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Within the tunneling Hamiltonian formulation for the eight-component spinors, the Josephson critical
supercurrent has been calculated in a planar superconductor-normal graphene-superconductor junction. Coupling
between superconductor regions and graphene is taken into account by a tunneling Hamiltonian which contains
two types of tunneling, intravalley and intervalley tunneling. Within the present tunneling approach, we find
that the contributions of two kinds of tunneling to the critical supercurrent are completely separable. Therefore,
it is possible to consider the effect of the intervalley tunnelings in the critical supercurrent. The incorporation
of these type of processes into the tunneling Hamiltonian exposes a special feature of the graphene Josephson
junctions. The effect of intervalley tunneling appears in the length dependence plot of critical current in the form
of oscillations. We also present the results for temperature dependence of critical supercurrent and compare with
experimental results and other theoretical calculations.
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I. INTRODUCTION

In the past few years, after the first experimental synthesis
by Geim et al.,1 the community has witnessed the growing
interest in monolayer carbon atoms arranged in a honeycomb
lattice, called graphene. The peculiarity of graphene electronic
structure is the primary reason which has given rise to such
enthusiasm among scientists. Linear dispersion relation near
the discrete Fermi points and chiral nature of carriers in
graphene are responsible for the most intriguing phenomena
that have been reported.2,3

Among the attractive properties of graphene, from both
basic and applied points of view, are the superconduc-
tor proximity effect which has been studied experimen-
tally and theoretically. Before any experimental observation,
Beenakker4 predicted in a seminal work that at the graphene-
superconductor interface, not only the conventional Andreev
retroreflection takes place, but also it can exhibit specular An-
dreev reflection owing to presence of two different valleys in
the graphene band structure. Specular Andreev reflection takes
place when an electron in the conduction band converts into
a hole in the valance band. At the low doping level, specular
reflections are dominated and at Dirac point all reflections are
of this type.5 By solving the Dirac–Bogoliubov–de Gennes
(DBdGD) equations for an “ideal” normal-superconductor
(NS) interface, in the short junction limit, in which the
coherence length ξ = h̄vF /�0 (vF is the Fermi velocity and
�0 the superconductivity order parameter) is much larger than
junction length L, and with neglecting intervalley scatterings,
Titov and Beenakker6 and simultaneously Moghaddam and
Zareyan7 calculated the Andreev bound states, with which they
obtained the Josephson supercurrent. Their results predicted
the existence of a finite current even at the Dirac point.
In these papers, to solve the DBdG equations, the rigid
boundary condition was assumed, according to which the
superconductivity gap has a fixed and finite value in the
superconductor regions and it is zero in the normal region.

The first experimental investigation of the superconductor-
graphene-superconductor (SGS) Josephson junction8 showed

that the Josephson current does flow through these junctions.
This current depends strongly on the position of the Fermi
energy and, as it had been predicted, there was a nonzero
supercurrent at the neutral Dirac point. Afterward, several
experimental studies have been conducted.9–13 Recently, in
addition to the critical supercurrent, direct measurement of
the current-phase relation (CPR) has been performed with
the interferometry technique.14,15 The results confirm the
predicted nonsinusoidal CPR curves6 and show that the
deviation from the sinusoidal behavior increases linearly with
critical current.

At the same time, more theoretical efforts were
triggered.15–22 A self-consistent solution of the tight-binding
DBdG equation, at zero temperature16,17 and a later gener-
alization to finite temperature,18 have provided results on
the dependence of the Josephson supercurrent on length,
temperature, doping level, phase difference, and pairing
symmetries of the superconductivity order parameter. Another
method based on Cooper-pair propagation over long distances
for junctions with L � W also reveals such dependencies
in the graphene Josephson junctions.19,20 Shifting the Fermi
energy away from zero point results in an enhancement in
the critical supercurrent due to finite density of states at the
Fermi level for μ �= 0. Besides the enhancement, one can see
oscillations in the diagrams of the critical supercurrent as a
function of length.19–21

