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Photon detection by current-carrying superconducting film: A time-dependent
Ginzburg-Landau approach
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We study the dynamics of the order parameter in a superconducting film with transport current after absorption
of a single photon. The system from the time-dependent Ginszburg-Landau equation, Poisson’s equation for
an electrical potential, and the heat-diffusion equation were solved numerically. For each photon energy in the
absence of fluctuations there exists a corresponding threshold current below which the superconducting state
is stable and no voltage appears between the ends of the film. At larger currents, the superconducting state
collapses starting from the appearance of a vortex-antivortex pair in the center of the region with suppressed
superconducting order parameter, which has been created by the absorbed photon. Lorentz force causes motion
of these vortices that heats the film locally and gives rise to a normal domain. When biased with the fixed current,
the film latches in the normal state. In the regime when the current via superconductor may change, which is
more relevant for experiments, the normal domain exists only for a short time, resulting in the voltage pulse with
the duration controlled by the kinetic inductance of the superconducting film.
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I. INTRODUCTION

Despite the large number of both experimental (see, for
example, Refs. 1–7 and references therein) and theoretical8–11

works on the superconductive single-photon detectors (SSPD),
still there are some questions about mechanism of photon
detection by superconductive film carrying the transport
current. The original understanding of the detection mech-
anism is as follows: after absorption of the single photon,
the hot spot is formed in the superconducting film. It
locally destroys superconductivity and leads to concentration
of the current density outside the hot spot due to decrease
of the effective width of the film.8 If the transport current is
close to the depairing current, then the current density outside
the hot-spot area may exceed the depairing current density
and the superconducting state becomes unstable, leading to
the voltage response.

The quantitative analysis of the initial stage of the hot-spot
formation in the existing theoretical models is based on
the solution of the diffusion equation for nonequilibrium
quasiparticles.8–10 It was postulated that when the number of
the nonequilibrium quasiparticles in the hot spot exceeds some
critical value, this region could be considered as a normal
one and the superconducting current is forced to flow around
it. In the refined model,9 it was supposed that even partial
suppression of the superconducting order parameter in the
hot spot leads to current enhancement outside that region
and to instability of the superconducting state and formation
of the normal domain. The further evolution of the normal
domain is usually studied by using the heat-diffusion equation
for effective temperature of quasiparticles coupled with the
equation describing the embedding circuit.11–13

In the majority of previous models, it was implicitly
assumed that the magnitude of the superconducting order
parameter |�| changes instantly in time if local temperature
T (�r,t) > Tc or local superconducting current density j (�r,t)
exceeds depairing current density jdep. But, it is well known
that |�| has finite relaxation time τ|�| and in some cases τ|�|
could be comparable with electron-phonon inelastic relaxation

time τe-ph.14 Because energy relaxation of nonequilibrium
quasiparticles in the hot spot occurs on the same time scale (or
even much shorter due to diffusion of the quasiparticles), it is
clear that finite τ|�| �= 0 should influence the photon detection
process.15

Another interesting and unresolved question is what kind
of instability of the superconducting state occurs due to
appearance of the hot-spot region. Is it gradual suppression
of the order parameter outside the hot spot due to current
concentration8,15 or nucleation of the vortex-antivortex pair
inside the hot spot?16

In our work, we use the simplest approach where the
effect of finite τ|�| is taken into account and stability of
the superconducting state is analyzed self-consistently. The
dynamics of the superconducting order parameter is studied
on the basis of the time-dependent Ginzburg-Landau equation.
This equation is coupled with the heat-diffusion equation for
the effective temperature of the quasiparticles and Poisson’s
equation for the electrical potential. We consider the current
bias regime as well as the regime when the current via
superconductor may change due to presence of the shunt
resistance and take into account the finite kinetic inductance
of the film.

Within this model, we show that the incoming photon
creates the finite-size region with partially suppressed order
parameter. We find that even for the infinite superconducting
film, such a state becomes unstable without any fluctuations
with respect to appearance of the vortex-antivortex pair (or
single vortex if the photon is absorbed on the edge of the
film) at the threshold current less than the depairing current.
Motion of the vortex and antivortex in opposite directions
under the Lorentz force heats the sample (if the threshold
current is not too small). As a result, the normal domain
appears, which either expands over the whole film (current
bias regime) or shrinks and disappears (when the current
via the superconductor may change) resulting in the voltage
pulse. Our result supports the hypothesis of Ref. 16 that the
single photon can nucleate the vortex-antivortex pair in the
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current-carrying superconductor, and their motion provides
the voltage pulse that could be detected. Our model also
confirms the experimentally observed smeared red boundary
in the single-photon detection.

