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Micromagnetic description of the spin spiral in Fe double-layer stripes on W(110)
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The surface spin spiral in the Fe double layer on W(110) is investigated within the framework of micromagnetic
theory. It is shown that the previously suggested restriction to homogeneous spiral profiles and the consideration
of the demagnetizing energy within the concept of an effective magnetic anisotropy do not allow for a consistent
description of all experimental observations. After a detailed discussion of the model approaches in the literature,
an extended micromagnetic model is proposed. The respective model parameters are derived as fit parameters to
experimental data. It is shown that the presented model overcomes the deficiencies of all previous approaches.
In particular, it reproduces the hitherto unexplained divergence of the spiral period in narrow Fe double-layer
stripes of a width below 15 nm.
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I. INTRODUCTION

During the past decade, the surface spin spiral in the Fe
double layer (DL) on W(110) was the subject of numerous
experimental and theoretical studies.1–13 One major focus
of these investigations was put on the identification of
the magnetic interactions that drive the formation of the
spiral state. Within the framework of micromagnetic theory,
the magnetic exchange stiffness A, the effective anisotropy
parameter Keff , and the Dzyaloshinskii-Moriya14–17 (DM)
vector D were determined. However, it turned out that,
depending on the underlying model approach, the values
of these parameters vary tremendously, with none of the
suggested models being powerful enough to reproduce all
experimental observations in a consistent way. Consequently,
quantitative conclusions concerning the parameter values and
thus the driving forces of the spiral ground state remained
puzzling.

In particular, we are aware of four approaches that have been
discussed in the context of the theoretical description of the
Fe DL on W(110).1–4 Table I compares these approaches with
respect to their power to reproduce the measured right-rotating
cycloidal character of the spin spiral,3 the spiral period,8,10

the domain-wall width,10 the domain-wall direction,2 the
magnetic field dependence,1 the temperature dependence of
the spiral state,8,9 the stripe-width dependence of the spiral
period, and vanishing of the spiral state for stripe widths below
about 15 nm.8,10 Agreement (disagreement) of the theoretical
results in Refs. 1–4 with the experimental observations is
indicated by + (−) signs. The table indicates that all models
give predictions being contradictory to at least some of
the experimental observations. In particular, none of the
models can explain the measured temperature and stripe-width
dependence of the spin spiral state. These major deficiencies
certainly call for a theoretical description, which goes beyond
the previously suggested models and is powerful enough to
reproduce all measured properties in a consistent way.

Except for the case of Ref. 2, the models cited in Table
I rely on the calculation of the total energy density per
magnetic volume on the basis of a micromagnetic continuum

model:

ε [φ (x)] =
∫ λ

0 Aφ̇2 + Dφ̇ + Kccos2φ dx

λ
+ εd [φ (x)] . (1)

Here, φ(x) describes the spiral profile, i.e., the angle of the
magnetization with respect to the propagation direction, as a
function of the position x along the spiral. The parameter λ

indicates the period length. The three summands of the inte-
grand describe the energy density contributions of magnetic
exchange, the DM interaction, and the crystalline anisotropy.
The functional εd [φ (x)] refers to the energy density of the
demagnetizing field.

In contrast to Refs. 1,3, and 4, the Monte Carlo simulations
in Ref. 2 rely on a set of discrete spins and are not based on
a micromagnetic continuum theory. Nevertheless, the results
can be translated into the micromagnetic parameters of a
corresponding continuum model based on Eq. (1). This allows
for a direct comparison to the results of Refs. 1,3, and 4 as
summarized in Table I.

The demagnetizing energy density εd in Eq. (1) can be split
into two parts:

εd =
∫
V

μ0

2 Mz
2 dV

V︸ ︷︷ ︸
ε0

d

−
∫
V

μ0

2 H∗
d · M dV

V︸ ︷︷ ︸
ε∗

d

. (2)

This splitting relies on the idea that the demagnetizing field
Hd can be written as a superposition of two field contributions,
i.e., Hd = H0

d + H∗
d. In particular, H0

d can be chosen such that
H0

d = −Mz, with Mz being the projection of the magnetization
onto the direction of the surface normal. V refers to the
magnetic volume of the sample. For the special case ε∗

d = 0
(homogeneous magnetization), Eq. (1) reduces to

ε [φ (x)] =
∫ λ

0 Aφ̇2 + Dφ̇ + Keffcos2φ dx

λ
. (3)

Here, Keff = Kc − μ0

2 M2
S is an effective anisotropy parameter

that considers the effect of both the crystalline anisotropy
and the energy density contribution of ε0

d. In particular, the
approximation does not account for ε∗

d and the possibility of
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TABLE I. Agreement (+) and disagreement (−) of current models
with experimental observations.

