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We analyze the effect of the nonvanishing range of electron-electron repulsion on the mechanism of
unconventional superconductivity. We present asymptotically exact weak-coupling results for dilute electrons in
the continuum and for the 2D extended Hubbard model, as well as density-matrix renormalization group results
for the two-leg extended Hubbard model at intermediate couplings, and approximate results for the case of
realistically screened Coulomb interactions. We show that Tc is generally suppressed in some pairing channels
as longer range interactions increase in strength, but superconductivity is not destroyed. Our results confirm
that electron-electron interaction can lead to unconventional superconductivity under physically realistic
circumstances.
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I. INTRODUCTION

That unconventional superconductivity can arise in models
with short-ranged repulsive interactions between fermions has
been known for some time, beginning with the pioneering
work by Kohn and Luttinger.1 This issue has been revisited
multiple times in the last few decades, since the discovery
of unconventional superconductivity in the cuprates. For
the Hubbard model with local repulsion U and fermionic
bandwidth W , the existence of superconductivity in p-, d-,
f -, or g-wave, as well as sign-changing s-wave, channels has
been established from asymptotic weak-coupling analysis in
the limit U/W � 1 in two and three dimensions,2–8 from
the observation of a positive pair-binding energy computed
from exact diagonalization on various “Hubbard molecules,”9

from dynamical cluster approximation (DCA)10 and cluster
dynamical mean-field theory (DMFT) calculations,11 and
from extensive density-matrix renormalization group (DMRG)
studies12,13 of various ladder systems extrapolated to the
thermodynamic limit.

While there is still some controversy over the strength
of the pairing tendencies under particular circumstances,
there is a growing consensus that superconductivity in the
repulsive Hubbard model is generic under a wide range of
circumstances. Various physically motivated approximate
calculations, including numerically implemented functional
renormalization group (FRG),14 dynamical cluster approx-
imation (DCA)10 and cluster dynamical mean-field theory
(DMFT) calculations,11 fluctuation exchange approximation
(FLEX),15 Eliashberg,16 and self-consistent two-particle
calculations,17 as well as strong-coupling approaches based
on variational wave functions18 and slave-particle mean-field
theories,19,20 have also strongly indicated that such
unconventional pairing is present, especially near half filling,
and that Tc is maximized in the physically relevant range of
intermediate coupling, U ∼ W , and decreases at both larger
and smaller U . The decrease of Tc at smaller U is due to the
fact that the strength of any induced attractive interaction must
vanish as U → 0, while the decrease as U → ∞ is due to
Mott physics which tends to localize fermions near particular

lattice sites,20,21 potentially suppressing both the superfluid
stiffness22 and the pairing tendencies23 of the electrons.

It is broadly (although not universally24) accepted that the
basic features of superconductivity arising from short-range
repulsion between electrons are moderately generic and must
be in play in a broad class of unconventional superconductors
such as the cuprates, heavy-fermion and organic supercon-
ductors, Sr2RuO4, and the recently discovered Fe pnictides,
despite differences in band structure and local quantum
chemistry.25 In particular, estimates of the optimal Tc for
d-wave pairing in 2D Hubbard models, obtained using a va-
riety of approximate computational approaches,10,11,13,15–18,26

suggest that Max[Tc] ∼ 10−2vF /a0, where vF is the Fermi
velocity averaged over the Fermi surface (FS) and a0 is the
interatomic distance. Using vF /a ∼ 1 eV,27 one obtains an
estimate of the optimal Tc of order 100 K, comparable to
the d-wave transition temperatures found in optimally doped
cuprates.

However, in addition to the vexing problem of how to
unambiguously establish or falsify the applicability of a
particular electronic pairing mechanism to real materials, at
least one key theoretical question remains to be addressed:
It is well known that longer-ranged components of the
electron-electron interaction, even simply a nearest-neighbor
repulsion V between electrons, suppress the pairing tendencies
of the Hubbard model. As we will discuss below, this can
be seen clearly from the structure of the asymptotic weak-
coupling approach and also in exact diagonalization studies
of Hubbard molecules. This effect has also been investigated
in DMRG studies of t-J ladders28 (which we extend to
Hubbard ladders in the present paper). Thus, the issue to be
addressed is whether the deleterious effects of longer-range
components of the electron-electron repulsion make a purely
electronic mechanism of superconducting pairing physically
implausible.

The physics behind the suppression of Tc is transparent:
An effective attraction which can give rise to unconventional
superconductivity in p-wave, d-wave, extended s-wave, and
other channels emerges in the theory from the renormalization
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(screening) of the local repulsive interaction U by particle-hole
fluctuations of the continuum of fermions. For small U , the
induced interactions are necessarily of order U 2/W or smaller,
and more generally one expects the induced interactions to be
overall weaker than the bare interactions that give rise to them.
However, if the bare interaction is short ranged, then it only
contributes in the trivial s-wave channel, while because the
polarization of the particle-hole continuum depends on the
energy and momentum transfer between initial and scattered
fermions, the induced interactions are nonlocal and may have
attractive contributions in other pairing channels.

If, however, the bare interaction is extended, so it con-
tributes a repulsive piece in the same extended s-wave, p-wave,
d-wave, etc., channels, the competition between the bare
and induced interactions becomes more serious. This issue
has been recently addressed in a particularly pointed fashion
by Alexandrov and Kabanov (AK) (Ref. 29). They have
concluded that in models with a screened Coulomb interaction,
the bare repulsion in non-s-wave channels is so significant
that it effectively overwhelms the induced attractions, thus
eliminating as physically realistic the entire class of theories
in which the pairing comes from electron-electron repulsion.

