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Finite-size corrections of the entanglement entropy of critical quantum chains
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Using the density matrix renormalization group, we calculated the finite-size corrections of the entanglement
α-Rényi entropy of a single interval for several critical quantum chains. We considered models with U (1)
symmetry such as the spin-1/2 XXZ and spin-1 Fateev-Zamolodchikov models, as well as models with discrete
symmetries such as the Ising, the Blume-Capel, and the three-state Potts models. These corrections contain
physically relevant information. Their amplitudes, which depend on the value of α, are related to the dimensions
of operators in the conformal field theory governing the long-distance correlations of the critical quantum
chains. The obtained results together with earlier exact and numerical ones allow us to formulate some general
conjectures about the operator responsible for the leading finite-size correction of the α-Rényi entropies. We
conjecture that the exponent of the leading finite-size correction of the α-Rényi entropies is pα = 2Xε/α for
α > 1 and p1 = ν, where Xε denotes the dimensions of the energy operator of the model and ν = 2 for all the
models.
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I. INTRODUCTION

There is a great deal of interest in the ground-state properties
of quantum critical chains in the thermodynamic limit. How-
ever, obtaining the physical properties in this limit, in general,
is not possible. On the other hand, many numerical techniques
that give accurate information about the system work for finite
systems. It is therefore of fundamental importance to obtain
the physical properties of the infinite system of interest from its
formulation in a finite-size geometry. Indeed, various physical
quantities of interest are directly related to the finite-size
scaling corrections of some physical measure. In this work, we
are interested in the scaling corrections of the entanglement
entropy of one-dimensional critical systems, which have been
intensely debated in recent years.

Consider a quantum chain with L sites, described by a
pure state whose density operator is ρ. Let us consider that
the system is composed of the subsystems A with � sites
(� = 1, . . . ,L) and B with L − � sites. The Rényi entropy is
defined as

Sα(L,�) = 1

1 − α
ln Tr

(
ρα
A
)
, (1)

where ρA = TrBρ is the reduced density matrix of the
subsystem A. The von Neumann entropy, also known as
entanglement entropy, is the particular limit α → 1.

In the scaling regime 1 � � � L, it is expected that for
the critical one-dimensional systems, under periodic boundary
conditions (PBC), the Rényi entropy of the ground state
behaves as

Sα(L,�) = SCFT
α (L,�) + SUCS

α (L,�). (2)

The first term in this equation is the conformal field theory
(CFT) prediction and is given by1–5

SCFT
α = c

6

(
1 + 1

α

)
ln

[
L

π
sin

(
π�

L

)]
+ dα, (3)

where c is the central charge and dα is a nonuniversal constant.

Laflorencie et al. in Ref. 6 were the first to notice, in an
investigation of the spin-1/2 Heisenberg chain under an open
boundary condition, that unusual corrections to scaling appear
in the Rényi entropy Sα(L,�) with α = 1. They noted that
the standard CFT term [Eq. (3)] could not explain the strong
oscillation observed in the von Neumann entropy, which seems
to have its origin in the oscillating behavior of the spin-spin
correlations of the Hamiltonian. These strong oscillations,
for the quantum open chains, were observed subsequently
by several authors.6–12 More recently, Calabrese et al. in
Ref. 9 (see also Ref. 10) investigated the anisotropic spin-1/2
Heisenberg chain with PBC, and they noted that although those
oscillations are not present in the von Neumann entropy S1,
they are still present for the Rényi index α >1. Based on
exact results and also in numerical calculations of the spin-1/2
XXZ chain with PBC and zero magnetic filed, Calabrese and
collaborators conjectured that SUCS

α , apart from a nonuniversal
constant gα , has the following universal behavior9–11(see also
Ref. 6):

SUCS
α = Dα − dα = gα cos(κ�)

[
sin

(
π�

L

)]−pα

, (4)

where for convenience we introduce the function Dα(L,�).
In (4), pα is a critical exponent and κ , which has distinct
values for different models, gives the spatial period λ = 2π

κ
of

the oscillations.13 For instance, for the spin-s XXZ chains
at zero magnetic field, κXXZ = π . For these chains, the
universal exponent is pα = 2K

α
, where K is the Luttinger liquid

parameter of the underlying CFT.9,14 For the Ising model,
κIsing = 2κXXZ , and we see no oscillations. The origin of the
oscillating factor [cos(κ�)] was not yet completely understood;
however, it has been observed in the systems whose spin
correlations show an oscillating behavior.