Ref. 1 Ref. 2 Ref. 3 Ref. 4

Cycloidal character − − + +
Rotational sense − − + +
Spiral period − + + −
Domain-wall width + + + −
Domain-wall direction − + + +
Magnetic field + − − −
dependence
Vanishing spin contrast − − − −
at elevated temperature
Stripe-width dependence − − − −
of the spiral period

a dipolar-driven destabilization of the collinear ferromagnetic
state. The DM interaction is the only driving force toward
noncollinearity. In the following, the validity of Eq. (3) will
be discussed in detail. In particular, it will be shown that the
discussed approximation is appropriate for the micromagnetic
description of closed Fe DL films on W(110). In a second
step, it is shown that in Fe DL stripes of finite width, ε∗

d can no
longer be neglected and must be taken into account in order to
describe the experimentally observed stripe-width dependence
of the spin spiral profile.

II. CLOSED FE DOUBLE-LAYER FILMS

In the studies summarized in Table I, the experimentally
observed spin spiral state in the Fe DL on W(110) was
investigated using micromagnetic calculations and Monte
Carlo simulations. In Ref. 1, the spiral state is induced by the
definition of appropriate boundary conditions. In Ref. 2, the
observed magnetic structure is discussed in terms of classical
domain theory where magnetic domains are formed due to
the reduction of dipolar energy. References 3 and 4 consider
the DM interaction as the dominating driving force toward
noncollinearity. In all studies, the micromagnetic parameters
A, K , and D were determined as fit parameters of the
underlying micromagnetic models.

According to Table I, none of the suggested models
allows for the explanation of all experimental observations.
Therefore, it must be taken into account that all reported
models can only be considered as effective models with
effective model parameters A, K , and D. A priori, it is not
clear whether these effective model parameters can be related
to physically meaningful quantities such as exchange stiffness,
magnetic anisotropy, and the DM vector, as was done in the
studies summarized in Table I.

In the following, the previously suggested models will
be compared and a critical discussion of the underlying
assumptions will be given. For the extended Fe DL on W(110),
it will be shown that, using the model described by Eq. (3),
a consistent explanation of all experimental observations of
the magnetic properties can be achieved. The description goes
beyond all previous approaches and results into a unique set of
micomagnetic parameters, which can be related to the physical

quantities exchange stiffness, magnetic anisotropy, and the DM
vector.

A. Exchange stiffness and effective anisotropy

Initially, the discussion is restricted to the micromagnetic
models and the fitting procedures applied in Refs. 1 and 2. A
major focus is put on the conflicting predictions and values of
the micromagnetic parameters A and Keff , as determined in
these studies.

Starting from Eq. (1) and Refs. 1 and 2, we suggest that the
inconsistencies between the models originate from two issues:
(i) In both models, the DM interaction was omitted (D = 0).
(ii) In Ref. 1, the micromagnetic parameters were determined
by data fits with respect to the spiral shape, while in Ref. 2
they were obtained by fits to the spiral period.

1. Data fits with respect to the spiral period

In general, the period of magnetic domain patterns and
spin spirals depends on the demagnetizing energy density (in
particular ε∗

d) on the one hand and the domain-wall energy on
the other hand. Starting from Eq. (3), the domain-wall energy
can be calculated using variational techniques:18

E =
√

AKeff − πD. (4)

As a direct consequence of this relationship, the spiral period
increases with increasing values of A and Keff and decreases
with increasing values of D. Thus, the spiral period can be
reproduced on the basis of infinitely many micromagnetic
parameter sets (A, Keff , D). In Ref. 2, one of these pa-
rameter sets (D = 0) was chosen arbitrarily by omitting the
DM interaction. However, according to recent experimental
results,4,19,20 the assumption of a vanishing D is problematic
in the context of ultrathin magnetic films.

