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Micromagnetic modeling and small-angle neutron scattering characterization
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A new methodology for micromagnetic simulations of magnetic nanocomposites is presented. The
methodology is especially suitable for simulations of two-phase composites consisting of magnetically hard
inclusions in a soft magnetic matrix phase. The proposed technique allows us to avoid unnecessary discretization
of the “hard” inclusions (these are normally in a single-domain state) but enables arbitrary fine discretization
of the “soft” phase. The method is applied to the determination of the equilibrium magnetization state of
an iron-based nanocomposite from the Nanoperm (FeZrBCu) family of alloys and to the calculation of the
corresponding small-angle neutron scattering (SANS) cross-section. The results of our simulations exhibit a
remarkable agreement with nontrivial “clover-leaf” SANS cross-sections observed experimentally.
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I. INTRODUCTION

Magnetic nanocomposites are bulk materials that consist of
magnetic nanocrystals embedded in an amorphous, usually
magnetically soft phase (matrix). The growing interest in
this class of magnetic materials is caused by their nontrivial
magnetic properties, which are highly interesting from a
fundamental point of view and for existing and potential
applications of such nanocomposites. In particular, the mag-
netic microstructure in nanocrystalline ferromagnets can be
highly inhomogeneous, which is mainly a consequence of
the following two microstructural features. First, magnetic
material parameters (saturation magnetization MS , exchange-
stiffness constant A, and anisotropy constant K) for the two
constituent magnetic phases may be very different. Second, at
each grain or phase boundary, the crystallographic anisotropy
axes change their directions randomly, thus altering the locally
preferred magnetization directions. In addition, new physical
effects may be expected whenever the structural “correlation
length” of the microstructure—in this case, the average grain
size D—is reduced below a characteristic intrinsic magnetic
length scale that is linked to the atomistic origin of magnetism
(crossing length scales scenario). An outstanding example
is the phenomenon of exchange softening1 that is observed
in Fe-based alloys whenever D becomes smaller than the
so-called exchange correlation length lK ∼ (A/K)(1/2), which
for Fe-based alloys is approximately 20–40 nm.

The inherently existing nonuniformity in the spin system
leads to interesting magnetic properties of nanocrystalline
magnets, which can be very different from the corresponding
features of their coarser-grained (microcrystalline) counter-
parts. Famous examples for alloy development (based on
the previously sketched rationales) include nanocrystalline
NdFeB-based permanent magnets2–5 or Fe-based alloys of
the Finemet (Vitroperm), Hitperm, or Nanoperm type,1,6,7

which are magnetically extremely soft and, due to their
high permeability, are widely used as transformer cores and
shielding material.

Downscaling of the individual nanosized building blocks
places increasing demands on observational techniques

to resolve ever-finer details of the magnetic microstruc-
ture. Most commonly used techniques, such as Kerr and
Lorentz microscopy,8 magnetic force microscopy,9 spin-
polarized scanning tunneling microscopy,10,11 or photoelec-
tron spectroscopy,12 generally image the magnetic microstruc-
ture at the sample surfaces. In addition, to probe a structure
from macroscopic dimensions down to the atomic scale, we
must combine all of these techniques.

In contrast to the previously mentioned methods, magnetic
small-angle neutron scattering (SANS) is probably the only
technique capable of studying the spin distribution in the
volume of a magnetic material and on a length scale from
several nanometers up to a few hundreds of nanometers (for
recent reviews of magnetic SANS, see Refs. 13–15).

Magnetic SANS is also a versatile technique, which allows
us to investigate a range of materials, including ferrofluids,
magnetic nanoparticles in a polymer matrix, magnetic record-
ing media, colossal magnetoresistance materials, supercon-
ductors, spin glasses, amorphous metals, Invar alloys, mag-
netic single crystals, molten and solid elemental ferromagnets
(Fe, Co, Ni, Tb, and Gd), nanowires, precipitates in steels, and
diluted paramagnets in deuterated solutions.13–19 Nanocom-
posite materials have been also extensively studied using
SANS, whereby both magnetically hard20,21 and soft18,22–30

systems have been investigated, and a couple of interesting new
results have been obtained. For instance, studies of FeSi-based
nanocrystalline soft magnets by this technique have identified
layers of reduced magnetization at the interfaces between
the FeSi crystals and the surrounding amorphous matrix.22–24

Also, a transition to a superparamagnetic behavior at the
ordering temperature of the matrix phase was found.26 Mag-
netic field–dependent SANS measurements, in combination
with Kerr microscopy on magnetically textured FeSi-based
ribbons,27,28 have revealed the domain orientation and the
characteristic length scale of intradomain spin misalignment.