In this paper we will use the perturbative Green’s function
method in the framework of the path integral and tunneling
Hamiltonian between superconductor and normal graphene
regions to calculate the critical Josephson supercurrent. An
s-wave superconductivity pairing will be assumed in the super-
conductor areas of the graphene honeycomb lattice. In contrast
to previous papers, we do not neglect the intervalley processes,
as such processes may become important in the presence of
edges, or external potentials with sharp variations.23 Among
the other circumstances where intervalley scattering becomes
important, one can mention the presence of Kekule textures24

which may arise from the creation of instantons of opposite
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sign in two valleys.25 We will incorporate both types of
intervalley and intravalley tunneling processes into the Hamil-
tonian. We will discuss the temperature and length dependence
of the critical supercurrent. The advantage of the present
tunneling approach is that, within this approach, contributions
of intervalley and intravalley processes to the total Josephson
supercurrent can be totally separated. Therefore, the effect
of the intervalley tunneling on the critical current can be
isolated. The present formulation reveals a peculiar feature
of the graphene Josephson junctions which is the result of
incorporating the intervalley tunnelings. In the curve of critical
supercurrent as a function of junction length, the effect of
intervalley tunneling appears in the form of oscillations which
are drastically different from oscillations due to a nonzero
chemical potential.

The paper is organized as follows. First, we summarize the
perturbative Green’s function method26 and rephrase it for the
eight-component spinors needed in the present paper. We then
apply the formulation to the problem of SGS junctions. We
close the paper by a discussion on the results.

II. METHOD AND MODEL

In a Josephson junction between two superconductors, a
dissipationless supercurrent flows from one superconductor
to the other to provide a state with minimum energy.27 The
critical supercurrent is given by

I = 2e

h̄

∂F

∂ϕ
≡ Ic sin(ϕ), (1)

where F is the free energy of the system, Ic indicates the
critical supercurrent, and ϕ = ϕR − ϕL is the phase difference
between two superconductors. In the framework of the path
integral, the partition function is given by

Z = e−βF =
∫

D[�̄]D[�]e−S(�̄,�), (2)

in which S is the effective action of system that is a function
of Grassmann variables � and �̄. In the imaginary time
formalism (τ = it), the action will be given by

S =
∑

�k

∫ β

0
dτ {�̄(�k,τ )∂τ�(�k,τ ) + H [�̄(�k,τ ),�(�k,τ )]}. (3)

Here, H is the full Hamiltonian of the system that takes the
form

Ĥ = ĤL + ĤR + ĤN + ĤT . (4)

ĤL,ĤR,ĤN , and ĤT are, respectively, the Hamiltonian of
the left and right superconductors, and the normal region
and tunneling between superconductors and normal regions.
The form of these Hamiltonians can be quite general, so
that formula (12) holds under very general circumstances.
The particular form of these Hamiltonians suitable for our
own problem are given in Eqs. (13)–(15). If we express the
matrix form of the above Hamiltonian as the sum of two
parts, T̂ as the tunneling term and ĝ−1

0 for the rest, then in

the basis �̂(�k) ≡ [�̂(�kL),�̂(�kN ),�̂(�kR)], it can be written in
the compact matrix form as

Ĥ =
∑
{�k}

�̂†(�k)
[
ĝ−1

0 + T̂
]
�̂(�k), (5)

where ĝ−1
0 and T̂ are given by the following matrix forms:

ĝ−1
0 =

⎛
⎜⎝

g−1
0L 0 0

0 g−1
0N 0

0 0 g−1
0R

⎞
⎟⎠ , (6)

T̂ =

⎛
⎜⎝

0 TNL 0

T ∗
NL 0 T ∗

NR

0 TNR 0

⎞
⎟⎠ . (7)

Here, g−1
0L , g−1

0N , and g−1
0R are, respectively, the inverse propaga-

tors for the left, normal, and right areas excluding the tunneling
parts.