At present, the observation of the unusual corrections
to scaling in entanglement entropy with the predicted ex-
ponents [Eq. (4)] has been confirmed only for the spin-s
XXZ chains,9,14 the one-dimensional (1D) attractive Hubbard
model, and in a dipolar boson quantum chain.15 As observed

024418-11098-0121/2012/85(2)/024418(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.024418


J. C. XAVIER AND F. C. ALCARAZ PHYSICAL REVIEW B 85, 024418 (2012)

by Cardy and Calabrese in Ref. 16, the origin of the exponent
pα in Eq. (4) is the conical singularities produced by the
conformal mapping used to describe the reduced density
matrix ρA = TrBρ in CFT. This exponent is related to the
scaling dimension Xcon of an operator of the underlying CFT
by pα = 2Xcon/α.16 This operator can be relevant (Xcon < 2)
or not (Xcon � 2). Beyond these corrections, we may also
have the usual ones coming from the irrelevant operators
(dimension XI > 2), whose leading contributions to (4) are
of order �−2(XI −2) for any α.16

Recently, Calabrese and Essler in Ref. 10, based on an
exact calculation for the XX quantum chain, found the
appearance of a correction term of order �−2 for any value of
α. As discussed in Ref. 16, we should expect α-independent
correction terms from the irrelevant operators. This would
imply that the contributing irrelevant operator has dimension
XI = 3. Although such an irrelevant operator exists in the
conformal tower of the XX model, it is quite unlikely
that this contribution comes from such an operator. In this
model, the operator responsible for the leading finite-size
corrections of the eigenenergies has dimension XI = 4,17

which would produce a correction term of order �−4. A possible
explanation is that the conical singularities may also produce
an α-independent contribution to the corrections to scaling,
besides the term of order �−2Xcon/α . Although not completely
clear, such a contribution might come from the combination
of contributions of the relevant operators,18 and in the case of
the XX chain it ends up with the main contribution of order
�−ν , with ν = 2.

Although the CFT analysis predicts the possible finite-size
corrections of the Rényi entropies, several general questions
remain to be answered for a better understanding: (a) Among
the possible relevant operators in the CFT, what should be the
leading one, with dimension Xcon, responsible for the correc-
tions coming from the conical singularities giving α-dependent
contributions of order �−2Xcon/α? (b) What should be the leading
irrelevant operator with dimension XI , giving the contribution
O(�−2(XI −2))? (c) Are the α-independent corrections �−ν ,
coming from the conical singularities, as happened in the
XX case, general? In that case, what is the value of ν? (d)
The oscillating behavior observed in the α > 1 Rényi entropy
is absent in the quantum Ising chain. Should we obtain the
oscillatory behavior of the entropies for other quantum chains
with U (1) symmetries, such as the XXZ chain?

In order to test the above predictions and answer the
above questions, we present in this paper the calculation of
the corrections to scaling in the entropies of several critical
quantum chains belonging to distinct universality classes
of critical behavior. We consider models with U (1), Z(2),
and Z(3) symmetries. The models with U (1) symmetry are
the spin-1/2 XXZquantum chain and the spin-1 Fateev-
Zamolodchikov model.19 The models with Z(2) and Z(3)
symmetries we consider are the quantum Blume-Capel and
the quantum three-state Potts model, respectively.

II. RESULTS

From the discussions presented in the Introduction, we
expect, in the region where the system size L and subsystem

size � are large (L � � � 1), the general behavior

Dα(L,�) = dα + gα cos(κ�)

[
sin

(
π�

L

)]−2Xcon/α

+ aα

[
sin

(
π�

L

)]−ν

+ bα

[
sin

(
π�

L

)]−2(XI −2)

+ · · · . (5)

The second and third terms are the leading contributions due
to the conical singularities,16 and the last term is the leading
contribution due to the standard correction to the scaling
operator, with dimension XI . The operator that produces the
second term in (6) has dimension Xcon, while the relation of
the α-independent exponent ν with the dimension of operators
is unknown. Models exhibiting oscillations in the α entropies
have gα �= 0 and κ �= 0 (mod 2π ). Note that only the exponent
of the second leading corrections depends on the value of α.
We intend to evaluate the power of the dominant term in (5),
which we denote by pα . In order to estimate the exponent pα,

we fit our data with the following equation:

Dα(L,�) = dα + fα [cos(κ�)](1−δα,1)

[
sin

(
π�

L

)]−pα

. (6)