The paper is organized as follows. In Sec. II, we present the
theoretical model. The results of the numerical calculations
and simple analytical estimations are given in Sec. III. In
Sec. IV, we discuss the relation of our results with an
experiment, and in Sec. V we present our conclusions.

II. MODEL

In our work, we do not study the initial part of the detection
process when the single photon is absorbed by the electron.
We use the approach of the effective temperature,17 which is
valid when the thermalization time (which is proportional to
the electron-electron inelastic relaxation time τe-e) is shorter
than the inelastic relaxation time due to electron-phonon
interactions τe-ph. We assume that during the initial time
interval ∼ τe-e, after absorption of the photon, the electron-
electron interactions create a hot spot with radius Rinit ∼
Le-e = (Dτe-e)1/2 (D is a diffusion constant) and with local
temperature T0 + �T (T0 is a bath temperature), where �T is
determined from the energy conservation

2πh̄c/λ = �T πR2
initdCv. (1)

Here, λ is a wavelength of the electromagnetic radiation, h̄ is
a Planck constant, c is a speed of light, d is a thickness of
the film, and Cv is a heat capacity of the quasiparticles (for
simplicity, we take Cv as in the normal state at T = Tc).

The time and space evolution of the temperature in
the superconducting film are found from the heat-diffusion
equation

∂T

∂t
= D

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ ρnj

2
n

Cv

− T − T0

τe-ph
, (2)

where ρn is a normal state resistivity, jn = −∇ϕ/ρn is a normal
current density, and ϕ is an electrostatic potential. Here, we
assume that the phonons are in equilibrium with the bath, and
energy relaxation occurs due to interaction with phonons. Our
calculations show that initial destruction of superconductivity
occurs on a time scale shorter than τe-ph, and therefore at the
initial stage of the dynamical response of |�|, one may neglect
the heating of phonons (in our model, we neglect the possibility
of the phonon heating during the initial t � τe-e stage of the
hot-spot formation).

To study the dynamics of the order parameter � = |�|eiφ ,
we use the time-dependent Ginzburg-Landau (GL) equation

πh̄

8kBTc

(
∂

∂t
− i2eϕ

h̄

)
� = ξGL(0)2

(
∂2�

∂x2
+ ∂2�

∂y2

)

+
(

1 − T

Tc

− |�|2
�GL(0)2

)
�, (3)

where ξGL(0) = (πh̄D/8kBTc)1/2 and �GL(0) = 4kBTcu
1/2/π

(u � 5.79; see Ref. 18) are the zero-temperature Ginzburg-
Landau coherence length and the order parameter, respectively.
Characteristic time relaxation of the order parameter described
by Eq. (3) is τ|�| = πh̄/8kB(Tc − T ). Although Eq. (3) is
quantitatively valid only near the critical temperature of the

FIG. 1. (Color online) The model geometry: the superconductive
film is placed between two normal bulk contacts; (a) the photon is
absorbed in the center of the film; (b) the photon is absorbed on the
edge of the film.

superconductor (at T � 0.9 Tc when τe-e � τe-ph and τe-e �
τ|�|), we use it to model the dynamics of the superconducting
condensate at lower temperatures to find some qualitative
results.

We should complete Eqs. (2) and (3) by equation for the
electric potential ϕ, which comes from the conservation of the
full current div(js + jn) = 0:

�ϕ = ρndiv(js), (4)

where js = Imag(�∗∇�)/(4ekBTcρn).
To model the response of the superconducting film after

absorption of the single photon, we consider the model
geometry, which is presented in Fig. 1. We need the normal
contacts [� = 0, ∂ϕ/∂x = −ρnI/(wd) at x = ±l/2] to inject
the current to the superconducting film in our numerical
calculations and that are kept at the bath temperature T0

(T |x=±l/2 = T0). The current and heat do not flow through the
lateral edges of the film (∂T /∂y = 0, ∂ϕ/∂y = 0, ∂�/∂y = 0
at y = ±w/2). To neglect the influence of the N-S boundaries
(for example, the motion of the N-S boundary) on the dy-
namical processes in the superconducting film, we artificially
enhance the superconducting order parameter in the regions
marked by the dark blue color in Fig. 1 by introducing
locally higher Tc [the width of these regions is larger than
the penetration depth of the electric field from the normal
contact and is equal to 5ξGL(0)].