After a Fourier transform, the effective action becomes

S =
∑
�k,iωn

�̄(�k,iωn)
[− iωnI + ĝ−1

0 + T̂
]
�(�k,iωn), (8)

where h̄ωn = πkBT (2n + 1) are the Matsubara frequencies.
With definition,

−Ĝ−1
0 = −iωnI + ĝ−1

0 , (9)

and from Eq. (2) we have

e−βF =
∫

D[�̄]D[�]e−∑
�k,iωn

�̄(�k,iωn)[−Ĝ−1
0 +T̂ ]�(�k,iωn). (10)

This is a Gaussian integral, which can be performed to lead to
the following equation for the free energy:

F = − 1

β
Tr ln

[ − Ĝ−1
0 + T̂

]
,

= − 1

β
Tr

[
ln

( − Ĝ−1
0

) + ln(1 − Ĝ0T̂ )
]
. (11)

Here, Tr means a summation over all diagonal matrix elements
and an integration over all momenta. Having expanded this
expression in terms of the tunneling amplitude, it can be readily
shown that the fourth-order term is the first nonzero and leading
term that contributes to the Josephson supercurrent. Using
Eq. (1) and the identity ln det Â = Tr ln Â, the final expression
for the supercurrent is obtained as

I (ϕ) = −2e

h̄

1

4β

∂

∂ϕ
Tr(Ĝ0T̂ )4

= −2e

h̄β

∂

∂ϕ
Tr[ĜLT̂NLĜN T̂ ∗

NRĜRT̂NRĜN T̂ ∗
NL]. (12)

This matrix product shows a Cooper-pair propagation
between two superconductors and electron tunnelings through
interfaces and, as mentioned above, is a general formula
for obtaining the critical supercurrent. Now let us specialize
this equation to the special case of SGS junctions of this
paper. The geometry of the graphene Josephson junction
that we consider in this paper is depicted in Fig. 1. In the
normal graphene region, the low-energy electrons are governed
by the relativistic Dirac Hamiltonian HN = vF (�kN · �σ ) ⊗ τ0,
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FIG. 1. (Color online) The schematic geometry of graphene
Josephson junction. L is the separation of two superconductor (Sc)
regions and W is the junction width.

where vF � 106 m/s is the Fermi velocity in graphene and
�σ and τ are Pauli matrices. �σ operates on the sublattice
degrees of freedom and τ0 acts on the valley degree of
freedom. Dirac fermions in graphene live in two different
valleys, K and K̄ , on opposite corners of the Brillouin
zone.

Pristine graphene cannot be a superconductor under ordi-
nary conditions. Experimentally, to prepare a SGS junction,
superconducting electrodes can be deposited on top of a
graphene sheet, so that due to this proximity of superconductor
electrodes to the graphene layer, the superconductivity order
parameter can be assumed to be induced on the left and right
graphene regions. Here, an s-wave superconductivity will be
assumed in the left and right superconducting areas. In our
model, the assumption is that the superconducting pairing
takes place between two time-reversal electrons on the same
sublattice but on different valleys in the Brillouin zone.28 Thus
the mean-field Hamiltonian for the superconducting part will
be

Ĥ α
SC =

∑
�k,σ

�0e
iϕαa

†
�k,σ

ā
†
−�k,−σ

+ �0e
iϕαb

†
�k,σ

b̄
†
−�k,−σ

+ H.c.,

(13)

where a and b are fermion operators on sublattices A
and B pertaining to valley K , while ā and b̄ denote the
corresponding operators on valley K̄ . �0 is the magnitude
of the superconducting order parameter and ϕα denotes the
phase of each α = R,L superconducting leads.

The electron tunneling between superconductors and the
normal graphene region can be considered in several different
ways. Here we have assumed one of the simplest models for
electron tunneling in which the electrons tunnel through an
atomically sharp interface. The independent contributions of
the intervalley and the intravalley tunnelings to the critical
supercurrent is a direct result of this simple model for tunneling
Hamiltonian. As is depicted in Fig. 1, the superconductor
and normal graphene are assumed to be connected to each
other through their zigzag edge. The tunneling Hamiltonian
contains left and right tunneling between the superconductor
and normal graphene. As can be seen in Fig. 1, for the right
side, electron tunneling takes place between sublattice A in the
normal region and sublattice B in the superconductor region,
while at the left interface, electrons tunnel between sublattice
B in the normal region and sublattice A in the superconductor

area. Therefore, the tunneling Hamiltonian in the tight-binding
approximation can be written as

ĤT = γT

∑
i

B̂
†
iRÂiN + A

†
iLB̂iN + H.c., (14)

where γT is the tunneling amplitude and Â and B̂ generally
stand for the Dirac fermion operators on the A and B sublattices
and the summation extends over all atomic sites along the
interfaces. By writing the Dirac fermion operators as the sum
of two valley operators, the tunneling Hamiltonian for the right
side will be given by

