) of the self-energy for large
k < k0, one would get an expression of the type (13) for
the single-particle spectral function with a sharp peak at
ω = −ξk. The correct procedure, of first performing the
analytic continuation on the self-energy (A9) and only then
taking its limit for large k, results instead in a broad structure
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FIG. 21. (Color online) Single-particle spectral function of a
Fermi gas with repulsive interaction (kF aF )−1 = 4.4 at T = 0 for
k = 4.5kF (here, k0 = 5kF and mkF v0 = 10). The broad peaks from
the complete calculations (full lines) are contrasted with the deltalike
spikes (dashed lines) resulting when in the self-energy the large-k
limit is taken before analytic continuation to real frequencies.
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of the single-particle spectral function at negative frequencies,
although with the same area �2

∞/(4ξ 2
k ) of the approximate

form (13) for the attractive case. This is explicitly shown in
Fig. 21 for k = 4.5kF when (kF aF )−1 = 4.4. This kind of
noncommutativity, between taking the analytic continuation
and performing the large-|k| expansion on the self-energy, was
already pointed out in Ref. 24 while extending the t-matrix
approach to the superfluid phase below Tc.

Although for large k the feature in A(k,ω) at negative ω

has formally the same weight �2
∞/(4ξ 2

k ) in the attractive and
repulsive cases, the numerical value of �∞ (and thus of the
contact C) depends on the sign of the interaction and differs
in the two cases. For instance, we obtain �∞/EF = 0.0860

for the attractive case and �∞/EF = 0.1102 for the repulsive
case using the parameters of Fig. 19. These values can be
compared with those obtained analytically from the Galitskii
theory of a dilute Fermi gas,39 according to which to leading
orders in kF aF ,

�∞ � 2πn|aF |
m

[
1 + 6

35π
(11 − 2 ln 2)kF aF

]
, (A14)

where only the second term within braces depends on the
sign of aF . This expression yields �∞/EF = 0.0835 for the
attractive case and �∞/EF = 0.1063 for the repulsive case,
values which compare well with those obtained above from
our numerical calculations.
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