To model real experiments, we consider the electrical
scheme, which is shown in Fig. 2. Here, Lk is the kinetic
inductance of the superconducting film, Rs corresponds to
the resistance of the superconductor in the resistive state (in
the model geometry, see Fig. 1), and Rshunt is the shunting
resistance. For this case, we have to find current Is , which
flows via the superconductor from the solution of the following
equation:

Lk

c2

dIs

dt
= (I − Is)Rshunt − Vs, (5)
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FIG. 2. The equivalent scheme of the superconducting detector.
The superconductor is modeled by kinetic inductance Lk and
resistance Rs , which appeared due to absorbing the photon. The shunt
has resistance Rshunt.

where the voltage drop over superconductor Vs (over the blue
region in Fig. 1) should be found from the solution of Eq. (4)
with boundary condition ∂ϕ/∂x|x=±L/2 = −ρnIs/(wd).

In numerical calculations, we use the dimensionless units.
The order parameter is scaled in units of �GL(0), temperature
is in units of Tc, and coordinate is in units of ξGL(0). Time
is scaled in units of τ0 = πh̄/8kBTcu, electrostatic potential
is in units of ϕ0 = h̄/2eτ0, and current density is in units of
j0 = h̄/2eρnτ0ξGL(0) [depairing current density in these units
is jdep/j0 = (4/27)1/2(1 − T/Tc)3/2].

To solve Eqs. (2), (3), and (5) numerically, we use the Euler
method, and to solve Eq. (4), we use Fourier analysis and the
cyclic reduction method. In numerical calculations, we first
apply the finite current and wait until all relaxation processes
connected with the current-induced suppression of the order
parameter stops. Then, at some moment of time, we instantly
increase the temperature by �T in the circle or semicircle area
inside the superconductor (see Fig. 1) and study the dynamical
response of the system. The parameters of the film are length
l = 60 ξGL(0) and width w is varied from 13 ξGL(0) up to
78 ξGL(0).

In our calculations, we use parameters typical for NbN
SSPD (Ref. 8): Cv = 2.4 mJ cm−3 K−1, τe−e = 7 ps, D =
0.45 cm2/s, ξGL(0) = 7.5 nm, Tc = 10 K, τe-ph = 17 ps. At
these parameters, Le-e � 18 nm and τ0 = 0.052 ps. In test
calculations, we consider two values for Rinit = 18 and 9 nm,
which are close to Le-e and found that the results (in particular,
the value of the threshold when the voltage appears) differ only
slightly. The presented below results are obtained with Rinit =
9 nm. For this radius and thickness of the film d = 4 nm, the
range of �T = 0.3–12.8 Tc corresponds to the wavelengths
λ � 1.3–50 μm. The bath temperature T0 is equal to Tc/2.

III. RESULTS

A. Regime with constant current

At first, we consider the current bias regime (when Is = I

and Ishunt = 0 in Fig. 2 for Rshunt → ∞). In Fig. 3, we
present the time dependence of the magnitude of the order
parameter and the effective temperature of quasiparticles in
the center of the film with width w = 52 ξGL(0) and for
the situation depicted in Fig. 1(a) for two close values of

FIG. 3. (Color online) Time dependence of the magnitude of the
order parameter (a) and temperature (b) in the center of the hot spot
(which coincides with a center of the film) for two values of the
transport current I = 0.89 Idep and 0.9 Idep. The width of the film w =
52 ξGL(0), the local initial increase of the temperature �T = 2.3 Tc

(λ � 6.5 μm). In the inset, we show contour plots of the magnitude
of the order parameter in the film at different times marked by the
numbers on the black solid curve.

the transport current. Notice that suppression of the order
parameter in the center of the hot spot needs finite time [see
Fig. 3(a)]. During this time, the local temperature in the center
of the hot spot decreases [see Fig. 3(b)] due to diffusion
of the nonequilibrium quasiparticles and energy transfer to
phonons. When the current is smaller than the threshold value
(we call it the detecting current Id ), the order parameter
after reaching some minimal value starts to grow. In this
case, the time-averaged voltage response is zero. The larger
current destroys the superconducting state. In this case, |�|
oscillates in the center of the hot spot with the amplitude,
which decays in time. Each oscillation of |�| corresponds
to nucleation of one vortex-antivortex pair. Motion of the
vortex/antivortex in opposite directions [see inset in Fig. 3(a)]
heats the superconductor via Joule dissipation and the local
temperature increases. It results in the appearance of the
growing resistive domain [see inset in Fig. 3(a)] in the regime
of the constant current at chosen parameters.