We will show that the conclusion of Ref. 29 is not warranted.
From the exact diagonalization and DMRG studies discussed
below, it is clear that there is no anomalous sensitivity of the
pairing strength to longer-range interactions; in an extended
Hubbard model, significant suppression of unconventional
pairing occurs only when the farther neighbor interactions,
V , are a noticeable fraction of U , and not when they exceed
the (much smaller) gap scale associated with pairing. From
the various approximate extensions of the weak-coupling
analysis to intermediate coupling, it is clear that a key physical
ingredient missed in the discussion of AK is the near resonant
enhancement of the induced attractions at special favored wave
vectors when the system is in (not too close) proximity of a
density wave ordering transition; under these circumstance, if
the favored vectors appropriately nest the FS, the appropriate
weighted average of the bare and induced interactions can
favor unconventional superconductivity, despite the fact that
the induced interactions are generically weaker than the bare
interactions.30–32

Even in the strictly weak-coupling limit, where controlled
calculations can be carried through (as shown below), the effect
of longer-range interactions turns out to be surprisingly muted.
Longer-ranged interactions in lattice models (interactions
between nearest neighbors, second-nearest neighbors, etc.)
generally have components only in some particular pairing
channels and do not contribute to other channels. On the other
hand, the particle-hole polarization bubbles which enter the
induced interactions have components in all channels, and
quite often more than one component is attractive. In this
situation, it is quite possible that longer-range interaction either
does not affect the leading pairing component at all, or it
suppresses the leading attractive component but leaves the
subleading one unaffected.

In this context, we revisit in this paper the issue of uncon-
ventional superconductivity from electron-electron repulsion
in an extended Hubbard model on a square lattice with an
on-site repulsion of magnitude U and nearest-neighbor and
next-nearest-neighbor couplings of magnitudes V and V ′,

respectively. We study this problem using the same asymptotic
weak-coupling methods that were previously applied to the
pure Hubbard model, complemented by a new DMRG study
of a two-leg ladder. We consider arbitrary fermionic density
and analyze the pairing problem for various relations between
V,V ′, U , and the bandwidth W . It is important to stress that the
physics governing U and V is generally quite distinct, and they
should be considered as essentially independent parameters.
For instance, in a transition-metal oxide, U reflects the atomic
physics at short distances, while V reflects the screening effects
of all the degrees of freedom that are integrated out at high
energies, including the polarization of the surrounding medium
in the solid-state environment.

We find that the interplay between the short- and longer-
range repulsive interactions results in a fascinating, complex
phase diagram with a large number of distinct unconventional
superconducting phases. The longer-range interactions do
indeed tend to suppress unconventional superconductivity
in some channels, but still we find that unconventional
superconductivity emerges for all densities and for all relations
between parameters of the model.

This paper is organized as follows. In the next section, we
review the weak-coupling approach to pairing in a system of
fermions with generic finite-range interactions. In Sec. III we
discuss the case of short-range interactions and small electron
density, where the fermionic dispersion can be approximated
by a parabola. In Sec. IV we extend the approach to arbitrary
electron densities and analyze the extended Hubbard model
with nearest- and next-nearest-neighbor interactions. In Sec. V
we consider the case of screened Coulomb interactions, which
we can only treat approximately, even in the small rs limit.
In Sec. VI, we present the results of the DMRG calculations
of the pairing amplitudes in Hubbard ladders. We discuss the
results and present our conclusions in Sec. VII.

II. ASYMPTOTICALLY EXACT WEAK-COUPLING
APPROACH

The basic idea of the Kohn-Luttinger (KL) approach to
superconductivity is that the pairing interaction is given by
the irreducible vertex in the particle-particle channel, which is
generally different from the bare interaction between the two
given fermions and includes contributions from the continuum
of particle-hole excitations. These additional contributions
to the pairing interaction can give rise to an attraction in
a particular pairing channel even if the original interaction
between two fermions is uniformly repulsive.

The KL approach can be formally justified if there is a sep-
aration of scales: Superconductivity is assumed to come from
fermionic states very near the FS, while the renormalization of
the irreducible pairing interaction comes from fermions with
energies comparable to the Fermi energy. In this situation the
fully renormalized pairing interaction can be approximated by
its value when both incoming and outgoing fermions are on
the FS and the two incoming fermions have opposite momenta
and zero energy (where the energy is measured as deviation
from the chemical potential). Such a separation of scales
clearly occurs when the interaction U is much smaller than
the fermionic bandwidth W ; under appropriate circumstances,
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it may hold approximately (in a physical sense) even when U

is comparable to the bandwidth.16

The KL approach can be implemented in terms of a two-step
renormalization group (RG) procedure:8 In the first step, we
integrate out all modes outside a narrow range of energies �0

about the Fermi energy. �0 is not a physical energy in the
problem, but rather a calculational device. It is chosen large
enough so that the interactions can be treated perturbatively
(e.g., the Cooper logarithms are still small), but small enough
that it can be set to zero in all renormalizations in nonsingular
channels without causing significant error; i.e., it is chosen to
satisfy the inequalities

NF U 2 � �0 � EF exp{−[1/(NF U )]}, (1)

where NF is the density of states (DOS) at the Fermi energy
(for both spin orientations) and EF is the Fermi energy. The
effective interactions generated in the process then serve as
input interactions in a second step, in which the remaining
problem is solved using the logarithmical RG technique,33,34

which is equivalent to BCS when only the pairing channels
are singular. (It involves a more complex parquet RG if
some other channel, e.g., SDW or CDW, is also singular and
competes with superconductivity,30,34 a situation we will not
consider explicitly for the present.) Tc is, up to a multiplicative
constant, given by the energy scale T ∗ at which the pairing
interaction grows to be of order one. It was shown by
explicit perturbative calculation of Tc up to fourth order in
U that the resulting expression for T ∗ is independent of
�0 (Refs. 8,35). The generic prescription for computing the
leading-order asymptotic behavior of Tc for weak interactions
is the following:8 First, compute the effective interaction in the
Cooper channel at energy scale �0 perturbatively, to second
order in the bare interaction. The corresponding diagrams
are shown in Fig. 1. We denote this effective interaction as
�(a)(k,−k; p,−p) = �(a)(k,p), where k and p denote points
on the FS and the superscript a differentiates between whether
the electron pair forms a spin singlet (�(s)) or a spin triplet
(�(t)). We then construct the related dimensionless matrix

γ (a)(k,p) ≡ N̄F

√
v̄F /vF (k)�(a)(k,p)

√
v̄F /vF (p), (2)

where vF (k) is the magnitude of the Fermi velocity at a given
point k on the FS, and v̄F and N̄F are the average Fermi
velocity and average DOS at the FS. For a circular FS, vF (k) =
v̄F = vF and N̄F = NF , but the approach also holds for lattice
models of fermionic dispersion.