2. Data fits with respect to the spiral shape

Like the domain-wall energy [Eq. (4)], the domain-wall
profile, and thus even the profile of a complete spin spiral, can
be calculated starting from Eq. (3) using variational techniques
and appropriate boundary conditions. For a characteristic
spiral sequence representing a full rotation of the magnetic
moments by 360◦, the field dependence of the spiral profile is
described by21

φ360 (x) =
∑
+,−

arcsin

[
tanh

(
x ± c

w/2

)]
, (5)

where

c := w

2
arcsin

(√
2Keff

MSμ0H

)
(6)

and

w := 2

√
A

Keff + MS
2 μ0H

. (7)

Here, MS is the saturation magnetization, μ0H indicates
the applied magnetic field, w is the width of a classical
domain wall, and 2c is the field-dependent distance between
two 180◦ walls being compressed by the external magnetic
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field. Note that in contrast to the spiral period, the spiral
profile is independent of D. Instead, it is fully characterized
by the parameters A, Keff , MS, and μ0H . Consequently,
assuming a reasonable value of MS, the parameters A and
Keff can be determined independently by fitting Eq. (5) to a
field-dependent series of measured spiral profiles, as was done
in Ref. 1. Since the spiral profile is independent of D, the
fitting procedure remains applicable even in the presence of
a significantly strong DM interaction. Thus, although the DM
interaction was not considered in Ref. 1, the conclusions drawn
remain valid even in the more general case of nonvanishing
D. Consequently, the following analysis will be based on the
parameter values reported in Ref. 1:

A = 1.8 × 10−11 J/m , Keff = 1.25 × 106 J/m3. (8)

B. Dzyaloshinskii-Moriya vector

Using the micromagnetic parameters of Eq. (8), the shape
of the experimentally observed spiral profile and its magnetic
field dependence for B � 50 mT can be reproduced using
a micromagnetic model that does not consider the DM
interaction.1 However, in zero field, such a model fails and
predicts a collinear magnetic ground state. In Ref. 1, this
problem was overcome by inducing the spiral state on the
basis of appropriate boundary conditions. In the following, it
will be discussed that the boundary conditions can be dropped
in the presence of a sufficiently strong DM interaction. In
particular, in such a model, the direction of the DM vector can
be determined by reproducing the experimentally observed
propagation direction of the spin spiral, and thus the direction
of the domain walls.3,4 The magnitude of D is determined by
reproducing the measured zero-field spiral period in addition
to the previously discussed spiral shape and its magnetic field
dependence.

1. Homogeneous spiral profiles

In analogy to the theoretical analysis in recent
publications,4,19,20 the discussion is first restricted to homo-
geneous, i.e., to continuously rotating, magnetization profiles:

φλ (x) = ±2π

λ
x. (9)

Here, the sign of φ (x) determines the rotational sense of the
spin spiral, i.e., (−) accounts for right-rotating and (+) for
left-rotating spirals, respectively. Using Eq. (9), Eq. (3) can be
rewritten as

ε [φλ] = 4π2Aλ−2 − 2πDλ−1 + Keff

2
. (10)

Figure 1 shows all contributions to the energy density
dispersion, as calculated for the Fe DL on W(110) on the
basis of the parameter set of Eq. (8). Here, the energy density
dispersions of right-rotating (left-rotating) spin spiral profiles
are displayed in the right (left) half-plane of the graph. For
the energy density contribution of magnetic exchange, one
observes a parabolic behavior (solid black curve). The energy
density dispersion of the effective anisotropy is independent of
the spiral period (dashed green line) except for a discontinuous
jump at λ−1 = 0 (green dot). This discontinuity is an artifact

FIG. 1. (Color) Energy density dispersions, as calculated for the
special case of homogeneous, i.e., sinusoidal, spiral profiles and
various values of the Dzyaloshinskii parameter D. The solid green
dot at the origin indicates the total energy density of the collinear
single-domain state. Energy density dispersions of right-rotating
(left-rotating) spin spiral profiles are displayed in the right (left) half
plane of the graph. λc: maximum spiral period in the spiral regime.

of the ad hoc restriction to homogeneous spiral profiles
that implies a finite spiral period λ and does not allow for
a continuous transition between the spiral regime and the
collinear ferromagnetic state. The energy density dispersion
of the effective anisotropy can be separated into the two
contributions of the crystalline (solid green line) and shape
anisotropy (solid blue line). Finally, the DM interaction results
in a linear dispersion relation with the slope being given by the
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Dzyaloshinskii parameter D (yellow line). The figure displays
three scenarios that correspond to three different values of D.
In each case, the energy density of the collinear single domain
state is given by the dot at the origin of the coordinate system.