In Figs. 4 and 5, we show the time evolution of the order
parameter in the films with smaller width at I > Id , and one
can see qualitatively the same scenario of the order-parameter
dynamics. The dependence of the detecting current on �T
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FIG. 4. (Color online) Time dependence of the magnitude of the
order parameter in the center of the hot spot (which coincides with
the center of the film). The width of the film w = 26 ξGL(0), the bias
current I = 0.86 Idep, the local initial increase of the temperature
�T = 2.3 Tc (λ � 6.5 μm). The inset shows contour plots of the
magnitude of the order parameter in the film at different times marked
by the numbers on the black solid curve.

(i.e., on the energy of the absorbed photon) and width of the
film is shown in Fig. 6. The detecting current decreases with
the increase of the photon energy and its value depends on
the position where the photon is absorbed (in the center or
on the edge of the film). For fixed photon energy, the ratio
Id/Idep initially grows with increasing width of the film and
then saturates for large w [see Fig. 6(b)].

We shall note that for high-energy photons (large �T ) and
relatively narrow film, the detecting current is much smaller
than the depairing current [see Fig. 6(a)]. In this case, the
Joule dissipation could be weak, the normal domain does
not appear, and superconductivity recovers after nucleation

FIG. 5. (Color online) Time dependence of the magnitude of the
order parameter in the center of the hot spot (which coincides with
the center of the film). The width of the film w = 13 ξGL(0), the bias
current I = 0.75 Idep, the local initial increase of the temperature
�T = 2.3 Tc (λ � 6.5 μm). The inset shows contour plots of the
magnitude of the order parameter in the film at different times marked
by the numbers on the black solid curve.

FIG. 6. (Color online) (a) The dependence of the detecting current
on the instant increase of the temperature in the circle with radius Rinit

for narrow and wide films with two positions of the photon absorbtion
(in the center and on the edge of the film). (b) The dependence
of the detecting current on the width of the superconductive film
for three values of �T/Tc = 0.8, 2.3, and 3.8, corresponding to
three wavelengths of the electromagnetic radiation λ = 18.8, 6.5 and
3.9 μm, respectively (photon is absorbed in the center of the film).

of several vortex-antivortex pairs in the hot-spot area. For film
with w = 13 ξGL(0) and �T = 12.8 Tc the normal domain
appears only at I > 0.36 Idep [Id � 0.23 Idep, see Fig. 6(a)],
which is close to the value of the current when the heat
dissipation and heat removal are equal to each other:

ρnj
2
heat

Cv

= Tc − T0

τe-ph
(6)

and for our choice of parameters, Iheat = jheatwd � 0.23Idep.
According to our numerical calculations, the voltage re-

sponse appears when the vortex-antivortex pair is nucleated
in the center of the hot spot. To get insight as to why
it occurs, we consider the following simple model. Let us
model the region with suppressed |�| in the hot spot by
circle of radius R, and we assume that |�| is spatially
uniform and has value �in inside the circle and in the rest
of the infinite thin superconducting film |�| = �out > �in.
We are interested in how transport current is distributed in
such a superconducting system and when the superconducting
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vortex-free state becomes unstable. For simplicity, we neglect
the proximity effect (which is reasonable when R � ξ ) and
use the London model js = |�|2∇φ/(4ekBTcρn). Distribution
of the superconducting current can be found from the current
conservation divjs = 0. As a result, we obtain that, inside the
circle, the supervelocity v ∼ ∇φ is larger than v in infinity

vin = 2v∞
1 + γ 2

(7)

(γ = �in/�out), and it is locally enhanced outside the circle

vout(r) = v∞

(
1 + R2

r2

1 − γ 2

1 + γ 2

)
, r > R (8)

where the distance is measured from the center of the circle and
we present the result at angle α = π/2 between the direction
of the current and radial vector in the polar system of the
coordinate.