Since γ (a)(k,p) is a real, symmetric matrix, it has a complete
set of eigenstates φ

(a,l)
k and eigenvalues λ(a,l):

∑
p

γ (a)(k,p)φ(a,l)
p = λ(a,l)φ

(a,l)
k . (3)

Since all the systems we will consider are inversion symmetric,
the spin symmetry is implicitly determined by whether l

transforms under an irreducible representation that is even
or odd under inversion, so we will henceforth leave it implicit,
(a,l) → (l). Among all the possible solutions, we identify the
most negative eigenvalue,

λ ≡ Min[λ(l)], λ < 0. (4)

k, σ

−k, σ

k , σ

−k , σ

FIG. 1. First- and second-order diagrams which contribute to the
effective interaction �a(k,p) in the Cooper channel. The solid line
corresponds to an electron propagator whereas the dashed line repre-
sents an interaction vertex; σ and σ ′ are spin indices. The singlet and
triplet components �(s) and �(t) are obtained by antisymmetrizing the
interaction and taking symmetric and antisymmetric combinations,
[�(k,p) + �a(k,−p)]/2 and [�(k,p) − �a(k,−p)]/2, respectively.

Then,

Tc ∼ EF exp[−1/|λ|]. (5)

Since the effective interaction � is computed perturbatively
assuming weak interactions, λ can be expressed as a power
series in the bare interaction. Assuming that the interaction is
a local Hubbard U , we have

λ = −|u|[1 + a1|u| + a2u
2 + · · ·] (6)

for negative U (u = NF U ) and

λ = −u2[b0 + b1u + b2u
2 + · · ·] (7)

for positive U . ai and bi are nonuniversal constants which
depend on dimensionality, crystalline point group, electron
concentration, and details of the band structure. The absence
of a linear in u term in λ for U > 0 is a consequence of the fact
that in a repulsive Hubbard model, an attractive interaction in
any pairing channel can only appear due to a renormalization
of the original interaction by the particle-hole continuum. As
a consequence, Tc is a highly nonanalytic function of u in
the limit u → 0, with different functional dependencies for
positive and negative u.

In the next two sections we apply this general procedure
to systems with isotropic dispersion, and to systems with full
lattice dispersion.

III. CONTINUUM ELECTRONS WITH WEAK
SHORT-RANGED INTERACTIONS

Dilute electrons on a lattice treated in the effective mass ap-
proximation are equivalent to the continuum problem in which
the FS is a sphere (a circle in 2D) and the electronic dispersion
has the parabolic form εk = k2/2m − μ. As a first example,
we thus consider the low-density limit of electrons with an
interaction U (r) of finite range r0, which is independent of
the electron density. There are thus two independent small
parameters: kF r0 � 1 and kF a � 1, where a ≡ mŨ (0)/4π ∼
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mU (r = 0)r3
0 is the s-wave scattering length in the Born

approximation and Ũ is the Fourier transform of U .
To first order in U , the singlet and triplet components of the

pairing interaction in the momentum space are

�(s)(k,p) = [Ũ (k − p) + Ũ (k + p)]/2,

�(t)(k,p) = [Ũ (k − p) − Ũ (k + p)]/2.
(8)

For k and p located at the FS, (k − p)2 = 2k2
F (1 − cos θ ).

Since Ũ (k) changes slowly over the range of momenta 0 �
|k| � 2kF , it can be expanded in powers of kF r0 � 1:

Ũ (k) = Ũ (0)
(
1 + α1|k|2r2

0 + α2|k|4r4
0 + · · · ), (9)

where αn are pure numbers related to moments of U (r).
The first term in Eq. (9) then contributes to s-wave
pairing, the second term contributes to s-wave and p-wave
pairing, the third term contributes to s-wave, p-wave, and
d-wave pairing, and so on. Indeed, because there is full
rotational symmetry, the pairing wave functions [i.e., the
eigenstates in Eq. (3)] are completely determined by symmetry
(i.e., they are uniquely specified by angular momentum sectors
labeled by l). Correspondingly, the eigenvalues, λ(l), can be
computed directly as the appropriate symmetry determined
average of γ over the FS. In 3D, NF = mkF /(2π2), and it is
important to note that u = NF Ũ (0) = 2(akF )/π .

Then, following the renormalization group procedure out-
lined above, explicit perturbative expressions can be obtained
for λ(l) which, to second order in u, are

λ(l) = (kF a)A(l) + (kF a)2B(l) + · · · , (10)

where A(l) and B(l) are dimensionless functions of the
dimensionless variables, kF r0 and NF �0 [where �0 is the
scale at which the couplings are defined, as discussed above
Eq. (1)]. However, we are interested only in their leading
behavior for small values of both these parameters. Starting
with the first-order terms, A(l) is manifestly independent of
NF �0 but varies as kF r0 → 0 according to A(l) ∼ (kF r0)2l .
Specifically, for the three lowest angular momentum channels,

A(s) = 2

π
, A(p) = −α1

π
(r0kF )2,

A(d) = α2

π
(r0kF )4 .

(11)

The components with larger l are progressively smaller in
powers of r0kF . To this order, the sign of λ(l) depends on
the sign of a and on the sign of αl . For a repulsive Yukawa
potential (i.e., for Ũ (q) = Ũ (0)/[1 + (qr0)2]), a > 0, α1 < 0,
and α2 > 0, and this is rather generic for purely repulsive
interactions. Thus, there is no Cooper instability to first order
in (kF a).

The situation is altered by corrections to �(a)(k,p) to
second order in akF ; see Fig. 1. The diagram 2a in
the figure describes the renormalization in the particle-particle
channel which makes a contribution to B(s) in the s-wave
channel proportional to ln[W/�0]. However, so long as the
inequality in Eq. (1) is satisfied, this only produces a small
correction to λ(s) relative to the first-order repulsive term. The
other four second-order diagrams which contribute to B(l)

contain particle-hole bubbles and account for the important
renormalizations of the irreducible pairing interaction.