For D = 0, the total energy density is described by a
parabola with its minimum at (0|Keff

2 ). For finite D, the parabola
undergoes an additional linear displacement with the minimum
of the parabola being shifted to(

− D

4πA

∣∣∣∣ −D2

4A
+ Keff

2

)
. (11)

The spin spiral state becomes favorable with respect to the
ferromagnetic single-domain state if the minimum of the
parabola is shifted to energy densities below the one of
the ferromagnetic configuration, i.e., if the Dzyaloshinskii
parameter D is larger than a certain critical value Dc, which
can be determined on the basis of Eq. (11) (Ref. 19):

D > Dc =
√

2
√

AKeff . (12)

At D = Dc, the magnetic ground state undergoes a phase
transition between the collinear state (dot in Fig. 1) and
the spin spiral regime. The transition is accompanied by
a discontinuous jump of the spiral period, as visualized in
Fig. 1(b). The corresponding critical spiral period λc can
be determined from the minimum of the energy dispersion
Eq. (11):

λc = 4π√
2

√
A

Keff
= 2π√

2
w0. (13)

This behavior implies that large spiral periods can only
be reproduced by simultaneously increasing the value of λc.
However, according to Eq. (13), λc is directly related to the
domain-wall width w0. Consequently, within the framework
of a homogeneous spin spiral model, large spiral periods
and narrow domain-wall profiles can not be reproduced
simultaneously, i.e., on the basis of one single and unique
set of micromagnetic parameters. In particular, the model fails
in the description of the spin spiral in Fe DL on W(110) where
the spiral period (λ = 45 nm) is significantly larger than the
domain-wall width (w0 = 7 nm).

Nevertheless, the homogeneous spiral model with its
implicit coupling of the spiral period and the domain-wall
width was applied in Ref. 4 also to the Fe DL on W(110). The
micromagnetic parameters were obtained by reproducing the
energy density dispersions calculated by density functional
theory (DFT). Since the DFT calculations were also based
on the assumption of homogeneous spiral profiles, the fit was
almost perfect. However, the assumption of homogeneous,
i.e., sinusoidal, spiral profiles becomes problematic when
the reported exchange stiffness, magnetic anisotropy, and
DM vector are compared to the experimental observations.
In particular, the domain-wall width resulting from these
parameters corresponds to about twice the experimentally
observed value, i.e., roughly 1/4 of the spiral period, not
unexpected for an assumed sinusoidal spiral profile.

2. Inhomogeneous spin spiral profiles

In order to overcome the discussed deficiencies, the follow-
ing considerations refer to the general case of inhomogeneous

spin spiral profiles. Within such an extended model approach,
the domain-wall width and the spiral period are independent
quantities, in contrast to the homogeneous spiral model
discussed before. In particular, this allows for a consistent
description of the spin spiral in the Fe DL on W(110).

For the generalized scenario of inhomogeneous spin spiral
profiles, the analysis of the various contributions to the energy
density dispersion Eq. (1) can be performed in formal analogy
to the homogeneous case. In general the spiral profile can
only be determined numerically. However, applying the same
approximation as in the previous section, i.e., the concept
of incorporating the demagnetizing energy into an effective
anisotropy parameter according to Eq. (3), the exact solution
of the spiral profile can be determined in an analytically closed
form as derived in Ref. 22:

φ (x) = ±am

⎛
⎝ 1

δ
√

A
Keff

x,δ

⎞
⎠ ,

λ = 4δ

√
A

Keff
F

(
π

2
,δ

)
, (14)

D = 4

πδ

√
AKeffE

(
π

2
,δ

)
.

Here, am is the Jacobi amplitude function. It is defined as
the inverse function of the complete elliptic integral of the
first kind. The parameter δ ∈ [0,1] indicates the degree of
inhomogeneity of the spiral profile. It is related to the spiral
period λ and the Dzyaloshinskii parameter D via F and E,
i.e., the incomplete elliptic integrals of the first and second
kinds.23 In the homogeneous limit (δ → 0, D � 4

π

√
AKeff),

the Jacobi amplitude becomes a linear function of x, thus, φ(x)
reduces to Eq. (9). With increasing δ, i.e., decreasing D, the
Jacobi amplitude function deviates from this linear behavior.
Consequently, the angle between two neighboring magnetic
moments along the spin spiral is no longer independent of the
spatial position x. The spin spiral becomes inhomogeneous.24