HR
T = γT

∑
kN ,kR

e−i(kNx−kRx )xR
(
b
†
kR

akN
+ ei �Q· �RR b̄

†
kR

akN

+ e−i �Q· �RRb
†
kR

ākN
+ b̄

†
kR

ākN

) + H.c., (15)

and likewise for the left interface. As can be seen, the tunneling
Hamiltonian contains two types of tunneling, intravalley (first
and last terms) and intervalley (second and third terms) tun-
nelings. Intervalley tunneling involves a “momentum transfer”
�Q that connects the two independent valleys in the Brillouin

zone. Here because of the simple model in Eq. (14), both types
of tunnelings occur with the same amplitude γT , however, in
general they can take place with a different probability.

Now, let us define an appropriate basis to rewrite all parts
of the Hamiltonian. A suitable representation for the Fermi
operators is the following:

�(�k) = (a†
k↑,b

†
k↑,ā−k↓,b̄−k↓,ā

†
k↑,b̄

†
k↑,a−k↓,b−k↓)T . (16)

In this basis, Ĝ−1
0N and Ĝ−1

0α (α = R,L) are the block diagonal
and one can easily obtain the required matrices by just inverting
the blocks. The Green’s function of the normal region is written
as

Ĝ−1
0N = iωnI + h̄vF

⎛
⎜⎜⎜⎜⎝

�σ · �kN↑ 0 0 0

0 �σ · �kN↓ 0 0

0 0 �σ ∗ · �kN↑ 0

0 0 0 �σ ∗ · �kN↓

⎞
⎟⎟⎟⎟⎠ .

(17)

It is important to mention that in the normal area two electrons
propagate between two superconductors as a Cooper pair with
different spin. Thus, �kN↑ and �kN↓ are independent degrees
of freedom in this region. For the superconductor Green’s
function we have

Ĝ−1
0α = iωnI8×8 + [I2×2 ⊗ (�0e

iϕασzσx)] ⊗ I2×2

+
(

−(h̄vF �σ · �kα) ⊗ σz 0

0 (h̄vF �σ ∗ · �kα) ⊗ σz

)
. (18)

Finally, for the tunneling part of the Hamiltonian we have

TNα =
[

(eiθασzσx + I2×2) ⊗
(

δ↑
α 0

0 −δ↓
α

)]
⊗ Iα, (19)
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where we use these notations:

IL = 1

2
(σx + iσy) =

(
0 1

0 0

)
, (20)

IR = 1

2
(σx − iσy) =

(
0 0

1 0

)
, (21)

δσ
α = γT ei(kσ

Nx−kαx )xα , eiθα = ei �Q· �Rα . (22)

Now, we have all of the matrices needed for calculation of the
free energy. From Eq. (12) and by using these matrices, we
obtain

F = −16�2γ 4
T (h̄vF )2

β

∑
iωn,�k

[(1 + cos θ )k↓
x k

↑
x + (−1 + cos θ )k↓

y k
↑
y − sin θ (k↓

x k
↑
y + k

↑
x k

↓
y )]E2

LE2
R cos[ϕ + (k↓

x − k
↑
x )L]

DLDR[(h̄ωn)2 + (h̄vF )2k2
↓][(h̄ωn)2 + (h̄vF )2k2

↑]
, (23)

where �k is a collective index denoting all possible momenta,
i.e., �k = {�kL,�kR,�k↑

N,�k↓
N }. In Eq. (23), we have used the

following notations:

θ = θL − θR = �Q · �L,

Dα = (h̄ωn)4 + (h̄vF )4k4
α + �4

0

+ 2
[
(h̄ωn)2k2

α + (h̄ωn)2�2
0 + �2

0k
2
α

]
, (24)

E2
α = (h̄ωn)2 + �2

0 + (h̄vF )2k2
α.

The summation in Eq. (23) is over all Matsubara frequencies
and all momenta around the pertinent valleys. In the limit of
the wide junction limit, i.e., W � L, the details of the interface
become irrelevant and we can replace the summation with an

integration around the corresponding valley, up to an energy
cutoff that the linear dispersion holds.