A key result obtained already by KL (Ref. 1) is that,
as kF r0 → 0, B(l) → βl 
= 0. KL further showed that for
sufficiently large l > 0, B(l) are negative, and that while A(l)

falls exponentially with increasing l, B(l) ∼ l−4. From this,
they concluded that superconductivity in some (possibly high
l) channel was inevitable.

We focus attention on the physically more important cases
of relatively small l. It has been shown2,3 that βl are negative
for l > 0. As a result,

πλ(p) = (akF )[|α1|(r0kF )2 − |β1|(akF ) + O(kF a)2],

πλ(d) = (akF )[|α2|(r0kF )4 − |β2|(akF ) + · · ·],
(12)

where all βl are of order 1. The issue then is which terms
are larger, the negative second-order or the positive first-order
contributions. Clearly for k−1

F � r0 � a, the repulsive part of
the interaction is dominant. However, there is a broad range
of circumstances in which k−1

F � r0 ∼ a. In this situation,
the attractive interactions dominate, even for relatively small
l > 0. In 3D

β1 = −8(2 log 2 − 1)

5π2
, β2 ∼ 10−2β1 (13)

(see Refs. 2,3), and hence at small density a 3D Fermi system
with short-range repulsive interactions undergoes a p-wave
pairing transition with

Tc ∝ exp{−1/[|β1|(akF )2]}. (14)

(For the full calculation of Tc see Ref. 35.) In 2D, the
calculations are a bit more tricky because the static particle-
hole bubble for free fermions is independent of momentum
transfer for |k − p| < 2kF , so one has to go to the next, third
order, to obtain the momentum dependence of the dressed
interaction (see Ref. 7). The final result is, however, similar to
the one in 3D: A 2D Fermi system at a small density undergoes
a p-wave superconductivity with a low Tc.

Note that a similar analysis was carried out in Ref. 36 for
the extended Hubbard model at small electron densities, where
instead of a Yukawa interaction, strong Hubbard interactions
were considered with U � V � the bandwidth with similar
results to those discussed here.

IV. EXTENDED HUBBARD MODEL AT WEAK COUPLING

As a second more directly experimentally relevant example,
we apply the reasoning from Sec. II to a higher density of
electrons in the extended Hubbard model on a two-dimensional
square lattice with the Hamiltonian

H = H0 + Hint,

H0 = −t
∑
〈ij〉σ

c
†
iσ cjσ + H.c., (15)

Hint = U
∑

i

ni↑ni↓ + V
∑
〈i,j〉

ninj + V ′ ∑
〈〈i,j〉〉

ninj , (16)

where ciσ is the destruction operator of an electron on
lattice site i, with spin σ ; 〈i,j 〉 and 〈〈i,j 〉〉 denote nearest-
neighbor and second-neighbor pairs of sites respectively;
ni = ∑

σ c
†
iσ ciσ and the average density of electrons per site is

n ≡ 〈ni〉. For simplicity, we consider band electrons with only

024516-4



EFFECTS OF LONGER-RANGE INTERACTIONS ON . . . PHYSICAL REVIEW B 85, 024516 (2012)

nearest-neighbor hopping. As is well known, such a system
possesses a nongeneric particle-hole symmetry. This feature,
however, does not play a significant role in the resulting phase
diagram since we consider the model away from half filling.
(See, however, Ref. 37.)

To begin with, for V ′ = 0 we show that the phase diagram
is drastically different depending on the ratio V/U , even as
u ∼ U/t → 0. Different asymptotic analysis is required for
the case V = αU 2/W (i.e., for u → 0 with V W/U 2 = α > 0
held constant), and V = α′U (i.e., for u → 0 with V/U =
α′ > 0 held fixed). We find that in both cases, the ground state
is superconducting for all dopings, but the symmetry of the
pairing state is generally different. We then add V ′ ∼ V and
show that it adds other pairing states to the phase diagram.

A. V ∼ U2/W , V ′ = 0

Since the effective interaction is computed to O(U 2), when
V = αU 2/W , we only need take V into account to first order
(diagram 1 in Fig. 1), i.e., at the bare level. A nonzero V then
produces a correction to the effective �(k,p) in the form

δ�(k,p) = α
U 2

W
[cos (kx − px) + cos (ky − py)]

= α
U 2

W

′∑
(η)

φ(η,1)(k)φ(η,1)(p), (17)

where in the second line the sum is taken over appropriate
basis functions defined on nearest-neighbor sites with A1g or
extended s-wave symmetry, B1g or dx2−y2 -wave symmetry, and
Eu or p-wave symmetry:

A1g : φ(s,1)(k) = [cos(kx) + cos(ky)]/
√

2,

B1g : φ(x2−y2,1)(k) = [cos(kx) − cos(ky)]/
√

2, (18)

Eu : φ(x,1)(k) = sin(kx), φ(y,1)(k) = sin(ky).

Thus, the nearest-neighbor interaction acts as a separable
repulsive interaction within these subspaces. Because all three
components are repulsive, V tends to suppress the pairing
tendency in all three of these channels. However, note that
unlike the case in the continuum, there are multiple (infinite)
orthogonal functions defined on the FS which transform
according to each irreducible representation of the point
group—for instance φ(s,2) ∼ [cos(kx) + cos(ky)]2 also trans-
forms according to A1g under operations of the point group.
Thus, even for large α, the presence of a repulsive first-order
term in a given channel does not preclude the existence of a
more “extended” form of pairing in the same channel.

It has been shown previously in various studies of the
repulsive U Hubbard model that near half filling,5,8,29,37

predominant pairing instability to order U 2 is in the dx2−y2

channel, and the subdominant pairing eigenvalue occurs in
the A2g or g-wave channel, while somewhat further from half
filling, at n < 0.62, there is a range of electron concentrations
for which the B2g or dxy pairing solution is dominant:
Representative gap functions (of the shortest possible spatial
range) with these symmetries are

φ(g,3) ∼ [cos(kx) − cos(ky)] sin(kx) sin(ky),

φ(xy,2) ∼ sin(kx) sin(ky).
(19)
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1 xy(x2−y2)

FIG. 2. Phase diagram as a function of electron concentration for
the 2D extended Hubbard model in the regime where V ∼ U 2/W and
V ′ = 0. The region of extended s-wave superconductivity is labeled
as 1. For V = 0, our phase diagram is similar but not identical to
the one obtained by Hlubina (Ref. 5). In his calculation, there is a
small region of p-wave superconductivity between the dxy and dx2−y2

phases. We found only d-wave states.

