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Quantum spin fluctuations for a distorted incommensurate spiral
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Quantum spin fluctuations are investigated for the distorted incommensurate spiral state of a geometrically
frustrated triangular-lattice antiferromagnet. With increasing easy axis anisotropy, the average reduction of the
spin amplitude by quantum fluctuations is suppressed but the spiral also becomes more distorted. Quantum
fluctuations enhance both the wave vector of the distorted spiral and the critical anisotropy above which it
undergoes a first-order transition into a collinear state. An experimental technique is proposed to isolate the
effects of quantum fluctuations from the classical distortion of the spiral. This analysis is applied to the elliptical
spiral state of doped CuFeO2.
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I. INTRODUCTION

Spin fluctuations may be either thermal or quantum me-
chanical in origin. At zero temperature, thermal fluctuations
are absent but quantum fluctuations (QFs) can significantly
suppress or even prevent magnetic ordering, especially in
lower dimensions. While QFs have rather simple effects on
the collinear spin states of conventional antiferromagnets
(AFs),1 their effects on noncollinear spins are rather more
complex. The effects of QFs on the spin amplitudes and
angles of a noncollinear state were recently described2 for the
three-sublattice (SL) state of CuCrO2.3 Although there have
been many studies on the effects of QFs for incommensurate
spin spirals with equivalent spins,4 comparatively little is
known about the effects of QFs for incommensurate spirals
with inequivalent spins, such as in the presence of anisotropy
or a magnetic field. This paper examines the effects of QFs
for the incommensurate spiral states of a triangular lattice AF
with perpendicular, easy axis anisotropy.

The effects of QFs on incommensurate spirals are important
for a wide variety of physical systems. Materials that exhibit
incommensurate spiral order include rare earths,5 manganites,6

and other several other classes of oxides.7 We focus on
the incommensurate spiral observed in doped CuFeO2.8 As
for the other oxides listed above, the incommensurate spiral
state of doped CuFeO2 displays multiferroic behavior with
a spontaneous electric polarization produced by the chiral
magnetic order.9

Of particular interest is understanding how QFs affect the
ellipticity of an incommensurate spiral. While the ellipticity
of a pure spiral is 1 and the ellipticity of a collinear state is 0,
the measured ellipticity of the distorted spiral in multiferroic
CuFeO2 is about 0.9.10 Although the ellipticity contains both
classical and quantum contributions, it may be possible to
isolate quantum effects from the classical distortion of the
spiral, as described below.

Due to the numerical challenge of evaluating QFs in a
large unit cell, we shall study QFs for an incommensurate
spiral in two dimensions. Because the AF interactions between
neighboring planes in CuFeO2 are not geometrically frustrated,
a two-dimensional model has provided qualitatively accurate
results for the spin state11 and magnetic phase diagram12 of
CuFeO2. Considering the relative effects of QFs on square
and cubic lattices,1 we expect that the reduction of the

spin amplitudes at T = 0 is about 2.5 times larger in two
dimensions than in three dimensions for zero anisotropy.
But the quantitative predictions of this paper for CuFeO2

should improve with increasing anisotropy, which regulates
the momentum integrals by eliminating one of the Goldstone
modes. Of course, the qualitative results of this work are also
relevant to three dimensions.

A common misconception is that QFs have a negligible
effect on the spin amplitudes of materials like CuFeO2 with
S = 5/2. While it is true that the relative reduction of the
spin amplitude �M(R)/S ∼ 1/S due to QFs is smaller for
systems with large spin, the absolute reduction �M(R) ∼ 1
is, to lowest order in 1/S, independent of S. By contrast, the
rotation of the spin angle �θ (R) is of order 1/S. Consequently,
QFs induce a greater spin reorientation for noncollinear states
with smaller spins. Although the calculations described below
were motivated by observations for CuFeO2, the results can
be readily extended to treat other spiral states with any spin S.

This paper is divided into five sections. The model for a
geometrically frustrated triangular lattice AF with easy axis
anisotropy is described in Sec. II. Results of that model for the
effects of QFs on the spin amplitudes and angles are presented
in Sec. III. Section IV discusses the effects of QFs on the spiral
parameters. Section V contains a conclusion.

II. MODEL

As sketched in Fig. 1(a), each hexagonal plane can be
described as a triangular lattice with nearest-neighbor AF
exchange interactions J1 < 0 and second- and third-neighbor
interactions J2 and J3. The Hamiltonian of a triangular-lattice
AF in zero field is

H = −1

2

∑

i �=j

Jij Si · Sj − D
∑

i

Siz
2, (1)

where Si ≡ S(Ri) are quantum spins and D > 0 is the easy
axis anisotropy.