We report first the results already known from earlier
studies for some models. The spin-1/2 XXZ chain shows
oscillations for α > 1. These corrections come from the
operator with dimension Xcon = K , where K is the Luttinger
liquid parameter.9 This is the scaling dimension of the energy
operator of the model.20 For α = 1, the oscillations do not
appear, i.e., g1 = 0, and the dominant term in (5) is not known
for general values of the anisotropy of the model. In the
particular case in which we have the XX model (free fermion
case), the dominant correction for D1(L,�) is given by the
third term in (6) with ν = 2.10

The nonintegrable spin-s XXZ chain (s = 1,3/2, . . .) on
its critical regions also shows entropy oscillations for α > 1,
but the amplitudes gα decrease strongly as we increase the
value of the spin s.14 On these models, the amplitudes of
the entropy oscillations are also ruled by the energy operator
of the model, with dimension Xε = Xcon = K , given by the
Luttinger parameter of the underlying CFT.

The results for the Ising model can be obtained from those
of the spin-1/2 XX model due to the exact correspondence
of their entropies, as shown in Ref. 21. The Ising model does
not show oscillations, for any α, due to the fact that κIsing =
2κXXZ = 2π . We also have g1 = 0 and gα �= 0 (α > 1) with
the dominant correction term given by Xcon = 1, which is also
the dimension of the energy operator of the model. In the case
α = 1, the dominant correction comes from the third term of
(5) with ν = 2.

Below, we present new numerical results for three models:
(i) the Blume-Capel model (BCM), (ii) three-state Potts model
(3SPM), and (iii) the Fateev-Zamolodchikov quantum chain
(FZQC). We investigated these models with the density matrix
renormalization group (DMRG) technique22 under PBC. We
have done four to eight sweeps. For the BCM and the 3SPM,
we used typically m = 400 states per block. This number of
states kept in the truncation process is enough to give very
precise results, the discarded weight being typically about
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10−12. However, for the FZQC we used a much larger number
of states in order to obtain precise results (up to m = 3000). In
this case, the discarded weight was typically 10−8 in the final
sweep.

A. The spin-1 Blume-Capel model

We begin by introducing the spin-1 BCM quantum chain.
This model is obtained by the time-continuum limit of the well-
known BCM in two dimensions.23 It describes the dynamics
of spin-1 localized particles, with the Hamiltonian given by

HBC = −
∑

j

[
sz
j s

z
j+1 − δ

(
sz
j

)2 − γ sx
j

]
, (7)

where sx and sz are the spin-1 SU (2) operators. The phase
diagram in the δ-γ plane is known from earlier numerical
finite-size scaling studies based in the crossing of the mass
gap energies (see Fig. 1 of Ref. 23). For values γ > γtr, the
Hamiltonian has a quantum critical line δc(γ ) governed by
a CFT in the same universality class of the quantum Ising
chain, i.e., central charge c = 1/2. At γtr, the model has a
quantum tricritical point at δtr in the universality class of
the tricritical Ising model, having central charge c = 7/10.
For γ < γtr, there is a line δ = δgap(γ ) of first-order phase
transitions. Recently, highly accurate estimates of some points
of the critical line were obtained by a new method based on
the entanglement entropy.24 In particular, the tricritical point
was located at γtr = 0.415 63 and δtr = 0.910 24. Since the
model has a critical line in the universality class of the Ising
model (IM), it is interesting, for the sake of comparison and
as benchmark tests, to consider also the integrable IM. The
Hamiltonian of the IM is given by

HIsing = −
∑

j

(
σx

j σ x
j+1 + λσ z

j

)
, (8)

where σx , σ z are spin-1/2 Pauli matrices. This model has
a critical point λc = 1 that can be obtained from its exact
solution, or even more simply from its self-dual property.25

In Fig. 1(a), we show the Rényi entropy Sα(L,�), as a
function of �, for the IM and the BCM with PBC and lattice
size L = 96. In the IM case, we select the exact critical point
λ = 1. Since in the BCM we do not know the exact values of the
critical points, we used the best estimate of the critical points
available from previous work.24 In particular, for γ = 1.1 we
used δc = 0.313 57, where we expect an error in the last digit
(see Ref. 24). In both cases, the fits to Eq. (3) give a central
charge value very close to the exact one. We found that |cfit −
cexact| � 10−3 for all critical couplings considered (some of
these estimates are presented in Table II). We emphasize that
the discrepancies between the exact values and the numerical
data are due to the finite size of the systems considered. The
numerical errors (inferred from the dependence of the entropy
with m) are smaller than the size of the symbols in the figures.
For the models with discrete (continuous) symmetry, the errors
are smaller than 10−5 (10−3).