Figure 2 shows the phase diagram to order U 2, which we
obtained numerically for V = αU 2/W , as a function of α

and n. Since the analysis considered here breaks down for
concentrations sufficiently close to half filling because of
competition with antiferromagnetism, we have investigated
solutions only for 0 < n < 0.95. For 0.76 < n < 0.95, a
finite α � 0.2 destabilizes the dx2−y2 solution in favor of the
subdominant g-wave solution [labeled as xy(x2 − y2) on the
phase diagram in Fig. 2]. For 0.68 < n < 0.76 a finite α again
destabilizes the dx2−y2 solution, but the state that emerges
instead has a particular extended s-wave symmetry, which
is dominantly of the form Re(x + iy)4. To shorten notations,
we have labeled it as “1”.

This state has zero amplitude for on-site pairing in this
limit but transforms nevertheless as a trivial irreducible
representation of the tetragonal point group. Note that since
the g-wave state is Im(x + iy)4, in the continuum limit, the
“1” and g states are degenerate corresponding to angular
momentum � = 4 pairing. However, lattice effects lift this
degeneracy. Indeed, there is a phase transition between the
g-wave and extended s-wave state at n = 0.76, which reflects
a level crossing of these two eigenvalues, both of which are
subleading at V = 0. Note that this phase boundary is vertical
since the two solutions are unaffected by V to first order.
For 0.58 < n < 0.68, we have found that a finite α favors the
dxy solution. The phase boundary between dxy and extended
s-wave phases is also vertical.

B. V ∼ U2/W , V ′ ∼ V

Next, we consider the effect of a nonzero second-neighbor
interaction V ′ on the phase diagram. Specifically, we take
V ′ = α2V,0 < α2 < 1. In this case, V ′ ∼ U 2/W , so like V , its
effects can be computed via the first-order diagram 1 in Fig. 1.
The expansion of the V ′ interaction into angular harmonics
is straightforward, and in addition to terms already present in
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FIG. 3. The effective interaction Veff = λ/NF , where NF is the
density of states at the Fermi level, as a function of V ′/V = α2.
n = 0.6 with V = αU 2/W , α = 0.16, and nonzero V ′.

Eq. (17), one finds the following contribution to the effective
Cooper channel interaction from V ′:

δ�V ′(k, p) = 2αα2
U 2

W
cos (kx − px) cos (ky − py). (20)

This term is a sum of separable repulsive interactions in the
extended s- (A1g), dxy- (B2g), and p-wave (Eu) subspaces. It
is important to stress that it does not affect the dx2−y2 - (B1g)
or the g-wave (A2g) subspaces. Thus, relatively close to half
filling where the leading eigenvalues belong to the dx2−y2 -
and g-wave subspaces, the phase boundaries are unaffected
by V ′. We have studied the phase diagram in the presence of
nonzero V ′ and have found that while the phase boundaries
are affected quantitatively by nonzero α2, the topology of the
phase diagram itself is unchanged. We have observed that
the pairing strengths are surprisingly robust in this regime,
as α2 is increased. Figure 3 displays the effective interactions
Veff = |λ|/NF , where NF is the density of states at the Fermi
energy, in the presence of nonzero V ′. For definiteness, we
work in a fixed density of electrons n = 0.6 and fixed α = 0.16
and show the effective interaction as a function of α2. The
dx2−y2 pairing strength is the weakest one here and is not
shown. It is apparent from the figure that while the pairing
strengths of the dxy- and extended s-wave states are affected
by nonzero α2, this repulsion is not strong enough to suppress
superconductivity altogether.

C. V ∼ U

Next, we consider the case when V ∼ U , in which case the
bare repulsive interactions are of the form

�I (k,k′) = U + Vg(k − k′), (21)

where the subscript on � above is to remind the reader that this
comes from diagram I in Fig. 1. The dimensionless function

g(q) = cos qx + cos qy + 2β cos qx cos qy (22)

specifies the momentum dependence of the interactions, where
β = V ′/V . We must now compute the perturbation expansion
of the effective interaction in the Cooper channel to second

order in all the bare interactions, which has the form

�(s)(k,k′) = �I (k,k′) + U 2f
(s)
1 (k,k′) + V 2f

(s)
2 (k,k′)

+UVf
(s)
3 (k,k′) + · · · , (23)

where s denotes the spin-singlet channel. It is straightforward
to show that

f
(s)
1 (k,k′) = NF ln

[
W

�0

]
+ χ (k + k′) + O(�0), (24)

where NF is the density of states at the Fermi energy. The first
term is obtained from diagram 2a and the second from 2b in
Fig. 1. Similarly,

f
(s)
2 (k,k′) = NF (g � g)(k − k′) ln

[
W

�0

]

+χ1(k,k′) + g(k − k′)χ2(k,k′)
− 2[g(k − k′)]2χ (k − k′) + O(�0), (25)

where the first term comes from diagram 2a, the second from
2b, the third from 2c and 2d, and the last term from 2e in
Fig. 1. The convolution that enters in the first term is found
to be [assuming that the FS averages 〈cos 2lx〉 = 〈cos 2ly〉 =
0, where l and −l are intermediate fermionic momenta in
Fig. 1(a)]

(g � g)(q) = 1
2 (cos qx + cos qy) + β2 cos qx cos qy. (26)

Lastly,

f
(s)
3 (k,k′) = aNF g(k − k′) ln

[
W

�0

]
+ χ2(−k,k′)