In contrast to the homogeneous case, φ (x) can no longer be
written as a direct function of λ since the second expression in
Eq. (14) can not be solved for δ. However, for a given value of δ,
both λ and φ (x) can be determined. Consequently, the spiral
profile and the energy density dispersions can be calculated
as a parameter curve of δ. Figure 2 shows the calculated
energy density dispersions in analogy to the homogeneous case
visualized in Fig. 1. Again, the total energy density εtot (red
curve) is given for three different values of the Dzyaloshinskii
parameter D. For all three scenarios, the energy density of
the collinear single-domain state is given by the dot at the
origin of the coordinate system. In contrast to the homogeneous
case, the total energy density dispersion is now pinned at the
origin, i.e., it is no longer shifted due to crystalline and shape
anisotropy. While the total energy density dispersion εtot(λ−1)
is symmetric for D = 0 [Fig. 2(a)], it is deformed toward an
asymmetric shape for D �= 0 [Figs. 2(b) and 2(c)]. As in the
homogeneous case, the system undergoes a phase transition
between the collinear state and the spin spiral regime if the
Dzyaloshinskii parameter D becomes equal to a critical value
Dc. In contrast to the homogeneous case, however, this critical
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FIG. 2. (Color) Energy density dispersions as calculated for the
case of inhomogeneous spiral profiles according to Eq. (14) and
various values of the Dzyaloshinskii parameter D. The total energy
density of the collinear single-domain state is visualized by the dot at
the origin. Energy density dispersions of right-rotating (left-rotating)
spin spiral profiles are displayed in the right (left) half plane of the
graph (Ref. 25).

value is now given by22,26

Dc = 4

π

√
AKeff . (15)

Again, right-rotating spin spirals are favored with respect to
left-rotating ones due to the asymmetric character of the DM
interaction [± sign in Eq. (14)]. However, in contrast to the
homogeneous scenario discussed before, the phase transition

between the collinear and the spin spiral regimes is continuous.
As a consequence, at D = Dc, the critical spiral period λc is
no longer given by Eq. (13). Instead, one obtains

λc = ∞. (16)

Thus, independent of the values of A and Keff , the measured
spiral period can be reproduced by increasing D to an ap-
propriate value above Dc. Consequently, the inhomogeneous
model allows us to simultaneously reproduce the magnetic
field dependence and the spiral period. As discussed before,
the magnetic field dependence of the spin spiral in the Fe DL
on W(110) results in the parameter set given in Eq. (8).1 The
spiral period of 45 nm is reproduced for

D = 1.05Dc = 6.4 × 10−3 J/m2. (17)

This value is by a factor of 2.26 larger than the value
determined by DFT calculations with a subsequent fitting
procedure on the basis of homogeneous spin spiral profiles.4

According to the previous discussion of the homogeneous
spiral model, this deviation is due to the fact that the
parameters determined in Ref. 4 must be considered as the
parameters of an effective micromagnetic model that describes
the underlying DFT calculations, which rely on the assumption
of homogeneous spiral profiles, i.e., on the unrealistic coupling
of the parameters A, Keff , and D.

In summary, it was shown that the spin spiral ground
state in the Fe DL on W(110) can be described within the
framework of a micromagnetic model that considers four
different magnetic energy contributions (magnetic exchange,
crystalline anisotropy, shape anisotropy, and the DM inter-
action) and allows for inhomogeneous spin spiral profiles.
In particular, the model explains the observed spiral period,
the unique rotational sense, the measured domain-wall width,
the propagation direction, the direction of the domain walls,
and the magnetic field dependence of the spiral profile in
a consistent way. By comparison to Table I, it becomes
clear that this is a first major step toward a comprehensive
description of magnetism in the Fe DL on W(110). According
to Eq. (17), the observed spin spiral state is induced because
the DM interaction is strong enough to dominate the other
interactions. However, this is only possible because of the
dipolar interaction that reduces the crystalline to an effective
anisotropy, which implicitly includes the contribution of ε0

d.
Without this dipolar energy contribution, the DM interaction
would be too weak to destabilize the collinear state. Thus, it
is the joint effect of both interactions that induces the spiral
state.27

III. FE DOUBLE-LAYER STRIPES OF FINITE WIDTH

In the preceding section, the focus was put on the analysis
of the spin spiral in the extended Fe DL on W(110). It
was shown that the spin spiral is induced by the interplay
of magnetic exchange, anisotropy, and the DM interaction.
The demagnetizing energy was considered in terms of an
effective anisotropy parameter. In particular, it was shown
that the observed spiral period, the unique rotational sense,
the domain-wall width, the domain-wall orientation, and
the magnetic field dependence (first five rows in Table I)
can be reproduced consistently on the basis of an extended
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micromagnetic model and a unique set of micromagnetic
parameters. In the following, the micromagnetic model is
extended to Fe DL stripes of finite width on W(110), as
investigated in previous SP-STM experiments.8,10,28 The main
focus is put on the investigation of the observed vanishing
of the spin spiral ground state in narrow stripes, the stripe-
width-dependent vanishing of the spin contrast at elevated
temperatures, and the stripe-width dependence of the spiral
period (last three rows in Table I).