Due to symmetry of the integration region, even terms of
the integrand can contribute to the free energy. With definition
(1) for the critical supercurrent and from Eq. (23) we obtain
(see the Appendix)

Ic = 128ekBT �2(T )γ 4
T S2(1 + cos �Q · �L)

h̄π2

×
∑
ωn

[f (iωn)g(iωn)]2, (25)

where S = WL is the area of the junction and functions f and
g are given by

f (iωn) = 1

(h̄vF )2

∫ Ec

0

x
[
(h̄ω)2 + �2

0(T ) + x2
]
dx

x4 + 2
[
(h̄ωn)2 + �2

0(T )
]
x2 + (h̄ωn)4 + �4

0(T ) + 2�2
0(T )(h̄ωn)2

, (26)

g(iωn) = 1

(h̄vF )2

∫ Ec

0

x sin(x)dx√
x2 + (h̄ωn)2

tan−1

√
1 − x2

x2 + (h̄ωn)2
. (27)

Ec is the cutoff energy and �L indicates the vector connecting
two superconducting leads.

Carefully tracing the above derivation shows that in Eq. (25)
all effects of the intervalley tunneling processes appears in
a term proportional to cos( �Q · �L). The elimination of the
term proportional to sin( �Q · �L) can be physically understood:
In view of symmetry of the problem under the y → −y

transformation, the Hamiltonian is symmetric under ky →
−ky , which implies that the free energy must be symmetric
with respect to the �Q → − �Q transformation. Hence only the
term proportional to cos( �Q · �L) will survive in the free energy.
Therefore, an oscillatory behavior in the critical supercurrent
is predicted which is solely due to intervalley processes.
It can be seen in the final result by setting �Q = 0, which
amounts to ignoring the intervalley processes [1 + cos( �Q ·
�L)] → gv = 2. This is the simple valley degeneracy expected
in all extensive quantities, when the intervalley processes are
ignored.23

The fact that the contribution of intervalley processes (both
in tunneling and superconducting pairing) gives rise to an
additive modulation by a wave vector �Q is a feature of
the present tunneling formulation. This shows that within
the present formulation the contributions of two types of
tunneling to the critical supercurrent are naturally separable,
and reproduces to the proper degeneracy factor gv = 2 in the
limit where intervalley processes are ignored. As long as we
have additive terms for intervalley and intravalley tunnelings
in Eq. (15), there will be these two separable terms in the
critical supercurrent. The oscillatory factors of 1 + cos( �Q · �r)
arise in other contexts, which require a convolution of Green’s
functions related to Dirac cones.29 Also, as mentioned before,
the two kinds of tunneling can take place with different
amplitudes, but this cannot ruin the additive independent terms
for contributions of these kinds of tunneling to the critical
supercurrent. If this is the case, each term comes with its own
amplitude in Eq. (25).
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III. RESULTS AND DISCUSSION

To calculate the critical supercurrent from Eq. (25) we
need to have the temperature dependence of the magnitude
of superconductivity order parameter �(T ). For s-wave
superconductors the pair potential satisfies30

ln
�(T = 0)

�(T )
= 2

∞∑
n=1

(−1)n+1K0

(
n�(T )

kBT

)
, (28)

where K0 is the modified Bessel function and �0(T = 0) is the
magnitude of the superconductivity gap at zero temperature.
An analytical calculation of Eq. (25) is not feasible, thus we
will calculate it numerically. The electron dispersion relation
in graphene remains linear below a momentum cutoff that cor-
responds to Ec = h̄vF kc ≈ 1 eV. Careful scrutiny of Eq. (27)
reveals an ω−6

n dependence of the summand, so that it would
rapidly decay at larger Matsubara frequencies. Therefore, it is
adequate to sum over only the first few frequencies. We are
now ready to present the results of calculations of the critical
current using Eq. (25). As indicated before, we are in the wide
junction limit (W � L), but we have no restriction on the
distance between the superconductors, i.e., we can calculate
the critical current for all range of the distances (L < ξ ,
L � ξ , and L > ξ ). Based on some experimental data from
Ref. 15, we have assumed �0(T = 0) � 6 meV, which gives
the superconductivity coherence length of the order of 102 nm.
In all of our calculations we set W = 10 μm � ξ .