+χ2(k,k′) + 2g(k − k′)χ (k − k′) + O(�0),

(27)

where a is a constant of order unity. The first term is obtained
from diagram 2a, the second from 2b, the third from 2c, and
the last from 2e in Fig. 1. The functions χ (q),χ1(k,k′), and
χ2(k,k′) are generalized susceptibilities and are all expressible
in terms of the one-electron Matsubara Green’s function,
G(p) = (iωp − εp)−1:

χ (q) =
∫

p

G(p)G(p + q),
∫

p

≡
∫

ddp dωp

(2π )d+1
,

χ1(k,k′) =
∫

p

g(k − p)g( p − k′)G(p)G(p − k − k′),

χ2(k,k′) =
∫

p

[g( p + k) + g( p − k′)]

×G(p)G(p + k − k′). (28)

Similarly, in the spin-triplet channel, the effective interaction
takes the form

�(t)(k,k′) = Vg(k − k′) + U 2f
(t)
1 (k,k′) + V 2f

(t)
2 (k,k′)

+UVf
(t)
3 (k,k′) + · · · , (29)

where

f
(t)
1 (k,k′) = −χ (k − k′),

f
(t)
2 (k,k′) = f

(s)
2 (k,k′), (30)

f
(t)
3 (k,k′) = −2g(k − k′)χ (k − k′).
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FIG. 4. The effective interaction Veff = λ/NF for the g-wave
state. Here, we have chosen V = 0.5U and V ′ = 0.5V . All other
eigenvalues are subdominant and are not shown here.

When β = 0, the contribution from diagram 2a disfavors so-
lutions which involve nearest-neighbor pairing. For a nonzero
β, solutions with second-neighbor pairing amplitude are also
suppressed.

In Fig. 4, we show the pairing strength of the A2g (g-wave)
state when V = 0.5U, V ′ = 0.5V . We have found that the
pairing strengths in other channels are significantly weaker
and are therefore not shown in the figure. We note that,
interestingly, the g-wave pairing strength is much greater in
the regime V ∼ U since it gains energy from the attractive
effective interactions that are obtained at O(V 2), which were
neglected in the regime where V ∼ U 2. Thus, while the
states with nearest-neighbor pairing are severely suppressed
by momentum dependence of the first-order terms, states
involving further ranged pairing are more enhanced by second-
order, KL contributions than they are suppressed by first-order
contributions. It is important to stress that in the weak-coupling
limit, such enhancements cannot be ascribed to a well-defined
bosonic “glue,” such as those associated with proximate
spin or charge density states, since instabilities toward spin-
and charge-ordered phases occur at weak coupling only in
exponentially narrow regions in parameter space (close to a
perfectly nested Fermi surface, for instance).

V. CONTINUUM ELECTRONS WITH SCREENED
COULOMB INTERACTIONS

The Coulomb interaction is long ranged, and so never
can be safely treated in perturbation theory. Physically, in a
good metal, it should be screened, and so equivalent to an
appropriate finite-range model, but because screening at long
distances involves electrons with energies arbitrarily close to
the Fermi energy, this is something that is subtle to treat in a
controlled RG. Simply to replace the Coulomb interaction with
a screened Coulomb interaction, and then to carry out the usual
RG from there, risks double-counting of certain important
physical processes, which are already implicit in the screened
form of the interaction. Thus, to treat the Coulomb problem, we
are forced to adopt a more qualitative, although still physically
sensible, approach, in lieu of the asymptotically exact approach
we have pursued up until this section. For simplicity, we again

consider the explicit case of dilute electrons, in which the
dispersion is quadratic. It is important to note, however, that
for small rs , where the weak-coupling intuition is most likely
to be correct, the screening length is parametrically larger than
k−1
F , so even the screened interaction is not, in any naive sense,

short ranged.29,38

In 3D, the screened Coulomb interaction within the RPA
approximation is

Ũ (q) = 4πe2

q2 + κ2�(q)
, (31)

where

�(q) = 1

2
+ 4k2

F − q2

8kF q
ln

2kF + q

2kF − q
, (32)

κ = 0.81kF r
1/2
s , and rs = 1.92e2/h̄vF . If we calculate the

s-wave scattering length and the range of the interaction,
as we did in Sec. III, then akF = me2kF /κ2 ≈ 0.8 and r0 ∼
1/κ ∼ a/(rs)1/2, so in the “weakly interacting limit” rs � 1,
it follows that r0 � a. Because akF = O(1), an expansion
in powers of the interaction is not possible. In addition, the
screening of the Coulomb interaction already contains one of
the diagrams (a particle-hole bubble) which for short-range
interactions participated in the KL renormalization of the
irreducible pairing interaction. Nonetheless, it is still plausible
that the same sort of KL calculation (with the screening
diagram omitted) will still give a physically reasonable account
of the pairing in this case, although the formal justification for
this approach is on somewhat less secure footing.

A. rs � 1

For rs � 1, since the relevant values of the momentum
transfer which enter the various calculations is |q| ∼ κ � kF ,
Ũ (q) can be well approximated by taking �(q) ≈ �(0) = 1.
Then

Ũ (q) = 4πe2

q2 + κ2
(33)

and consequently

NF Ũ (q) = 0.041
rs

1 − cos θ + 0.164rs

, (34)

where q =√
2k2

F [1−cos(θ)]. Expanding this bare Ũ (q) in angular
harmonics one finds that they are all positive (repulsive), but
that their magnitudes decay with increasing l, eventually as
e−lr

1/2
s for lr

1/2
s � 1 (Ref. 38).

The KL-type contributions to λ(l) come from particle-
hole renormalizations which involve particle-hole bubbles
(diagrams 2b, 2c, and 2d in Fig. 1). For l � 1, typical momenta
associated with these bubbles are of order kF , and since
NF Ũ (kF ) = O(rs) � 1, this implies that these terms make
contributions to λ(l) which are small compared to the scale
of the repulsive contributions ∼NF Ũ (0) = O(1). Obviously
then, for l not too large, λ(l) > 0; i.e., there is no superconduc-
tivity. The situation is different for large l > 1/r

1/2
s owing to

the fact that the exchange diagram (diagram 2b in Fig. 1) has
a nonanalytic dependence on θ near θ = 0, i.e., when k and
p are nearly parallel. Moreover, under these circumstances,
the typical internal momenta in the particle-hole ladder are
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also nearly parallel to k and p, from which it follows that
the relevant interactions involve near-zero momentum transfer
where the interactions are strong, NF Ũ (0) = O(1) (Ref. 39).
Because of this small θ nonanalyticity, the contribution to
λ(l) from the exchange diagram scales as 1/l4 rather than
exponentially in l, and so makes the dominant contribution
to λ(l) for large enough l. This nonanalytic contribution
is attractively independent of the parity of l (Ref. 1). Of
course, Tc is always very small for such high l pairing,
but these arguments suggest that KL-type superconductivity
survives.