A. Extended micromagnetic model

Up to now, all micromagnetic calculations were restricted
to the case of extended Fe DL films on W(110), i.e., the
magnetization was assumed to be constant along the direction
perpendicular to the propagation direction of the spin spiral.
Consequently, inhomogeneities of the demagnetizing field at
the edges of the Fe DL areas could be neglected. For an
appropriate description of Fe DL stripes of finite width, these
simplifications must be dropped in the following. Thus, it
is assumed that inside the Fe DL stripes, the magnetization
remains constant along the direction perpendicular to the
propagation direction, while it is assumed to be zero in the
gaps between the stripes [cf. Fig. 3(a)]. Compared to the exper-
imentally investigated samples, this assumption constitutes a
simplification since in real systems the DL stripes are separated
by in-plane magnetized monolayer (ML) areas [cf. Fig. 3(b)].
According to Ref. 29, the ML is ferromagnetic below its
Curie temperature Tc = 225 K with an in-plane-anisotropy
along [11̄0]. Nevertheless, neglecting the magnetic structure
of the ML seems to be well justified since, due to the in-plane
anisotropy, the Fe ML only has a weak stray field that is
oriented perpendicular to the magnetization in the DL and
therefore should not affect the magnetization of the DL stripes
significantly.

For an Fe DL stripe array like the one shown in Fig. 3(a),
the topography can be described by a function varying only
along the y direction perpendicular to the stripes:

τ (y) =
{

1 : nλy � y � nλy + b,

0 : nλy + b > y > (n + 1)λy.
(18)

Here, a value of 1 indicates areas that are covered by the
Fe film, a value of 0 refers to the nonmagnetic areas of the
bare substrate, and n is defined to be an integer (n ∈ N). In
agreement with the measurements presented in Refs. 8,10,
and 28 and the discussion in Sec. II, in the following, the
propagation direction of the spin spiral is assumed to be
oriented along the x axis. Thus, the two-dimensional functions
σ (x,y) and γ (x,y) can be defined as

σ (x,y) = sin [φ (x)] τ (y) = Mz

MS
(x,y),

(19)

γ (x,y) = cos [φ (x)] τ (y) = Mx

MS
(x,y).

Based on these functions, the total energy density can be
calculated starting from Eq. (1) with εd now being defined
as

εd = 1

p

{
εσ

d [σ (x,y)] + ε
γ

d [γ (x,y)]
}
. (20)

FIG. 3. (Color) (a) Magnetic configuration, as used for the
calculations in this paper. The ML areas are not considered since
the spiral profile in the DL is essentially unaffected by the ML due to
the perpendicular orientation of the magnetic easy axis. (b) Magnetic
configuration of the Fe DL stripes on W(110) and the intermediate
Fe ML. In the ML areas, the magnetic easy axis points perpendicular
to the propagation direction of the spin spiral in the DL.

Here, p denotes the surface fraction covered by magnetic
material such that the energy density εd refers to the energy per
magnetic volume. The two summands εσ

d and ε
γ

d are calculated
according to18,30,31

εσ
d [σ (x,y)] = μ0

2
M2

Sd

{
c2

00 +
∑
rs

′ [
|crs |2 1 − e−2πgrs

2πgrs

]}
.

(21)

The summation
∑′

rs is defined for integers r and s from −∞
to +∞, except for r = s = 0. The coefficients crs are defined
as

crs :=
∫ λy

0

∫ λx

0

[
σ (x,y)

λxλy

e
−2π i(r x

λx
+s

y

λy
)
]

dx dy,

(22)

grs := d

√(
r

λx

)2

+
(

s

λy

)2

.

In an analogous way, ε
γ

d calculates as

ε
γ

d [γ (x,y)] = μ0

2
M2

Sd

{
a2

00 +
∑
rs

′[
|ars |2 λ2

x

λ2
x + λ2

y

×
(

1 − 1 − e−2πκrs

2πκrs

)]}
,

(23)
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FIG. 4. (Color) Magnetic exchange εA, crystalline anisotropy εKc ,
and demagnetizing energy density εd as a function of the inverse spiral
period λ−1. The curves were calculated for an array of Fe DL stripes
with an interstripe distance λy = 200 nm. All dispersion relations
show a clear stripe-width dependence, as shown in the insets.

with

ars :=
∫ λy

0

∫ λx

0

[
γ (x,y)

λxλy

e
−2π i(r x

λx
+s

y

λy
)
]

dx dy,

(24)

κrs := d

√(
r

λx

)2

+
(

s

λy

)2

.