In contrast to nuclear SANS, where the theoretical concepts
are relatively well established,31 understanding of magnetic
SANS on bulk ferromagnets is still at its beginning. The
main difficulty comes from a variety of competing interactions
present in a ferromagnet. To analyze magnetic SANS data on
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magnetic materials in general and in magnetic nanocomposites
in particular, we should be able to calculate the corresponding
equilibrium magnetization configuration. The most widely
used mesoscopic theoretical approach for this purpose is
the micromagnetic phenomenology,32–34 in which four main
contributions to the total magnetic free energy (external field,
magnetocrystalline anisotropy, exchange, and magnetodipolar
interaction energy) are taken into account. Determination of
an equilibrium magnetization state of a ferromagnet using the
micromagnetic framework amounts to the solution of a set of
nonlinear partial differential equations, which cannot be done
analytically in most practically relevant problems.

Therefore, closed-form expressions for the ensuing so-
called spin-misalignment scattering cross-section are limited
to the approach-to-saturation regime, in which the micromag-
netic equations can be linearized. Pioneering work in this
direction was carried out in Ref. 35, where the magnetic SANS
cross-section arising from spin disorder due to dislocations in
ferromagnetic metals was computed. The ansatz from Ref. 35
was generalized by Michels and Weissmüller,15 who developed
the theoretical framework for analyzing random-anisotropy–
type nanocrystalline ferromagnets. However, the usefulness
of these analytical theories is limited due to the difficulties
mentioned previously.

A semianalytical model for the interpretation of SANS
measurements on nanostructured simple metals presented
in Ref. 36 assumes that the magnetic material consists of
spherical domains embedded into a homogeneously mag-
netized matrix. The magnetization orientation inside each
domain was determined, assuming that each domain possesses
a uniaxial anisotropy with the value computed from the
random-anisotropy model of Herzer1,7 (domains were sup-
posed to consist of several magnetically coupled grains). This
(Stoner-Wohlfarth–type) model could explain qualitatively the
evolution of the SANS intensity contours with the applied field
in nanocrystalline Fe and Co. However, due to a simplified
treatment of the interaction between the domains (neglecting,
e.g., the magnetodipolar interaction) and between the domains
and the matrix, this model cannot be applied to the physically
most interesting case of an inhomogeneously magnetized
matrix and thus is not suitable for quantitative studies of
remagnetization processes in multiphase composites.

For this reason, full-scale numerical micromagnetic studies
of magnetic SANS are clearly necessary. In the last decade,
such simulations have become possible due to the steady
increase in the computer power and due to the extensive
development of micromagnetic software packages such as
OOMMF,37 LLG,38 MicroMagus,39 and MuMax.40 For ex-
ample, Ogrin et al.41 used the OOMMF code to compute the
magnetic SANS cross-section of CoCrPtB-based longitudinal
recording media. Saranu et al.42 utilized the same OOMMF
tool to study the effect of the magnetostatic energy and average
crystallite size on the magnetic SANS of nanocrystalline
ferromagnets (see Sec. II for more details).

However, all of these commercially or freely available
micromagnetic packages have serious drawbacks regarding the
ability to simulate magnetization structures in bulk magnetic
nanocomposites, as explained in detail in Sec. II. For this
reason, simulations of the magnetization distribution in com-
posite system of practical interest have been hardly possible up

to now,43–45 so a new methodology for micromagnetic studies
of nanocomposites is required. Having such a methodology
at our disposal would allow better understanding of equi-
librium magnetization states and magnetization dynamics in
nanocomposites and deeper interpretation of corresponding
results obtained via magnetic SANS. This paper is devoted to
the development of such a methodology and to the analysis
of some nontrivial cross-section patterns observed recently in
alloys of the Nanoperm type.18

The paper is organized as follows: In Sec. II, we explain
why the two main classes of existing micromagnetic methods
are not suitable for simulations of hard–soft nanocomposites.
In Sec. III, we discuss our new methodology, describing
the mesh-generating algorithm and the evaluation of the
energy contributions, and present the results of analytical and
numerical tests of our code. Sec. IV starts with our simula-
tion results for equilibrium magnetization configurations in
nanocomposites of the Nanoperm type. Then we compare in
detail magnetic SANS cross-sections calculated numerically
from these equilibrium magnetization configurations with
those observed experimentally in Ref. 18. Sec. V summarizes
the main results obtained in this study.