B. rwc > rs > 1

For rs � 1, even in the continuum, electrons form a Wigner
crystal state, which is manifestly neither a Fermi liquid nor
a superconductor. However, since the critical value rwc for
Wigner crystallization appears to be numerically large, it is
reasonable to wonder what happens when rs is in the range
1 < rs < rwc. In this range, there is no guarantee that the
Fermi-liquid fixed point is even a correct starting point for
examining the problem—there could be a variety of possible
other phases, and, even if one is prepared to ignore all standards
of mathematical rigor, there is no controllable expansion
because NF Ũ (q) is of order one for all q which connect points
on the FS.

The approach adopted by AK to address this point was to
assume the same perturbative approach that we have outlined
for rs � 1 can be applied for rs > 1; i.e., the pairing vertex is
calculated to second order in the screened Coulomb interaction
which is taken to have the Yukawa form as in Eq. (33), and only
the exchange diagram 2e from Fig. 1 is evaluated to determine
the second-order contribution to the pairing vertex.

Evaluating λ(l) for the first few angular harmonics, one then
finds29 that the interactions in the p- and d-wave channels
(among others) are repulsive for rs ∼ 1, and only become
attractive again for unphysically large values, i.e., rs > 54
for p-wave and rs > 26.5 for d-wave pairing. From this
AK concluded that the KL mechanism is not a plausible
mechanism of superconductivity in systems with Coulomb
interactions with rs ∼ 1 or greater.

Given that even the starting expression for the screened
Coulomb interaction in Eq. (31) makes little sense in the
large rs limit, where the Thomas-Fermi screening length is
parametrically smaller than the distance between electrons, it
is difficult to judge the validity of this conclusion. We could,
with no less justification, repeat the AK calculation but keeping
the full RPA expression for the screened Coulomb interaction,
Eq. (31), rather than the Yukawa form in Eq. (33). In this case,
an attractive pairing vertex is obtained already in first order.
(Second-order contributions from diagrams 2b–2d in Fig. 1
would further enhance the pairing tendencies.) As was shown
in Ref. 38, the largest attractive pairing component is l = 1 for
which λ(l = 1) ≈ −0.07.

A very similar λ(l = 1) = 0.06 has been obtained in
Ref. 45. There the full quasiparticle scattering amplitude has
been calculated from the coupled Bethe-Salpeter equations
for the two particle-hole channels, modeling the irreducible
vertex function by comparison with Green’s function Monte
Carlo data on the charge and spin susceptibilities. The pairing

was found in large part to be due to exchange of transverse
current fluctuations.

In the absence of a justified theoretical computational
scheme, it is difficult to gauge which approach is better. It is
likely that p-wave is the leading attractive pairing component
at rs � 1 but at which rs it prevails and what is Tc are the two
issues not settled yet.

There are other issues in the large rs limit. Due to the
proximity of the Wigner crystal, the effective interactions are
strongly momentum dependent. Magnetically ordered states
are also natural in this limit, and proximity to them can give
rise to structure in the pairing vertex related to magnetic
fluctuations: This observation underlies theories of p-wave
pairing near a ferromagnetic31 and d-wave pairing near an
antiferromagnetic instability.32 However, the quasiparticles
themselves may be largely incoherent, making it difficult to
know precisely what is being paired. Even if Fermi-liquid
theory remains valid, strong forward scattering interactions,
which are likely to occur in this limit, can produce large
changes in the Fermi-liquid parameters, with major conse-
quences for any theory of superconducting pairing.

VI. DMRG SOLUTION OF EXTENDED
HUBBARD LADDERS

To go beyond the weak-coupling limit, where the energy
scales associated with superconductivity are exponentially
small, one has to resort to numerical methods. In order to
address the effect of extended interactions in the intermediate-
coupling regime, we have performed DMRG40 simulations
of the extended Hubbard model [Eq. (15)] on ladders of size
L × 2. For V = V ′ = 0, this system is known12,41–43 to have
a spin gap in the thermodynamic limit when the electron
density is close to n = 1. The superconducting correlations
are d-wave like, in the sense that the pair amplitude has an
opposite sign on x- and y-oriented bonds, and falls off with
distance as a power law which depends on n and U/t . Here, we
examine the sensitivity of the superconducting tendency of the
two-leg ladder to adding extended interactions. We do this by
calculating the spin gap and the decay of a proximity-induced
superconducting order parameter as a function of distance, for
various values of V , V ′. This study extends earlier results on
the t-J model with a nearest-neighbor V,28 which found that
the pairing survives up to V ≈ 4J .

The spin gap is defined as �s = E(S = 1) − E(S = 0)
where E(S) is the ground-state energy with spin S, extrap-
olated to the thermodynamic limit L → ∞, as a function
of V . The system sizes used in the extrapolations were
L = 16,32,64. The spin gap is then extrapolated to L →
∞ by fitting �s(1/L) to a second-order polynomial. The
extrapolated value of �s is up to a factor of 2 smaller than
�s(L = 64); this extrapolation is the largest source of error
in our results. The following parameters were used in the
calculations: t = 1, U = 8, V ′ = 0, and n = 0.875,0.9375
(see Fig. 5). As V increases, the spin gap decreases gradually
from its V = 0 value, but remains finite up to V ≈ 2.5.