One may find corrections to Eqs. (7) and (8) for film with
finite width in the limit when 2R/w � 1 and the circle is
placed in the center of the film [see Fig. 1(a)]. Assume that for
finite film with 2R/w � 1, Eqs. (7) and (8) are approximately
valid, but the coefficient v∞ we replace by unknown v∗, which
we find from the conservation of the full current

I ∼ �2
outv∞wd = 2d

∫ R

0

2�2
inv

∗

1 + γ 2
dy + 2d

∫ w/2

R

�2
outv

∗

×
(

1 + R2

y2

1 − γ 2

1 + γ 2

)
dy. (9)

As a result, we find

v∗ = v∞

/ [
1 −

(
2R

w

)2 1 − γ 2

1 + γ 2

]
. (10)

Note that Eq. (10) is also valid (with replacement 2R/w →
R/w) for the case when the semicircle of radius R with
suppressed |�| = �in is placed on the edge of the film [see
Fig. 1(b)]. We have to stress that the coefficient in front of
the term (2R/w)2 in Eq. (10) is approximately valid (up to
coefficient of order of unity) and the correct value should be
found from the expansion of the exact result in series with
small parameter 2R/w.

Because �in < �out and vin > vout, the superconducting
Meissner (vortex-free) state first becomes unstable inside the
circle (semicircle). Using the value of the critical supervelocity
vc ∼ |�| for instability of the spatially uniform superconduct-
ing state, which follows from stationary Eq. (3), we find [by
equalizing vin = vc and using Eq. (10)]

Ipair

Idep
= γ (1 + γ 2)

2

[
1 −

(
2R

w

)2 1 − γ 2

1 + γ 2

]
. (11)

The current Ipair is our estimation for the current when the
vortex-antivortex pair is nucleated inside the circle (with
replacement 2R/w → R/w, it corresponds to the threshold
current when the single vortex is nucleated in the center of the
semicircle on the edge of the film). It is worth to mention here
that it is not the current when the resistive state appears in the
sample because to escape the circle (semicircle), the vortex
and antivortex should overcome the energy barrier connected
with jump in |�|. To estimate this critical current, we assume

that the vortices may leave the circle (semicircle) when the
supervelocity [averaged over finite region ∼ ξ (T ) near the
edge of the circle] is equal to vc. Using Eqs. (8) and (10), it is
easy to find that

Ires

Idep
=

[
1 −

(
2R

w

)2 1 − γ 2

1 + γ 2

] / (
1 + R

R + ξ (T )

1 − γ 2

1 + γ 2

)
.

(12)

One can see that Ipair � Ires (they are equal when �in =
�out and γ = 1). Both critical currents decrease with decreas-
ing �in and Ipair = 0 and Ires = Idep(1 − 4R2/w2)/2 when
R � ξ (T ) and γ = 0 (it corresponds to the normal state of
the circle).

To complete the analytical analysis, we have to correlate the
radius of the region with suppressed |�| and �in with energy
of the incoming photon. Let us assume that the spatial and
time dependence of the temperature after photon absorbtion is
described by the following expression:

T (r,t) = β

4πDt
e−r2/4Dt + T0, (13)

which is the solution of Eq. (2) with replacement of the heating
term by βδ(t)δ(−→r ) (β = 2πh̄c/λCvd), which describes the
energy delivered by the photon to the quasiparticles at the
moment t = 0 and in the point r = 0 [we also neglect the last
term in Eq. (2) because we are interested in time interval of
about τ|�| � τe-ph after photon absorption].