The results presented in Fig. 1(a) are nice illustrations of
the universal behavior of the Rényi entropies at the critical
points. Although the entropies are calculated from ground
states defined in Hilbert spaces of quite distinct dimensions
(2L and 3L), the entropies show the same behavior. The small
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FIG. 1. (Color online) Results of the Rényi entropy Sα(L,�) and
of the function Dα(L,�) for the Ising and Blume-Capel models with
PBC and size L = 96. (a) Sα(L,�) vs � for two values of α and some
values of coupling (see legend). The symbols are the numerical data
and the solid lines connect the fitted points using Eq. (3). (b) Dα(L,�)
vs � for α = 3. We added 0.03 in the values of the Ising entropy in
order to see better both data in the same figure.

deviation shown in this figure is due to the nonuniversal
constant dα in (3). Notice also that both models in the Ising
universality class show no oscillations in the entropies (even
in the OBC case, which is not shown), i.e., κ = 0 in (5).

The corrections to scaling contributions are calculated
from the behavior of Dα(L,�) given in (5). As illustrative
examples, let us consider, as in Fig. 1(a), the IM at the critical
coupling λc = 1 and the BCM at the couplings γ = 1.1 and
δc = 0.313 57. In Fig. 1(b), we present Dα(L,�) for the critical
couplings of the quantum chains with PBC, α = 3, and lattice
size L = 96 (similar results are found for L = 64). Since at
these couplings both models have central charge c = 1/2,
we set this value in Eq. (3). Note in these two figures that
the changes in Dα(L,�), as a function of �, are quite small,
which indicates that the nonuniversal constants gα , aα , and bα

that appear in (5) are very small. This fact makes the task
of determining the exponent pα in (6) a challenge. Since
we are interested in the asymptotic behavior of Dα(L,�),
we have discarded the first 10 values of �. Comparison of
the entropies with different values of m indicates that the
errors in the DMRG evaluations of the entropies are around
∼10−6–10−7. Due to this fact, we also discarded the sites � at
which |Dα(L,�) − Dα(L,� + 1)| < 10−5.

We get pα by fitting our data to Eq. (6). The solid lines in
Fig. 1(b) connect the fitted points. In order to check if we are
able to extract good estimates of pα with the above-mentioned
procedure, we compare the values of pα acquired with the fit
procedure with the exact ones (pα = 2

α
) for the Ising model.

The finite-size estimates for the exponents p2,p3, and p4

are depicted in Table I. As we can observe in this table, the
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TABLE I. The finite-size estimates of the exponents pα obtained
from the fit of Eq. (6) for the Ising model with PBC and L = 96. The
results in parentheses are the exact values.

p2 p3 p4

0.978 0.646 0.473
(1.000) (0.6666) (0.5000)

finite-size estimates differ very little (less than 5 × 10−2) from
the exact values. We believe, therefore, that this approach will
also provide good estimates of the exponents pα for other
models such as the BCM.

Before presenting our results for the BCM, it is interesting
to mention that, for the IM, we got only eight points of
D

Ising
α=1 (L,�) satisfying |D1(L,�) − D1(L,� + 1)| < 10−5 for

� > 2. This is in fact expected, since for α = 1 in the IM,
the dominant correction to scaling is conjectured as D1(L,�) =
d1 + 1

60
π2

[L sin(π�/L)]2 + π2

18L2 ,26 which has a larger exponent than
those of α >1. It is amazing that a fit of those eight points to
Eq. (6) gives the following values: d1 = 0.478, f1 × (L/π )2 =
0.018, and p1 = 2.05. These values are very close to the exact
ones, i.e., d1 = 0.4785, f1 × (L/π )2 = 1/60 = 0.0166, and
p1 = 2.26,27

It is interesting to stress that the correction term of order
�−2 in the case of the IM does not come from the second term
in (5) with κIsing = 2π , but from the third term with ν = 2.
This is due to the exact relations among the entropies of the
IM and the XX chain, and the fact that there are no oscillations
in the last model for α = 1, i.e., g1 = 0.