II. NONAPPLICABILITY OF EXISTING NUMERICAL
MICROMAGNETIC METHODS

Micromagnetics is a mesoscopic phenomenological theory
that allows—in its quasistatic version—us to determine the
equilibrium magnetization configuration of a ferromagnetic
body when the applied field, the geometry of the ferromagnet,
and its magnetic material parameters are known.32–34 For
this purpose, the total magnetic free energy of a ferromagnet
(which contains, in the most common case, contributions from
energy due to an external field, exchange, anisotropy, and
magnetodipolar interaction energies) is minimized. Mainly
due to the nonlocality of the magnetodipolar energy, most
practically interesting tasks cannot be solved analytically, so
numerical simulations should be carried out. At present, nu-
merical micromagnetics is a large and continuously expanding
research field, which has been extensively reviewed, e.g., in a
recent handbook.46 Thus, in this subsection, we briefly discuss
only methodological details relevant for numerical simulations
of nanocomposite materials.

Such materials are probably the most complicated objects
from the point of view of numerical simulations, because they
consist of at least two phases with nonflat boundaries between
them—a typical example is a hard–soft nanocomposite “made
of” magnetically hard grains surrounded by a soft (but also
ferromagnetic) matrix. Such a system is difficult to simulate
for the following reasons.

All micromagnetic simulation methods can be roughly
divided into two classes: finite-difference and finite-element
algorithms.46 In the former methods, the system under study
is discretized into a regular (usually rectangular) grid. Such a
grid allows the usage of simple finite-difference formulas for
the exchange field calculation, which in the continuous formu-
lation is the differential operator acting on the magnetization
field M(x). In addition, the translational invariance of a regular
grid enables the application of the fast Fourier transformation
(FFT) for the evaluation of the magnetodipolar interaction field
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(energy). For a system discretized into N finite elements, the
FFT technique reduces the operation count for this nonlocal
interaction from ∼N2 to ∼N logN . The disadvantage of a
regular grid is a pure approximation for the curved boundaries.
This is a serious drawback for simulations of nanocomposites,
where the accurate representation of the interphase boundaries
(and associated exchange and magnetodipolar effects) is
crucially important for a proper system description.

The second group of numerical micromagnetic methods
(finite-element methods) employs the discretization of the
studied body into tetrahedrons of arbitrary shapes and sizes.
Such flexible discretization allows for a quite accurate rep-
resentation of curved boundaries, including those between
magnetically hard inclusions and a soft matrix. The tributes
to pay for this convenience are (1) complicated methods
for the evaluation of the exchange field (requires a repre-
sentation of a differential operator on an irregular lattice)
and (2) the impossibility to use FFT for the computation
of the magnetodipolar field. This forces the usage of highly
complicated methods for the calculation of this field, based on
the decomposition of the scalar or vector magnetic potentials
and the solution of corresponding Poisson equations for
these potentials on an irregular grid.46 This technique can
be applied to systems with open boundary conditions only,
resulting in another limitation of the finite-element method:
periodic boundary conditions (which are routinely applied in
simulations of bulk materials to eliminate strong finite-size
effects) cannot be used. The impossibility of using periodic
boundary conditions is a serious disadvantage when simu-
lating SANS experiments on nanocomposites (whereby the
scattering intensity is sensitive to magnetization fluctuations
in the bulk), because surface demagnetizing effects might be
significant due to (1) a substantial volume fraction occupied
by a soft ferromagnetic or superparamagnetic nanocomposite
matrix and (2) a relatively small simulation volume affordable
even for modern computers.

Another unfavorable feature of tetrahedral discretization
is the necessity of discretizing into tetrahedrons the hard
magnetic grains, even when it is clear that the magnetization
configuration within a single grain is nearly collinear. This
leads to a significant increase in the number of finite elements
and in a corresponding increase in computation time (see
Ref. 47 for a corresponding discussion and a suggestion of how
this problem might be solved in frames of the finite-element
method).

For the reasons explained previously, micromagnetic mod-
eling of SANS experiments on nanocomposites is rare. Full-
scale micromagnetic simulations of SANS measurements on a
two-phase system were reported recently in Ref. 41, where the
authors modeled the magnetization structure of a longitudinal
magnetic recording media film. Based on experimental char-
acterization of such media, Ogrin et al.41 built a two-phase
model of magnetic grains consisting of a magnetically hard
grain core and an essentially paramagnetic shell (although with
a very high susceptibility). The authors used the OOMMF
code, employing the standard finite-difference scheme, so a
very fine discretization grid (0.3 × 0.3 × 0.3 nm3 cells) was
necessary to reproduce the spherical shape of grain cores with
significant accuracy. Thus, only a limited number of grains
(∼50) could be simulated. In addition, the exchange interaction

between the grains and within the matrix (representing by the
merging grain shells) was neglected. Under these simplifying
assumptions and using several adjustable parameters, the
authors could achieve satisfactory agreement of the simulated
SANS intensity profile with experimental data, showing great
potential of micromagnetic simulations for interpreting the
SANS experiments.

The overview presented here clearly shows that further nu-
merical studies—including the development of new simulation
methods—in this direction are highly desirable.