To model CuFeO2, we shall take S = 5/2, J2 = −0.44|J1|,
and J3 = −0.57|J1|.13 Anisotropy then favors the 4-SL ↑↑↓↓
state sketched in Fig. 1(b) with spins aligned along the z axis.
Taking the hexagonal lattice constant equal to 1, this state has
wave vector Q4-SL = πx. The ↑↑↓↓ state was first observed
in pure CuFeO2 about 20 years ago by Mitsuda et al.14
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FIG. 1. (Color online) (a) The AF interactions J1, J2, and J3

on a triangular-lattice AF. (b) The noncollinear state is stable when
D < Dc. (c) The {Sy,Sz} values for three values of the anisotropy with
classical (open circles) or quantum (closed circles) spins. Regions
around θ = 0 and π/2 are expanded for D/|J1| = 0.116.

With decreasing anisotropy [corresponding to increasing
Ga doping in the compound CuFe1−xGaxO2 (Ref. 15)], the
↑↑↓↓ phase eventually becomes unstable to a noncollinear,
incommensurate phase. Assuming classical spins for the
simple model described above, the critical value of the
anisotropy at this first-order transition is Dc = 0.317|J1|.

The 1/S expansion used to evaluate the effects of QFs on
the spin amplitudes and angles was described in Ref. 2. For
classical spins, the wave vector Q0 of the incommensurate
spiral is plotted versus anisotropy in Fig. 2. To evaluate the
effects of QFs, we employed a large unit cell of length N/2
in the x direction containing L periods of a distorted spiral
with classical wave vector Q0 = 4πL/N . Values of L and N

are given by the points in Fig. 2. To describe the behavior of
an incommensurate state, N should be large but not share any
common factors with L.

FIG. 2. (Color online) The classical wave vector Q0 and the
quantum change in wave vector Q1 versus anisotropy. Points {L,N}
correspond to the classical wave vectors Q0 = 4πL/N .

As discussed earlier,11 the spin state may be expanded in
odd harmonics16 of the fundamental ordering wave vector
Q = Qx:

〈Sy(R)〉 =
∑

l=0

C(2l+1)
y sin[(2l + 1)Qx], (2)

〈Sz(R)〉 =
∑

l=0

C(2l+1)
z cos[(2l + 1)Qx]. (3)

Hence the spiral lies in the yz plane with C(2l+1)
x = 0.

When D = 0, a pure spiral is recovered with C(1)
y = C(1)

z = S

and C(2l+1�3)
α = 0. Higher harmonics grow with increasing

anisotropy as the spins favor the ±z directions. For classical
spins,

∑
l=0 C(2l+1)

z = S because the maximum value of
〈Sz(R)〉 is S.

Each odd harmonic of the spin state can be characterized
by an ellipticity p2l+1 = |F (2l+1)

y |/|F (2l+1)
z |, where

F (2l+1)
α = 1

N

∑

i

ei(2l+1)Q·Ri 〈Sα(Ri)〉 (4)

are the magnetic structure factors with summations restricted
to the N SLs of the unit cell. Because F (2l+1)

y is imaginary
and F (2l+1)

z is real, C(2l+1)
y = 2 Im(F (2l+1)

y ) and C(2l+1)
z =

2 Re(F (2l+1)
z ). Consequently, p2l+1 = |C(2l+1)

y /C(2l+1)
z |. Only

the ellipticity p1 = |C(1)
y /C(1)

z | of the first harmonic has been
of experimental interest.

Expanded about their classical values, the spin amplitudes
and angles for

〈S(R)〉 = M(R)(0, sin θ (R), cos θ (R)) (5)

are given by M(R) = S + M1(R) and θ (R) = θ0(R) +
θ1(R)/S. Evaluating M1(R) requires a two-dimensional mo-
mentum integral over |X−1

rs |2, where X are the 2N × 2N

nonunitary matrices that diagonalize the second-order Hamil-
tonian H2.17 Evaluating θ1(R) requires the inverse of the N ×
N Hessian Yrs = (1/N )∂2E0/∂θr∂θs and the N -dimensional
vector (1/N )∂E2/∂θr , where E0 is the classical energy and
E2 = 〈H2〉. This formalism was described in more detail in
Ref. 2.

III. SPIN AMPLITUDES AND ANGLES

Results for M1(R) and θ1(R) are most easily visualized
when plotted against the classical angles θ0(R) of the spins
〈S(R)〉. For three nonzero values of D/|J1|, M1 and θ1 are
plotted in Figs. 3(a) and 3(b). Because QFs always suppress the
spin amplitude, M1 < 0. Due to the D4 symmetry of the planar
magnetization 〈S(R)〉, θ1(θ0) and M1(θ0) are antisymmetric
and symmetric, respectively, about the points θ0 = 0, π/2, π ,
and 3π/2.