Let us now focus on the BCM. We show in the last column
of Table II the finite-size estimates of the central charge c

for three values of γ along the critical line. We got these
estimates by a simple fit of our data to Eq. (3) for α = 1.
As we note, these values of γ satisfy γ > γtr = 0.415 63, and
the system belongs to the same universality class of critical
behavior as the Ising model with c = 1/2. Following the same
procedure done in the IM, we fit our data to Eq. (6) with the
appropriated values of c [see Fig. 1(b)] in order to extract the
exponents pα . Some finite-size estimates of pα are depicted
in Table II. As observed in this table, for γ > γtr, our results
are consistent with the exponent pα = 2/α, which is the same
as that of the IM. In the case α = 1, where the evaluations
are more difficult, we obtained, in the BCM, around 10 points
of Dα(L,�) satisfying |D1(L,�) − D1(L,� + 1)| < 10−5 for
� > 5, and the fit to Eq. (6) indicates that p1 = 2. Since the

TABLE II. The finite-size estimates of the exponents pα acquired
by the fit of Eq. (6) for the BCM with PBC, L = 96, and some values
of γ . In the last two columns, we also present the finite-size estimates
of the conformal anomaly c and the exponent p1 = ν (see text). The
values in parentheses are the expected ones.

γ p2 p3 p4 ν c

1.2 1.066 0.697 0.517 2.071 0.5000
1.1 1.041 0.682 0.504 2.062 0.5001
0.7 1.154 0.776 0.589 1.955 0.5015

(1) (2/3) (1/2) (2) (1/2)

energy operator Xε = 1, this term could be produced either by
the first term in (5) with g1 �= 0 but κ = 0, or by the second
term in (5) with ν = 2. However, the exact result derived for
the IM, which we expect to be the same for any model on its
universality class, indicates that g1 = 0 and the dominant term
in (5) is the one with exponent ν = 2. Our estimates for this
exponent p1 = ν are shown in Table II.

At the tricritical point (γtric,δtric), we were not able to extract
the exponents pα due to the fact that the α entropies are very
sensitive to the coupling constants of the model. We observed
that a very small error (ε ∼ 10−4) in the critical coupling δc

affects very little the value of the entropy along the critical line.
Typically, the entropy changes are of the same magnitude of ε.
On the other hand, at the tricritical point, a small change in the
critical couplings produces a much larger effect. Due to this
fact, since the precision of the tricritical couplings is ∼(10−5),
which is of the same order of magnitude as Dα , we are not able
to obtain a reasonable estimate of pα at the tricritical point.

B. The three-state Potts model

The quantum 3SPM is a quantum chain obtained by the
τ -continuum limit of the two-dimensional classical 3SPM.28

The quantum Hamiltonian of the model can be written as

HPotts = −
∑

i

(RiR
†
i+1 + H.c.) + λOi, (9)

where R and O are 3 × 3 matrices given by

R =

⎛
⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎠ , O =

⎛
⎜⎝

2 0 0

0 −1 0

0 0 −1

⎞
⎟⎠ .

As the IM, due to its self-duality, the 3SPM also has the
critical point at λc = 1. However, the critical fluctuations of
the 3SPM are described by a CFT with c = 4/5. For PBC,
as a consequence of the modular invariance of the related
two-dimensional model defined on a cylinder, the associated
CFT is described in terms of 10 primary operators.29 Among
these operators, we focus on the most relevant operators, which
may lead to the unusual corrections to scaling in the entropy.

The first nonzero dimension (Xm = 2/15) is associated
with the order parameter and the second one (Xε = 4/5)
is associated with the energy operator. The lowest irrele-
vant operator responsible for the finite-size corrections of
the eigenenergies of the Hamiltonian has dimension XI =
14/5.17,29

Note that in the IM and the BCM, the leading corrections to
scaling in the α entropies with α > 1 are related with the
dimension of the energy operator Xε . For this reason, we
expected in the 3SPM that pα = 2Xε

α
= 8

5α
for α > 1. Below

we use the same procedure used in the IM and the BCM to get
the exponent pα .

In Fig. 2(a), we present the Rényi entropy as a function of �

for the 3SPM at the critical coupling λc = 1 for a system with
lattice size L = 96. As observed in this figure, we also do not
see the parity oscillations, as with the models considered in
the preceding section (which also have a discrete symmetry).
We are able, in this case, to obtain a nice fit of our data by
considering only the standard term of the CFT [Eq. (3)]. The
solid lines in these figures connect the fitted points. In this case,
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FIG. 2. Rényi entropy Sα(L,�) and the difference Dα(L,�) for the
3SPM with lattice size L = 96. The symbols are the numerical data
and the solid lines connect the fitted points (see text). (a) Sα(L,�) vs
� for λ = 1, and some values of α (see legend). (b) Dα(L,�) vs � for
λ = 1, α = 2, and α = 3.

we get c = 0.799 (see Table III) very close to the expected
value c = 4/5.