For larger values of V , we observe a transition to a charge
density wave (CDW) state, in which there are pronounced
oscillations in the electron density at a wave vector close to
�Q = (π,π ). We have checked that the CDW transition occurs
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FIG. 5. (Color online) The spin gap �s extrapolated to the
thermodynamic limit for two-leg ladders with electron density n =
0.9375 (circles) and n = 0.875 (diamonds) and t = 1, U = 8, and
V ′ = 0, as a function of V . Beyond V ≈ 2.6, a transition to a state
with pronounced charge density oscillations at a wave vector close to
(π,π ) is observed.

at V ≈ 2.5 even for the undoped (n = 1) system. The doped
CDW state supports gapless spin excitations at the edges, but
has a large bulk spin gap �s ≈ 0.1. (We infer this by noticing
that in the lowest triplet excitation with Sz = 1, 〈Sz〉 is nonzero
only close to the edges. We have also computed the gap to an
excitation with Sz = 2, in which 〈Sz〉 is nonzero in the bulk,
and found that this gap is finite in the thermodynamic limit.)

We have also examined the effect of a second-neighbor V ′
on the spin gap. Figure 6 shows the spin gap as a function of V ′
for V = 1, n = 0.9375. Again, we find that while �s decreases
monotonically upon increasing V ′, its effect is not dramatic.
For example, upon reaching V ′ = 0.5t , �s has decreased to
about 50% of its V = 1,V ′ = 0 value.

The superconducting response of a ladder system can be
characterized by the rate at which an externally induced
superconducting order parameter at the edge decays as we
move into the bulk. In a gapless one-dimensional system, this
amplitude decays as a power law; in a two-leg ladder with a
spin gap, this power law can be shown to be equal to 1

4Kc
,44

where Kc is the Luttinger parameter of the (gapless) even
charge mode. Figure 7 shows the induced order parameter on
a y bond,

Py(x) = 〈
1
2 [c↑(x,1)c↓(x,2) − c↓(x,1)c↑(x,2)]

〉
, (35)

as a function of position x, on a log-log scale. In this
calculation, the following boundary term was added to the
Hamiltonian:

Hedge = �[c↑(1,1)c↓(1,2) − c↓(1,1)c↑(1,2) + H.c.], (36)

with � = 0.25. This term mimics a proximity-induced gap at
the edge due to a nearby bulk superconductor. The results are
shown for systems of length L = 32,48, density n = 0.9375,
and V = 0,1,2.5,3.

The induced superconducting order parameter is seen to
decrease monotonically upon increasing V . However, the slope
of ln(|Py |) vs ln(x) (the power with which the superconducting
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FIG. 6. (Color online) The spin gap �s(L → ∞) as a function of
V ′ for two-leg ladders with n = 0.9375, t = 1, U = 8, and V = 1.

order parameter decays) far away from the edge is not strongly
dependent on V , except for V > 2.5. Although our systems
are not long enough to allow an accurate estimate of the
slope, one can roughly estimate Kc ∼ 0.4–0.6, well within the
range of divergent superconducting correlations Kc > 0.25,
and close to the value in which superconducting and CDW
correlations decay with the same exponent, Kc = 0.5.

The inset of Fig. 7 shows the induced superconducting
order parameter on various bonds near the middle of the
L = 48 system with V = 1. As can be seen in the figure, the
order parameter is “dx2−y2 like,” in the sense that the pairing
amplitude on x- and y-oriented bonds is opposite in sign,
and the amplitude on the diagonal (next-nearest neighbor) is
relatively small. The order parameter has a dx2−y2 -like structure
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FIG. 7. (Color online) Induced superconducting order parameter
as a function of position in a calculation with an edge pair field
[Eq. (36)] of magnitude � = 0.5. In these calculations, t = 1, U = 8,
n = 0.9375. Solid (dashed) lines correspond to L = 32 (L = 48).
Results for V = 0,1,2.5,3 are shown. The inset shows the induced
order parameter on nearest- and second-nearest-neighbor bonds near
the middle of an L = 48 system with V = 1.
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for 0 < V < Vc ≈ 2.5. For larger values of V (in the CDW
phase), the order parameter has an extended s-wave structure,
in which the pairing amplitude has the same phase on x- and
y-oriented bonds. In this regime, however, the order parameter
is much smaller than for V < Vc and it decays much faster as
a function of distance from the edge (possibly exponentially).

VII. DISCUSSION

In this paper we have shown, using a variety of methods,
that unconventional superconductivity arising directly from
electron-electron interactions can survive even in the presence
of longer (but finite) ranged interactions. First, we have
shown that the Kohn-Luttinger effect survives even when the
range of the interaction exceeds the s-wave scattering length,
provided that the range r0 satisfies r0 � k−1

F . In this regime,
the leading instability need not occur for an unphysically
high angular momentum and in most cases occurs for � = 1.
For lattice electrons near half filling in the weak-coupling
limit, we have found that the dx2−y2 superconductivity that
occurs in the Hubbard model survives in the presence of
longer-ranged repulsive interactions V,V ′, . . ., provided that
these interactions are no larger than αU 2/W , where α is
a constant of order unity. Lastly, we have shown, using
DMRG calculations, that in the intermediate-coupling regime,
the spin-gap survives even in the presence of a substantial
nearest-neighbor interaction, suggesting the stability of dx2−y2

superconductivity against longer-ranged interactions.
Our findings have possible relevance for understanding

some aspects of the effect of material-specific changes in

the electronic structure on the transition temperatures of un-
conventional superconductors. Although we have shown that
unconventional superconductivity from repulsive interactions
is a robust phenomenon, which survives in the presence of
substantial farther-range repulsions, there is nonetheless a
strong tendency for such interactions to produce a significant
reduction of Tc. Conversely, if screening by a proximate
polarizable medium reduces V and V ′, this could lead to a
marked enhancement of Tc.

As a point of comparison, recall that in a conventional
electron-phonon superconductor, Tc depends on the electron-
electron interactions only through μ∗. However, because of
retardation, μ∗ ∼ 1/ ln[EF /ω0] is largely independent of the
bare electron-electron interaction. Moreover, the effective
attraction induced by the phonons is typically highly local,
and so is also unlikely to be very sensitive to small changes in
the environment. Thus, a sensitivity to the screening effects
of a polarizable environment may be one of the uniquely
characteristic features of pairing due to electron-electron
interaction.
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