Local enhancement of temperature leads to suppression of
the order parameter in the hot spot. We may estimate it by
using Eq. (3) where we neglect for simplicity the term with
the second derivative

τ|�|(0)
∂|�|
∂t

=
(

1 − T

Tc

− |�|2
�GL(0)2

)
|�|. (14)

One can see that while the right-hand side of Eq. (14)
is negative, the order parameter decreases. Because T is
maximal in the center of the hot spot and decreases in time,
it is reasonable to suppose that the order parameter stops to
decrease when T = Tc in the center of the hot spot. Using
Eq. (13), we find that it occurs at

δt = β

4πD(Tc − T0)
� �T

Tc

τ|�|(T0)

4
, (15)

where we used Eq. (1) to express β = �T πR2
init and Rinit =

1.2 ξGL(0) via parameters of our numerical model. Using this
result and Eq. (13), we may estimate the size of the region
where the order parameter is suppressed:

R � 2
√

Dδt =
√

β

π (Tc − T0)
� ξ (T )

√
�T

Tc

. (16)

From Eq. (14), one may find suppression of |�| in the hot spot
at r < R by moment t = δt . In the following, we assume that
�in = |�|(r = ξ,t = δt). Using Eqs. (13) and (14), we find

γ = �in

�out
� exp

(
− 1

τ|�|(0)

∫ δt

0

T (ξ,t)

Tc

dt

)

� exp

[
− β

4πξGL(0)2Tc

ln

(
β

πξGL(0)2Tc

)]
, (17)

024509-5



A. N. ZOTOVA AND D. Y. VODOLAZOV PHYSICAL REVIEW B 85, 024509 (2012)

which is approximately valid for photons with
[β/πξGL(0)2Tc � �T/Tc � 1].

For the photon absorbed on the edge (which creates
the semicircle), the above results are also valid with the
replacement of β by 2β. Finite width of the film does not
affect the above results too much, while w � 2R (or w � R

for the semicircle) due to exponential decay of temperature at
r > R.

Combination of Eqs. (16) and (17) and (11) and (12)
qualitatively explains our numerical results. First of all, with
increase of the photon energy, R increases and γ decreases
providing the decrease of Ires and Ipair [compare with Fig. 6(a)].

Second, the above analytical results also explain the
decrease of the detecting current with decreasing width of the
sample [compare Fig. 6 and Eq. (12)]. Third, when the photon
is absorbed on the edge of the film, it creates the semicircle
with larger radius R′ = √

2R (in comparison with the photon
absorbed in the center). It results in larger detecting current
than Id for the photon absorbed in the center of the film [see
Eqs. (11) and (12) with replacement 2R/w by R′/w and for
high-energy photons when γ � 1]. Note that the effect is
stronger for films with smaller width [compare with Fig. 6(a)].

For photons of relatively small energy (�T/Tc � 1), which
create the circle (semicircle) with small effective radius R �
ξ (T ) and wide film [w � ξ (T )], the situation is different. In
this limit, the correction factor due to finite w in Eqs. (11) and
(12) is small and one can see that Id is smaller for the photon
absorbed on the edge than for the photon absorbed in the center
of the film (due to difference in radii and in γ , which is finite).
It correlates with our numerical results for low-energy photons
(small �T ) and wide film [see Fig. 6(a)].

We have to note that because of the temperature gradient
and proximity effect, the distribution of the order parameter
is nonuniform in the hot spot formed by the photon. This
factor was not taken into account in the above model and it
brings the quantitative difference between our numerical and
analytical results. Our numerical calculations show that, at
any considered photon energy, the order parameter is finite in
the hot spot at the moment when the first vortex-antivortex
pair is nucleated. After nucleation, the vortex and antivortex
becomes immediately unbound and can move freely across the
superconducting film. Therefore, the found above values for
Ipair and Ires could be considered as low and upper thresholds
for the true detecting current.

B. Regime with changing current

In the experiments, the circuity shown in Fig. 2 is usually
used to prevent the latching of the superconductor in the normal
state. As a result, with the appearance of the voltage drop over
the superconductor, the current via the superconducting sample
decreases and it switches back to the superconducting state.

In our calculations, we use Rshunt = 50 Ohm. The kinetic
inductance is evaluated using the following expression:

Lk = 4πλ2
Ll

wd
, (18)

where λL is a London penetration depth.
In Fig. 7(a), we present the time dependence of the voltage

drop Vs via the superconductor (resistance Rs in Fig. 2) for

FIG. 7. (Color online) (a) The time dependence of the voltage
drop via the superconductive film calculated for two lengths: l = 100
and 200 μm. The inset shows the distribution of the magnitude of
the order parameter along the film (at y = 0) at different moments in
time. (b) The time dependence of the temperature in the center of the
film (hot spot) for the same films. The inset shows the distribution of
the temperature along the film (at y = 0) at different moments in time.
The width of the film w = 13 ξGL(0), the bias current I = 0.6 Idep, the
local initial increase of the temperature �T = 3.8 Tc (λ � 3.9 μm).