Finally, we depicted in Table III the exponents pα obtained
through a fit of our data to Eq. (6). As we can see in this
table, our numerical results indicate that for α > 1, pα = 8

5α
,

confirming our prediction that as in the IM and BCM, the
energy operator gives the most important contribution in the
conical singularities. In the case of the von Neumann entropy,
i.e., α = 1, our numerical results indicate that the leading
corrections are given by the third term in (6) with the parameter
ν = 2. As happened in the Ising universality class, the operator
that gives the leading contribution for α > 1, which we believe
to be the energy operator, does not contribute for α = 1,
i.e., g1 = 0. Moreover, since the leading irrelevant operator
is XI = 14/15, we would expect a contribution of order
[sin(π�/L)]−8/15 in (5), which is also not present, i.e., b1 = 0.
This implies that both the energy and the leading irrelevant
operator ruling finite-size corrections do not contribute, at least
at leading order, to the usual von Neumann entropy. The result

TABLE III. The finite-size estimates of the exponents pα acquired
by fit of Eq. (6) for the three-state Potts model for L = 96. In the last
column, we also present the finite-size estimates of the conformal
anomaly c (see text). The results in parentheses are the expected
values.

p2 p3 p4 c

0.829 0.523 0.371 0.799
(0.800) (0.5333) (0.400) (0.800)

g1 = 0 found for all models discussed above indicates that this
is likely a general behavior for quantum critical chains.

C. The spin-1 Fateev-Zamolodchikov quantum chain

The spin-1 Fateev-Zamolodchikov quantum chain (FZQC)
is an exact integrable quantum chain whose Hamiltonian is
given by19

HFZ = ε
∑

j

{
sj · sj+1 − (sj · sj+1)2

+ 4 sin2(δ/2)
(
T ⊥

j T z
j + H.c.

)
− 2 sin2(δ)

[
T z

j − (
T z

j

)2 + 2
(
sz
j

)2]}
, (10)

where ε = ±1, T z
j = sz

j s
z
j+1, T ⊥

j = sx
j sx

j+1 + s
y

j s
y

j+1, and sx
j ,

s
y

j , sz
j are the spin-1 SU (2) operators.

This Hamiltonian has a U (1) symmetry, having the z mag-
netization as a good quantum number. The antiferromagnetic
(ε = 1) and ferromagnetic (ε = −1) models show a critical
phase with continuously varying exponents for 0 � δ � π/2.
The antiferromagnetic and ferromagnetic models are governed
by a CFT with central charge c = 3/2 and 1, respectively.30–34

The CFT in the c = 3/2 case is described in terms of
composite fields formed by Gaussian and Ising operators.30–33

The energy operator, which we believe is responsible for
the leading contributions due to the conical singularities,
has dimension Xε = π

4(π−2δ) + 1
8 and the leading irrelevant

operator responsible for the finite-size corrections of the
eigenenergies has dimension XI = π

π−2δ
+ 1.31,32

In the case c = 1, we have a Gaussian CFT or a standard
Luttinger liquid, whose Luttinger parameter changes continu-
ously along the critical line. In this case, the dimension of the
energy operator is Xε = π

2δ
and the leading irrelevant operator

responsible for the corrections to scaling has dimension
XI = 2π

δ
.34

In Figs. 3(a) and 3(b), we present the Rényi entropy Sα(L,�)
for spin-1 FZQC with PBC δ = 0.5 and size L = 72. Notice
that for ε = 1, differently from the Ising and the Blume-Capel
models, the α-Rényi entropies oscillate for α > 1, which is
a signature of the oscillating spin-spin correlations of the
quantum chain. The absence of oscillations for α = 1 also
suggests that, like the other models we have studied in previous
subsections, g1 = 0 in (5). Let us focus first on the case α = 1.
In this case, we get a very nice fit of our numerical data (black
triangles) to the standard conformal field term SCFT

α [Eq. (3)].
The fit gives us c = 1.491 (c = 1.02) for ε = 1 (ε = −1),
which is very close to the exact value cexact = 3/2 (cexact = 1).
Similar estimates of c were also obtained by considering α = 2
or 3. Note that the central charge c of the FZQC is larger than
those of the Ising and Blume-Capel models. This means that
the subsystem A is more entangled with the subsystem B in
the FZQC, as compared with the critical Ising or Blume-Capel
models. Due to this fact, we have to keep a much larger number
of states m (typically around m ∼ 2000–3000) for the FZQC
in order to get results with some similar accuracy.