Figure 2 shows the length dependence of the critical
current. The temperature at which the calculation has been
performed is 0.1Tc. In this figure, the curve with sharp
oscillations shows the total critical current, while the smooth
diagram gives the contribution of the intravalley tunneling
processes to the critical current. As it is obviously expected,
the current decreases by increasing the distance between two
superconductors. The wavelength of the oscillations in this
diagram (1/Q) is of the order of a few angstroms. Therefore,
we expect to see hundreds of oscillations within one coherence
length. To clearly observe these oscillations, in the inset we
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I c (
μ 
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)

Without intervalley scattering

FIG. 2. (Color online) Plot of the critical supercurrent as a
function of junction length for T = 0.1 Tc. The green (light gray) line
with sharp oscillations in the inset shows the total critical current and
the blue (dark gray) line presents the contribution of the intravalley
tunneling processes to the critical supercurrent.

have zoomed in a small distance on the length axis and have
plotted the numerical results of Eq. (25) in this small length
interval. In fact, the distinguishing feature of the intervalley
electron tunneling is the oscillation with a characteristic wave
vector | �Q| in the total current. This suggests that if one
measures the critical current versus the junction length, an
oscillatory behavior is expected which can be attributed to the
intervalley tunnelings.

The presence of a second valley connected to the first
one by time-reversal symmetry is the reason for emergence
of a specular Andreev reflection.4,5 The present tunneling
formulation reveals that the existence of two valleys leads
to another peculiar feature in the Josephson current through
graphene, namely, oscillatory behavior of the Josephson
current as a function of the junction length L. In fact, our
results in Fig. 2 shows that, for some distance between two
superconducting electrodes, the critical supercurrent will be
strongly suppressed due to intervalley tunnelings between
the normal and superconducting regions. This can be phys-
ically interpreted as the destructive interference between the
supercurrent arising from Andreev bound states,7 and those
arising from Andreev modes4 (made possible by specular
reflections).

In fact, dropping of the normal region enhances the critical
supercurrent and leads to the emergence of oscillations in the
diagram of the critical current,17 regardless of the Fermi-wave-
vector mismatch between the normal and superconductor
regions. Note that, in all our calculations, an undoped normal
graphene region has been assumed, so that undoubtedly the
doping19–21 is not responsible for the oscillatory behavior of
the critical supercurrent. Figure 2 clearly shows that only
the intervalley tunneling processes are responsible for such
oscillations.

One should note that taking an atomically sharp interface
model in Eq. (14) has resulted in such a crucial oscillatory term
cos( �Q · �L) in the final expression for critical supercurrent. But
in the real samples, such sharp interfaces can hardly be realized
and in most of the time we have rough interfaces. In these cases,

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
L/ξ

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

I c (
 μ

 Α
)

T = 0.1 T
c

T = 0.6 T
c

T = 0.8 T
c

T = 0.9 T
c

FIG. 3. (Color online) The critical supercurrent as a function of
junction length for different temperatures. For easier comparison,
in this plot, the intervalley tunneling processes have not been taken
into account. Decreasing the critical supercurrent by increasing the
junction length and temperature is clearly seen in these curves.
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the oscillatory term could be averaged and sharp oscillations
in the diagram will be smoothed.

Figure 3 presents the length dependence of the critical
supercurrent for different temperatures. In this plot, to show
the general dependence of the critical current on the junction
length more clearly, and also to facilitate comparison with
other papers which do not consider intervalley tunneling, we
have only retained the intravalley tunnelings. It is clearly
seen that the critical supercurrent suddenly decreases in all
diagrams, when one approaches L ≈ ξ from below. Further-
more, regarding the temperature dependence, it drops very
rapidly when temperature approaches the critical temperature.
Our results are in a good agreement with the results of the
self-consistent tight-binding method [Fig. 5(a) in Ref. 16 and
Fig. 11(a) in Ref. 17].