two films with lengths l = 100 and 200 μm [w = 100 nm,
d = 4 nm, and λL = 400 nm (Ref. 19)]. It is seen that with
a decrease of the kinetic inductance, the duration and the
amplitude of the voltage pulse becomes shorter and smaller
correspondingly. The reason is simple: for smaller Lk , the
current via superconductor decreases faster, the temperature
inside the normal domain increases slower [see Fig. 7(b)], and
it takes less time to cool the sample up to bath temperature T0

[see Fig. 7(b)].
For the longest film, the duration of the voltage pulse is

about 900τ0, which is much larger than the typical time interval
between consequent nucleation of the vortex-antivortex pair
�t � 10τ0 [we roughly estimate it as a time interval between
nucleation of the second and third vortex-antivortex pairs (see
Fig. 5)]. Therefore, at least 90 vortex-antivortex pairs are
nucleated during this voltage pulse.

In Fig. 8(a), we present the time dependence of Vs for
photons of different energy and position where it is absorbed.
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FIG. 8. (Color online) (a) The time dependence of the voltage
via the superconductive film with length l = 200 μm and width w =
26 ξGL(0) for photons of different energy (different �T ) and position
of the absorbtion (in the center or on the edge of the film). (b) The
time dependence of the current via shunt resistance (the bias current
I = 0.88 Idep).

Notice that the shape of the voltage pulse and current Ishunt

[see Fig. 8(b)] via shunt resistance (which is measured in
the experiments with SSPD) slightly depend both on �T

and absorption position. At times larger than 1000 τ0, when
the voltage drop via superconductor is equal to zero [see
Fig. 8(a)], the current Ishunt decays with characteristic time
τ = Lk/Rshuntc

2 � 5 × 104τ0 for our choice of parameters.

IV. RELATION TO AN EXPERIMENT

The model that we use [Eqs. (1)–(4)] is strongly oversim-
plified. First of all, it does not take into account loss of the
energy of photon at initial stage of formation of the hot spot on
time scale τe-e. Second, we neglect temperature dependence of
Cv , oversimplify the energy transfer to the phonons [last term
in Eq. (2)], and we did not take into account the possibility
of direct partial destruction of the superconducting order
parameter by the incoming photon (in our approach, |�| is
influenced only via effective temperature of quasiparticles).
Moreover, the time-dependent Ginzburg-Landau equation
[Eq. (3)] is not quantitatively correct at temperatures lower
than ∼0.9Tc and (within the quasiequilibrium approach) when
τe-e � τ|�|. Therefore, direct quantitative comparison of our

results with experiment (at least at low temperatures) looks
speculative.

But, despite this we believe that the used model catches the
main physical mechanism of photon detection by the current-
carrying superconducting film, which is the following. The
incoming photon partially suppresses order parameter in the
finite region. It leads to redistribution of the current density
(supervelocity) in the film, and such a state becomes unstable
(without any fluctuations and if the current is large enough
but smaller than the depairing current) with respect to the
appearance of the unbound vortex-antivortex pair (if the photon
is absorbed far from edges) or single vortex (if the photon is
absorbed near the edge of the film). Lorentz force causes the
motion of these vortices that heats the film locally and gives
rise to a voltage pulse.

We hope that our results could be used for understanding
(not for direct fitting) of some experimental results. For
example, the found dependence of the detection current on the
position of the hot spot [see Fig. 6(a) and our analytical model]
may be used for qualitative explanation of the monotonous
decrease of the detection efficiency (DE) with the decrease of
the energy of the incoming photon.7,20,21 Indeed, if we fix the
current [for example, on the level I = Idep/2, see Fig. 6(a)] and
start to decrease the energy of the photon, the edge region of the
superconducting film first is ”switched off” from the detection
process [when �T � 8 Tc, which corresponds to λ � 1.9 μm,
see Fig. 6(a)] and at �T � 5 Tc (λ � 2.9 μm), the central
region of the superconducting film stops to detect photons. As
a result, there is a finite range of the wavelengths �λ � 1 μm
at I = Idep/2 where the detection efficiency gradually changes
(qualitatively, such a behavior was observed in Refs. 7, 20,
and 21).