Now let us consider the antiferromagnetic model ε = 1 and
α > 1. In this case, it is not possible to fit the numerical data
if we consider only the standard CFT term SCFT

α [Eq. (3)].
Relative nice fits are obtained only if we consider, in addition
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FIG. 3. (Color online) Results of the Rényi entropy Sα(L,�)
and the difference Dα(L,�) for the spin-1 Fateev-Zamolodchikov
quantum chain with PBC and size L = 72. The symbols are the
numerical data and the solid lines connect the fitted points (see text).
(a) Sα(L,�) vs � for ε = 1, δ = 0.5, and some values of α (see legend).
(b) Same as (a) but for ε = −1. (c) Dα(L,�) vs � for ε = 1, α = 2,
and α = 3 at δ = 0.5.

to the CFT term, the oscillatory correction term [Eq. (4)] with
κ = π/2. The solid lines in Fig. 3(a) are the fits to Eq. (2). For
instance, for α = 2 (α = 3) we get c = 1.48 (c = 1.45) and
p2 = 0.54 (p3 = 0.36).

Since we are confident that c = 3/2 for the spin-1 FZQC,
we set c = 3/2 in Eq. (3) as well as κ = π/2 in the function
Dα(L,�) [Eq. (5)] in order to evaluate the exponent pα in the
same way we did in the Ising, Blume-Capel, and three state
Potts models. In Fig. 3(b), we show Dα(L,�) as a function
of � for the spin-1 FZQC with PBC ε = 1, δ = 0.5, L = 72,
and three values of α. Even keeping m = 3000 states in the
DMRG, it is very hard to get high precision in the values of the
entropy for the spin-1 FZQC, as we already mentioned before.
Although the truncation errors are around ∼10−8, comparison
of the entropy results with different values of m indicate that
the errors in the entropy are around ∼10−3. For this reason,
we discarded the points in which |Dα(L,�) − Dα(L,� + 2)| <

10−3, as well as the first 10 sites. The solid lines in this figure
connect the fitted points. The finite-size estimates of pα in (6),
obtained by this fitting procedure, are depicted in Table IV. The

TABLE IV. The finite-size estimates of the exponents pα acquired
by fit of Eq. (6) for the spin-1 Fateev-Zamolodchikov quantum chain
with PBC, L = 72, and some values of δ. The values in parentheses
are the expected ones (see text).

δ p2 p3 p4

0.25 0.413 0.286 0.215
(0.4223) (0.2815) (0.2112)

0.5 0.432 0.304 0.231
(0.4917) (0.3278) (0.2459)

1.0 0.778 0.541 0.402
(0.8129) (0.5419) (0.4064)

results presented in this table indicate that pα = 2Xε/α, where
Xε = π

4(π−2δ) + 1
8 is the dimension of the energy operator of

the model. This means that, like the other quantum chains,
the energy operator gives the most important contribution
in the conical singularities for α > 1. In the case where α = 1,
like the other models, this contribution seems to be absent, i.e.,
g1 = 0 [see Fig. 3(a)]. In this case, we were not able to estimate
numerically the power of the leading correction, since we
only have three points satisfying |D1(L,�) − D1(L,� + 2)| <

10−3.
In the ferromagnetic case (ε = −1), although we expect

oscillations to be present in the α entropies with α > 1,
we could not see them numerically [see Fig. 3(b)]. This is
consistent with the conjecture that the oscillations are ruled
by the energy operator. In this case, the amplitude of the
oscillations will decay like �−pα , pα = 2Xε

α
= π

δα
. The region

where we would better see the oscillations would be for δ ≈ π
2 ,

where pα has the smaller values. However, the sound velocity,
which is given by34vs = π sin(2δ)/(2π − 2δ), is close to zero
in this region. This makes the convergence quite slow in the
DMRG, due to the small size of the energy mass gaps. To
avoid this problem and get enough precision, we considered
values of δ in other regions, e.g., δ = 1/2 [see Fig. 3(b)].
However, in this case, the expected value of pα = 2π/α is
for α = 3, pα ≈ 2.1. This gives a strong decay that is large
enough to forbid, within the numerical precision we have, the
observation of the oscillations for � > 10.