B. Calculated energy density dispersions

Starting from the micromagnetic model [Eqs. (1) and
(18)–(24)], the spiral profile and the energy density dispersions
εA(λ−1), εKc (λ

−1), εDM(λ−1), and εd(λ−1) can be calculated in
formal analogy to the one-dimensional closed-film scenario
of Sec. II. Figure 4 shows the energy density dispersions as
calculated for stripe widths between b = 10 and 100 nm.
The interstripe distance of λy = 200 nm was chosen such
that, within the precision of the graphical representation,
the calculated energy density dispersions do not change
upon further increase of λy . Thus, it is guaranteed that
the results refer to individual stripes that are not affected
by dipolar coupling to neighboring stripes. The limit case
b = 200 nm (magenta curve) was added as a reference. It
refers to a stripe array with neighboring stripes being merged.
It is geometrically equivalent to the closed-film geometry
discussed in Sec. II [Eqs. (8) and (17)]. The curve was checked
for consistency with the corresponding curve in Fig. 2, as
calculated using Eq. (3). The results coincide within the
precision of the graphical representation. This clearly indicates
that, for the special case of closed Fe DL films on W(110),
Eqs. (1) and (3) are essentially equivalent. In particular, this
gives an ex post justification of the application of Eq. (3) in
Sec. II and allows for the generalized use of the determined
micromagnetic parameters [Eq. (8)] even in the context of the
more sophisticated model equation (1).

The calculation of all curves in Fig. 4 is based on the idea
that all micromagnetic parameters are independent of the stripe
width. Taking into account that they describe local properties,

and thus essentially depend on the local lattice structure in the
Fe DL, a variation of A, Kc, D, and MS can only be expected
in very close proximity to the stripe edges. Thus, it seems to be
a reasonable assumption that the stripe-width dependence of
the parameters can be neglected for b > 10 nm (more than
40 atomic distances), as discussed in the present context.
Despite this assumption, εA(λ−1), εKc (λ

−1), and especially
εd(λ−1) show an explicit stripe-width dependence (cf. insets in
Fig. 4). The stripe-width dependence of εA(λ−1), εKc (λ

−1) only
exists in the regime of inhomogeneous spiral profiles and fully
disappears in the homogeneous limit (λ−1 = ∞). In contrast,
the stripe-width dependence of εd(λ−1) [Fig. 4(c)] prevails for
homogeneous spiral profiles and decreases when approaching
the inhomogeneous limit (λ−1 = 0). This inverse behavior can
be attributed to two mechanisms:

(i) The total demagnetizing energy density εd decreases
with increasing values of λ−1. For closed films (b = 200 nm)
and in the homogeneous limit, it converges to −μ0

2 M2
S, in

agreement with the calculations of Sec. II. Note that, according
to Fig. 4, the value to which the energy converges increases
with decreasing stripe width, as shown in Fig. 4(c). This effect
originates from the energy density contribution of ε∗

d that varies
as a function of the stripe width due to the varying significance
of the demagnetizing field inhomogeneities at the stripe edges.

(ii) As a second-order effect, the stripe-width dependence
of the demagnetizing energy density results in a stripe-width
dependence of the profile φ(x). The effect only plays a role
in the regime of inhomogeneous spiral profiles and vanishes
in the homogeneous limit, where the spiral profile is perfectly
sinusoidal by definition. In narrow stripes, the variation of
φ(x) reflects the reduced domain-wall width due to the reduced
demagnetizing energy density (ε0

d) and the increased value of
Keff . As a consequence of this reduced domain-wall width,
the exchange energy density εA increases with decreasing
stripe width [Fig. 4(a)], while the crystalline anisotropy energy
density εKc decreases [Fig. 4(b)]. In contrast, εDM(λ−1) is
independent of the shape of the spiral profile and only depends
on the spiral period, as discussed in Sec. II. Consequently, it is
not affected by the variation of φ(x) and remains unchanged
with respect to Fig. 2.

C. Stripe-width dependence of the spin spiral ground state

Starting from the energy density dispersions of Fig. 4, it is
straightforward to calculate the total energy density dispersion
and investigate its stripe-width dependence. Figure 5 shows
the result for various stripe widths. Again, the Dzyaloshinskii
parameter [D = 6.4 × 10−3 J/m2, in agreement with Eq. (17)]
was chosen such that the position of the global energy
density minimum reflects the experimentally observed spiral
period λ = 45 nm in an infinitely extended closed Fe DL film
(b = 200 nm, magenta curve). The result was checked for
consistency with the result of the one-dimensional calculation
in Sec. II. The curves coincide within the accuracy of the
graphical representation.