If we fix the energy of photon, then with increase of the
current, the central region of the film first starts to detect
the photons and then the edge regions join the detection
process. Therefore, there is a finite interval of the currents
(δI ) within which DE gradually grows with current increase
(qualitatively, such a behavior was observed in Ref. 22). The
real samples have different kinds of imperfections (variations
of the thickness, width, material parameters, bends) having
their own values of the detecting current, and this obviously
affects δI at low currents. Our results show that even in ideal
samples with no imperfections and at low temperatures (when
the effect of fluctuations is rather small), there will be finite
δI connected with the presence of the edges. Our prediction
is that the wider the sample, the narrower is this interval of
currents [see Fig. 6(a) and Eq. (12)].

V. CONCLUSION

In our work, we use the quasiequilibrium approach and
describe the deviation from the equilibrium in terms of the
effective temperature of the quasiparticles, which depends on
time and coordinate. We assume that the absorbed photon
creates initially the hot spot in the superconducting film
with radius Rinit and local enhancement of the quasiparticle
temperature by �T , which is proportional to the energy
of the photon. The temporal and spatial evolution of the
effective temperature and superconducting order parameter
in the superconductor we study by numerical solution of
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the time-dependent Ginzburg-Landau equation couple with
Poisson’s equation for an electrical potential and heat-diffusion
equation.

We show, both numerically and analytically, that for a
photon of fixed energy, the superconducting state in the film
with transport current becomes unstable only at the current
larger than some critical value (we call it as detecting current
Id ) when the vortex-antivortex pair is nucleated in the center
of the photon-induced hot spot. Motion of the vortex and
antivortex in opposite directions heats the superconductor and
leads to the appearance of the growing normal domain when
detecting current Id is about the depairing current. For the high-
energy photon and narrow film when Id � Idep, the motion
of the vortices-antivortices does not heat the superconductor
and the sample goes back to the superconducting state after
nucleation of several vortex-antivortex pairs at I � Id even in
the regime of constant current.

We find numerically that with increasing the width of the
superconducting film, Id increases and stays less than Idep even
for the infinite film. We also find that the detecting current for
the photon absorbed on the edge of the film differs from Id for
the photon absorbed in the center of the film.

We develop a simple analytical model to explain the above
results. We assume that the absorbed photon creates in the
superconducting film of finite width the region (in the form
of circle or semicircle) where the superconducting order
parameter |�| is partially suppressed, and in the framework
of the London model, we study the current redistribution
and stability of the current-carrying state in such a system.
We find that the superconducting vortex-free state becomes
unstable in the region with suppressed superconductivity at

Ipair < Idep and the resistive state appears at larger current
Ipair < Ires < Idep. Our analytical model predicts different
values for the detecting current of the photon absorbed on
the edge and in the center of the film, in agreement with our
numerical results. The last effect is connected with different
redistribution of the supervelocity (current density) inside and
outside the circle placed in the center of the film and the
semicircle placed on the edge of the same film. We expect
that our analytical results within the London model are valid
for arbitrary temperatures contrary to the results based on
the time-dependent Ginzburg-Landau and heat conductance
equations, which are strictly valid at T > 0.9 Tc and when
τe-e � τ|�| and τe-e � τe-ph.

To model the operation of the real superconducting single
photon detector, we consider the scheme with the resistance
that is switched on in parallel to the detector and take into
account the large kinetic inductance of real SSPD. We find
that the duration and amplitude of the voltage pulse decrease
with the decrease of the kinetic inductance, while the detecting
current practically does not change. We also find that the shape
of the voltage pulse weakly depends on the energy of the
absorbed photon and on the place of the absorbtion for the
homogeneous film.
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Lamaëstre, P. Cavalier, G. Gol’tsman, J. P. Poizat, and J. C. Villégier,
J. Appl. Phys. 107, 116103 (2010).

22B. Baek, A. E. Lita, V. Verma, and S. W. Nam, Appl. Phys. Lett.
98, 251105 (2011).

024509-9

http://dx.doi.org/10.1063/1.3314308
http://dx.doi.org/10.1063/1.3314308
http://dx.doi.org/10.1016/j.physc.2007.11.028
http://dx.doi.org/10.1063/1.3374636
http://dx.doi.org/10.1063/1.3600793
http://dx.doi.org/10.1063/1.3600793