III. CONCLUSIONS

Most critical quantum chains are conformal invariant. This
symmetry implies that the mass gap amplitudes of these critical
chains, in a finite lattice, are related to the conformal anomaly
and critical exponents that label the particular universality
class of critical behavior.35 Due to these relations, the most
frequently used method to extract the conformal anomaly and
critical exponents comes from the finite-size scaling of the
eigenenergies of the critical quantum chains.

On the other hand, the conformal anomaly can also be
calculated from the Rényi entanglement entropies of the
ground state of finite quantum chains,1,2,5,36 a property related
to the eigenfunctions instead of the eigenenergies. These
results raised the question about the possibility to extract all
the critical exponents from a complete finite-size study of the
Rényi entropies of the critical quantum chains. This question
also has practical implications, since in DMRG calculations
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TABLE V. The exponent ν of the finite-size corrections of the von
Neumann entropy for the spin-1/2 XXZ chain with PBC, and some
values of � and magnetization per site M . We extracted the exponent,
as we did for the other models, considering systems with size L = 96.
For values of anisotropy close to the isotropic antiferromagnetic point
(� = 1) and M = 0, we were not able to obtain the exponent, mainly
due to the large finite-size corrections.

� M = 0 M = 1/6 M = 1/4 M = 3/10

0.5 1.9 2.0 2.0 2.1√
2/2 2.0 2.0 2.1

0.9980 1.98 2.0 2.1
2.0 1.97 2.0

the entanglement entropies are much simpler to calculate
as compared with the mass gap energies. Unfortunately, the
leading terms of the entanglement Rényi entropies of the low-
lying excited states are the same as that of the ground state.37,38

The critical exponents only appear in the finite-size corrections
of these entropies.9,16 In the finite-size study of the energy gaps,
the exponents are given by the leading terms and we know
precisely the correspondence between the mass gap amplitudes
and the dimensions of the underlying CFT. In the finite-size
study of the entanglement entropy, since the exponents are
given not by the leading term but by the finite-size corrections,
we do not have such exact correspondence. It is known from
conformal invariance16 that these corrections are ruled either
by relevant operators, due to the conical singularities in the
conformal mapping, or by irrelevant operators. However, it
is not known what are those operators, or equivalently what
should be the critical exponent that appears in the leading
finite-size corrections of the entanglement entropies in general
models. The results presented in this paper, together with
known results, induce us to announce some conjectures about
the operators governing the finite-size corrections of the Rényi
entropies of critical quantum chains with PBC. We are going
to state them separately.

(a) Entropy oscillations in the α-Rényi entropies of critical
quantum chains only appear for α > 1 and for models having
at least one U (1) symmetry, such as the spin-s Heisenberg,

t-J , and Hubbard models. Models possessing only discrete
symmetries, such as the Ising, Blume-Capel, and Potts models,
show no oscillations for any value of α.

(b) For any critical quantum chain, the amplitude of
the leading correction of the α-Rényi entropy with α > 1
has a universal power decay pα = 2Xε/α, where Xε is the
dimension of the energy operator of the model. We stress that
these results are expected only for the entanglement entropy
of a single interval. In the case of two disjoint intervals, the
results of Ref. 39 indicate that instead of the energy operator,
the leading contributions come from nonlocal spinor operators.

The amplitudes of the leading corrections for α = 1 have
a quite distinct behavior from the α > 1 cases. For all models
we considered, these amplitudes have a power-law decay �−ν ,
where ν = p1 = 2. Since these corrections for the α = 1 Rényi
entropy (von Neumann entropy) are not known in the case
of the spin-1/2 XXZ chain (anisotropy �), we present in
Table V those corrections for some values of anisotropy and
magnetization per site M . We clearly see that also for the
XXZ quantum chain, the leading finite-size correction always
decays as �−2. In the case of the XX quantum chain, where
ν = 2 is an exact result,10 or in the XXZ chain, we cannot
identify the operator responsible for such finite-size correction.
All these results indicate the following conjecture.

(c) The leading finite-size corrections of the α = 1 Rényi
entropy, or the von Neumann entropy, of any quantum chain
decay as �−2. This is the main contribution coming from the
conical singularities in the conformal mapping, but we do not
know what operators produce such universal correction.

We expect that the above conjectures can be confirmed
for other models and we hope they can be understood by
using the general properties of the underlying CFT ruling the
long-distance physics of quantum chains.
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Stilck, Phys. Rev. B 32, 7469 (1985).
24J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 84, 094410 (2011).
25J. Kogut, Rev. Mod. Phys. 51, 659 (1979).
26P. Calabrese, M. Mintchev, and E. Vicari, J. Stat. Mech. (2011)

P09028.
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