When D = 0, |M1| = 0.216 and M = 2.284 are the same
at every lattice site. Since all directions are equivalent, the
angular change θ1 is not defined for D = 0. When D > 0, the
Hamiltonian is no longer isotropic and, even in the classical
limit, the spins favor the ±z directions. The classical distortion
of the spiral corresponds to a redistribution of the spin vectors
around a circle. This behavior is clearly seen in Fig. 1(c) for
D/|J1| = 0.116, where the density of hollow points is largest

024411-2



QUANTUM SPIN FLUCTUATIONS FOR A . . . PHYSICAL REVIEW B 85, 024411 (2012)

FIG. 3. (Color online) The effect of QFs on the spin (a) angles
and (b) amplitudes versus θ0/π for D/|J1| = 0 (green open squares),
0.046 (blue closed squares), 0.116 (red circles), and 0.237 (purple
triangles).

along the easy axis. Correspondingly, the classical ellipticity
p1 plotted in Fig. 4(b) decreases with D.

For D = 0.046|J1|, Fig. 3(b) presents a nearly sinusoidal
variation of M1(θ0) with maximum suppression along the θ0 =
π/2 and 3π/2 directions, perpendicular to the easy axis. The
angular change θ1 is negative for 0 < θ0 < π/2 and positive for
π/2 < θ0 < π . Hence θ1 further distorts the spiral and lowers
the ellipticity p1, as shown in Fig. 4(b). For D = 0.116|J1|,
|M1| displays an even greater variation from the θ0 = 0 to
π/2 directions and θ1 exhibits additional oscillations with θ0.
When D/|J1| = 0.237, the oscillations in θ1 restore a more
circular spiral and enhance p1. This behavior was also found
for a noncollinear 3-SL state.2

Separately, the changes in the spin amplitude M1(θ0) and
the angle θ1(θ0) may not have any physical significance.
For example, Fig. 3(b) indicates that |M1(θ0)| has multiple
solutions at θ0 = 0 and π when D/|J1| = 0.237. However,
each of these multiple solutions for |M1(θ0)| corresponds to a
different value of θ1(θ0), which also has multiple solutions at
θ0 = 0 or π . The minimum suppression of the spin amplitude
[corresponding to the smallest value of |M1| in Fig. 3(b)]
occurs when θ1 = 0 so that the corrected spin angle θ =
θ0 + θ1/S equals 0 or π .

Although the spiral becomes more distorted with increasing
anisotropy, the average value of the spin amplitude Mav =
S − |M1|av is an increasing function of D/|J1|, as shown
in Fig. 4(a). Just above the first-order transition at Dc,
|M1| = 0.113 so that the amplitude of each spin in the ↑↑↓↓
phase is M = 2.387. Within the collinear phase, |M1| → 0 and

FIG. 4. (Color online) (a) The spin amplitudes parallel and
perpendicular to the easy axis, M(0) and M(π/2), as well as the
average spin amplitude Mav and the constriction c = M(π/2)/M(0)
versus anisotropy. (b) The ellipticity p1 versus anisotropy for classical
spins (solid), with QFs of the spin amplitude only (long dash and
squares), and also including QFs of the angles (short dash and circles).

M → 2.5 as D/|J1| → ∞. Also plotted in Fig. 4(a) are the
maximum and minimum spin amplitudes, M(0) and M(π/2),
parallel and perpendicular to the anisotropy axis. Whereas
M(0) rises, M(π/2) falls with increasing D/|J1|.

The turn angles of the spiral are also affected by QFs. For
a pure spiral with D = 0, the turn angle φ = θ (R + x/2) −
θ (R) = Q/2 is the same everywhere along the spiral. For
D > 0, the distribution of turn angles around Q/2 causes the
spins to favor the anisotropy axis.15 With D/|J1| = 0.116,
histograms of the turn angles for classical and quantum spirals
with S = 5/2 are plotted in Fig. 5. Notice that QFs broaden
the distribution of turn angles for the distorted spiral.

IV. SPIRAL PARAMETERS

QFs significantly alter the harmonic structure of the
distorted spiral. For D = 0.237|J1|, the classical and quantum
spin states are characterized by the parameters given in Table I.
While only slightly reducing p1 = |C(1)

y /C(1)
z | from 0.599 to

0.578 and leaving p3 = |C(3)
y /C(3)

z | ≈ 1.37 almost unchanged,
QFs suppress the harmonic ratios |C(3)

z /C(1)
z | and |C(5)

z /C(1)
z |

by 9% and 35%, respectively. Quantum effects also expand
the harmonic range of the spin state: the classical spiral has
no significant harmonics above seventh order but the quantum
spiral has significant ninth-order harmonics.
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FIG. 5. (Color online) Histogram of the turn angles φ for a
classical (dark or blue) or quantum (light or green) spiral with
D/|J1| = 0.116.