1. Stripe-width dependence of the spiral period

With decreasing stripe width, the depth of the total
energy density minimum gradually decreases and shifts toward
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FIG. 5. (Color) Stripe-width dependence of the dispersion of the
total energy density. The magenta curves represent the closed Fe DL
film and coincide with the respective solution, as calculated in Sec. II.
(a) With decreasing stripe width, the energy density minimum shifts
to higher energy densities and larger spiral periods (black dotted
curve). (b) At finite temperature, indicated by �ε, the width of the
energy density minimum depends on the stripe width, as indicated by
the dashed horizontal lines.

smaller values of λ−1, i.e., larger spiral periods [black dotted
line in Fig. 5(a)]. For stripe widths between 200 and 20 nm, the
spiral period varies between 45.5 and 58.8 nm, respectively.
Below b = 20 nm, the spiral period increases dramatically
and eventually reaches values in the micrometer regime.
The calculated dependence of the energy density minimum
on the geometrical stripe width is in very good agreement
with experimental observations.8,10 Thus, the model describes
the hitherto unexplained vanishing of the spiral state for
narrow stripe geometries.10 In particular, the calculations are
in good quantitative agreement with the experimental finding
of a critical stripe width of about 15 nm. In addition to the
vanishing of the spin spiral, the results of Fig. 5 predict a
continuous transition from the spiral state to the ferromagnetic
state. The calculated transition path (black dotted line) is in
good quantitative agreement with previous measurements,8

where the discussed variation of the spiral period was observed
by SP-STM. However, in Ref. 8, the varying period of the spiral
state was attributed to the Fe coverage on the W(110) substrate,

i.e., to the ratio of stripe width and interstripe distance. In
contrast to this interpretation, the energy density dispersions
in Fig. 5 indicate that the variation can be explained without
considering the influence of neighboring stripes. Thus, the
measured variation of the spiral period is suggested to be a
property of freestanding stripes, which can solely be explained
by the variation of the stripe width in the experiments,
i.e., the variation of εd due to the varying significance
of the demagnetizing field inhomogeneities at the stripe
edges.

2. Stripe-width dependence of the ground-state energy density

In addition to the stripe-width dependence of the ground-
state spiral period, the calculations visualized in Fig. 5 also
predict a stripe-width dependence of the thermal stability of the
spin spiral. The depth of the global energy density minimum
decreases with decreasing stripe width. Consequently, the en-
ergy difference between the spiral state and the ferromagnetic
state decreases as well and can eventually be overcome by
thermal excitations at finite temperatures. According to Fig. 5,
the spiral state in narrow stripes (red) can be excited at lower
temperature as compared to wider stripes (green, black) and
closed films (magenta). In addition, the energy minimum
broadens with decreasing stripe width [dashed horizontal lines
in Fig. 5(b)]. Thus, even if the spiral state can not be excited
to the ferromagnetic configuration, the range of accessible
spiral periods at finite temperature increases with decreasing
stripe width. Consequently, the calculations are compatible
with a temperature-driven excitation of the magnetic state that
results in the vanishing spin contrast observed in SP-STM
experiments performed at elevated temperature. In particular,
the calculations predict a critical temperature that increases
with increasing stripe width, in good qualitative agreement
with previous SP-STM measurements.8

IV. SUMMARY

In order to describe the properties of the spin spiral in the Fe
DL on W(110), various micromagnetic models were proposed
during the past years.1–4 However, these approaches turned
out to be contradictory to at least some of the experimental
observations (cf. Table I). In this paper, the discussed contra-
dictions could be resolved by the development of an extended
micromagnetic model. In particular, the previously suggested
models were simultaneously extended along two directions:
(i) In addition to magnetic exchange, crystalline anisotropy,
and the homogeneous contribution to the demagnetizing en-
ergy, the model accounts for the DM interaction and the energy
contribution of inhomogeneities in the demagnetizing field.
(ii) The restriction to homogeneous sinusoidal spiral profiles
was dropped and the considerations were extended to arbitrary,
i.e., inhomogeneous, spiral profiles. Based on this compre-
hensive micromagnetic model, the micromagnetic parameters
A, Kc, and D were determined as fitting parameters to the
measured spin spiral profile. The value of MS was estimated
from the respective value in bulk Fe, in agreement with Ref. 1.
In contrast to the models of Table I, the parameter set is
unique and the calculations are consistent with all experimental
observations known to date.
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In particular, the discussed calculations indicate a func-
tional relationship between the spiral period and the stripe
geometry that originates from the reduced demagnetizing
energy density in narrow stripes. Thus, according to our
calculations, it is in principle feasible to tailor the spiral
period in Fe DL stripes on W(110) by adjusting the stripe
width in an appropriate way. This may be of particu-
lar interest for future experiments and even technological
applications.
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