In Fig. 4, we have plotted the contribution of the intravalley
processes to the critical supercurrent as a function of temper-
ature. The results are displayed separately for distances below
the coherence length, L < ξ (up panel), and distances above
it, L > ξ (down panel). The up panel of this figure agrees
with results of Ref. 20. When one compares the temperature
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FIG. 4. (Color online) Temperature dependence of the critical
supercurrent for different junction lengths (up) for L < ξ and (down)
L > ξ . Notice that in these diagrams only the contribution of the
intravalley tunnelings to the critical current, have been taken into
account.

dependence for junction lengths less than the coherence length,
with those above the coherence length, a clear qualitative
difference can be observed: For distances below the coherence
length, there is a plateau in supercurrent for temperatures
smaller than 0.5 Tc and after that all diagrams reach zero near
to T = Tc. But for distances above the coherence length, after
a much shorter plateau, an exponential decay takes place for
temperatures near Tc. As one can see in Fig. 4, the temperature
at which a rapid decrease sets in decreases by increasing the
junction length.

The temperature dependence of the critical current has been
measured in several research papers. Our results are qual-
itatively consistent with these experimental measurements.
In particular, when a comparison between the observations
in Refs. 11 and 13 is made, the above-mentioned different
behaviors of temperature dependence of the critical current
can be noticed. Therefore, from our calculations, we judge that
in samples of Ref. 11 the junction length is smaller than the
coherence length, while for those in Ref. 13 the length of the
junctions seems to be above the coherence length. Similar
temperature dependencies have been obtained in the other
theoretical papers. For example, in Fig. 2 of Ref. 18 and Fig. 3
of Ref. 20, for L < ξ and L > ξ , similar results have been
obtained. Finally, in Fig. 5 the total critical supercurrent as a
function of temperature has been plotted. In this diagram both
intervalley and intravalley tunnelings have been taken into
account. As can be seen in this figure, the variation of critical
current with the junction length is different from diagrams of
Fig. 4, which is a consequence of the oscillatory behavior of the
critical current as a function of the junction length. Otherwise,
the general trends are similar to those in Fig. 4.

In summary, we employed a method based on the perturba-
tive Green’s function in the framework of the path integral to
calculate the critical supercurrent in the graphene Josephson
junction. Our results presented the length and temperature
dependence of the critical supercurrent. The role of the in-
tervalley tunnelings in the supercurrent has been investigated,
and it is shown that incorporating these kind of tunnelings
led to sharp oscillations in the behavior of critical current as a
function of the junction length. Comparison of our results with
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FIG. 5. (Color online) Plot of the total critical supercurrent as a
function of temperature for different values of the distance between
superconducting electrodes. In contrast to the diagrams of Fig. 4, in
this diagram the contributions of all processes have been calculated.
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the results that have been obtained by the other formalisms, and
also with experimental observations, suggests that the junc-
tions realized in experiment are likely to be in the weak tunnel-
ing regime, which are consistent with perturbative treatment.
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APPENDIX: DETAILS OF CALCULATIONS

To obtain Eq. (25) from Eq. (23), we should expand the
numerator of Eq. (23). For convenience, we replace k

↓
x L, k↑

x L,
k

↓
y L, and k

↑
y L, respectively, with x, x ′, y, and y ′. There are

two main terms: For the one proportional to sin ϕ, we have

sin ϕ{[(1 + cos θ )xx ′ + (−1 + cos θ )yy ′ − sin θ (xy ′ + x ′y)]

× [sin x cos x ′ − cos x sin x ′]}. (A1)

These terms are odd functions at least with respect to one of
their variables, while the integration region is even respect to
all variables, and hence they do not have contribution to the
free energy. The other term is proportional to cos ϕ,

cos ϕ{[(1 + cos θ )xx ′ + (−1 + cos θ )yy ′ − sin θ (xy ′ + x ′y)]

× [cos x cos x ′ + sin x sin x ′]}. (A2)

After careful consideration we find out that only the term
proportional to xx ′ sin x sin x ′ has a nonzero contribution
to the free energy. Therefore, the remaining integration
corresponding to normal region variables is of this type:

∫ Ec

−Ec

dy

∫ √
E2

c −y2

−
√

E2
c −y2

dx
x sin x

(h̄ωn)2 + x2 + y2
. (A3)

Integration of variable y can be performed analytically, which
gives

2
∫ Ec

0
dx

x sin x√
(h̄ωn)2 + x2

arctan

√
E2

c − x2

(h̄ωn)2 + x2
. (A4)
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