The effect of QFs on the wave vector Q = Q0 + Q1/S of
the incommensurate spiral is obtained by minimizing E(Q) =
E(Q0 + Q1/S) with respect to Q1. Results for

Q1 = − ∂E2/∂Q|Q0

∂2E0/∂Q2|Q0

(6)

are plotted in Fig. 2. Since Q1 > 0, QFs enhance the
incommensurate wave vector, nudging it closer to the wave
vector Q4-SL = π of the nearby ↑↑↓↓ phase. For S = 5/2,
Q1 raises the wave vector of the incommensurate spiral by
about 1%.

The change in critical anisotropy Dc = D0 + D1/S, above
which the ↑↑↓↓ phase is stable, can be evaluated by setting
the energy E(Q0 + Q1/S,D0 + D1/S) to be the same above
and below the first-order transition. This yields the expression

D1 = − E2(Q0,D
−
0 ) − E2(Q4-SL,D+

0 )

∂E0/∂D|Q0,D
−
0

− ∂E0/∂D|Q4-SL,D+
0

. (7)

We find that D1 = 0.602 × 10−2|J1|, corresponding to a 0.8%
increase in the critical anisotropy from Dc = 0.317|J1| for
classical spins to 0.319|J1| for S = 5/2.

As indicated by Fig. 4(b), the quantum corrections to the
ellipticity p1 are rather modest and cannot be easily separated
from the classical ellipticity. For S = 5/2, the maximum
reduction of the ellipticity by QFs is about 4%. However, the
effects of QFs can be experimentally distinguished from the
classical distortion by measuring the constriction of the spiral,
defined as c = M(π/2)/M(0). The constriction is plotted

TABLE I. Structure of the spiral for D = 0.237|J1|.

C(1)
y C(3)

y C(5)
y C(1)

z C(3)
z C(5)

z p1

Classical 1.762 −0.695 0.037 2.937 −0.505 0.066 0.599
Quantum 1.619 −0.601 0.020 2.805 −0.439 0.041 0.578

versus anisotropy in Fig. 4(a). Comparing Figs. 4(a) and 4(b)
reveals that c is always much closer to 1 than p1. Since
c ≈ 1 − (|M1(π/2)| − |M1(0)|)/S, the reduction of c from 1
must be attributed entirely to QFs.

In terms of the harmonic coefficients, the spin amplitudes
perpendicular and parallel to the anisotropy axis are given
by M(π/2) = ∑

l=0(−1)lC(2l+1)
y and M(0) = ∑

l=0 C(2l+1)
z .

Hence c = ∑
l=0(−1)lC(2l+1)

y /
∑

l=0 C(2l+1)
z . Although elastic

neutron-scattering measurements provide only the absolute
values |C(2l+1)

α |, the fact that C(1)
α > 0 and C(3)

α < 0 can be
used to estimate

c ≈
∣∣C(1)

y

∣∣ + ∣∣C(3)
y

∣∣
∣∣C(1)

z

∣∣ − ∣∣C(3)
z

∣∣ = p1
1 + ∣∣C(3)

y /C(1)
y

∣∣

1 − ∣∣C(3)
z /C

(1)
z

∣∣ , (8)

which assumes that |C(2l+1�5)
α /C(1)

α | � 1. Notice that c = p1

only when the third and higher harmonics are absent. For
D/|J1| = 0.116, this approximation yields c ≈ 0.951, slightly
larger than the exact result of 0.945.

V. CONCLUSION

Based on Fig. 4(b), an anisotropy of D/|J1| = 0.025
corresponds to the measured ellipticity p1 ≈ 0.9 of doped
CuFeO2.10 Since the two-dimensional results of this paper may
slightly overestimate QFs compared to the results of a (much
more demanding) three-dimensional calculation, we conclude
that the effect of anisotropy on a classical spiral explains most
observed properties of CuFeO2. The small value of D/|J1|
qualitatively agrees with recent fits15 of D and J1 based on
the excitation spectrum of doped CuFeO2, which indicate that
D/|J1| lies between 0.026 and 0.079. With D/|J1| = 0.025,
the constriction of the spiral in CuFeO2 would be c ≈ 0.98,
very close to the classical limit of 1.

To summarize, QFs have highly nontrivial effects on the
spiral state of a geometrically frustrated triangular-lattice
AF with easy axis anisotropy. Although the average spin
amplitude rises with the anisotropy, the spiral also becomes
more distorted. Angular changes act to further distort the
spin state for small anisotropy but to reduce the distortion
for strong anisotropy. While QFs enhance the wave vector of
the incommensurate state, they also favor the spiral over the
neighboring ↑↑↓↓ state.

Suitably generalized to include additional harmonics pro-
duced by lattice distortions within the hexagonal planes,15 we
hope that the results of this paper can be used to estimate the
constriction c for multiferroic CuFeO2 and other materials5–7

that exhibit incommensurate spiral order.
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