III. NEW MICROMAGNETIC METHODOLOGY

A. Mesh generation

For numerical simulations of two-phase nanocomposites
described previously, we aim to generate a polyhedron mesh
with the following properties: (1) it should allow us to represent
each hard nanocrystallite as a single finite element, because the
magnetization inside such a hard grain is nearly homogeneous;
(2) the mesh should allow an arbitrary fine discretization
of the soft magnetic matrix; and (3) the shape of meshing
polyhedrons should be as close as possible to the spherical
one to ensure a good-quality dipolar approximation for the
calculation of the magnetodipolar interaction energy.

A mesh of polyhedral finite elements satisfying these
requirements can be generated using two kinds of methods.
The first group of methods employs various modifications of a
purely geometric iterative algorithm, suggested in Ref. 48, for
obtaining the random close packing of hard spheres. The initial
distribution of sphere centers is random. At each step, the worst
overlap of two spheres is eliminated by moving these spheres
along the line connecting their centers until these spheres
are separated. This procedure may introduce new overlaps,
but they are eliminated during the next steps so that the
packing quality improves (on average). The algorithm is robust
and produces the random close packing of nonoverlapping
spheres with any desired accuracy (see Ref. 48 for details).
Unfortunately, the computation time for this method is ∼N2,
where N is the number of elements, so the maximal number
of spheres that can be positioned by this method within a
reasonable computation time is N ≈ 104.

To generate a mesh with a much larger number of elements
(N > 105), we developed a “physical” algorithm, which is
based on the model of spheres interacting via the short-range
repulsive potential

Ui =
N∑

j=1

Apot exp

{
−dij − (ri + rj )

rdec

}
, (1)

where Apot is a constant (in a typical case, Apot = 10), dij is the
distance between the centers of interacting spheres with radii
ri and rj , and rdec is the interaction decay radius. Again, at the
beginning of the iteration procedure, we position the sphere
centers randomly. Then we move these spheres according to
the dissipative equation of motion resulting from the forces
derived from their interaction in Eq. (1). The time step for the
integration of the corresponding equation of motion is adjusted
so that the total system energy decreases after each step. This
procedure also leads to the decrease of overlaps between the
spheres due to the repulsive nature of the potential in Eq. (1).
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FIG. 1. (Color online) The algorithm for the mesh generation: (a) Random close packing of spheres with different diameters (large spheres
correspond to the magnetically hard inclusions), (b) sphere centers used as location points for magnetic moments, and (c) discretization of the
system into the Voronoi polyhedrons corresponding to the triangulation shown in (b); these polyhedrons might be considered finite elements
used for system discretization.

We continue to move the spheres until the maximum overlap
between them does not exceed the prescribed small value
(we tested whether for our purposes the minimal remaining
overlap of (ri + rj )/dij > 0.95 is good enough). Various
possibilities exist to increase the efficiency of this algorithm. In
particular, we might decrease the decay radius of the potential
rdec (thus making the potential harder) when overlapping
between spheres decreases during sphere motion. A typical
two-dimensional (2D) example of the configuration obtained
this way is shown in Fig. 1(a). Because of the random spatial
arrangement of spheres obtained this way, we avoid possible
artifacts caused by the regular placement of finite elements.

After the spheres have been positioned using one of the two
algorithms described previously, their centers [Fig. 1(b)] are
used as location points of magnetic dipoles. To compute the
magnitudes μi of these dipoles, we first multiply the volume of
the corresponding sphere by the saturation magnetization of
that material inside which the dipole is located (nanocom-
posites consist of materials with different magnetization).
Second, we take into account that even the closely packed
spheres do not fill the entire sample volume, occupying only a
certain volume fraction cvol (approximately 55% for a typical
configuration) of the available space. For this reason, we divide
the magnitude of each dipole by this volume fraction so that
finally μi = (4πMS/3cvol)r3

i , ensuring that in the saturated
state the total magnetic moment of the discretized system is
the same as that of the initial continuous system.

The whole algorithm can be viewed as a method to
discretize a sample into polyhedrons [Fig. 1(c)] with a nearly
spherical shape, because they “inherit” the spatial structure
obtained by positioning of closely packed spheres. The shape
of the volume that is “occupied” by each magnetic moment is
nearly spherical, allowing us to use the dipolar approximation
by evaluation of the magnetodipolar interaction between the
moments.

Finally, both algorithms allow the usage of polyhedrons of
different sizes if we need different meshing on different system
locations.

B. Evaluation of energy contributions and energy minimization

In our model, we take into account the four standard
contributions to the total magnetic energy: system energy

in the external field, magnetic anisotropy, exchange, and
magnetodipolar interaction energies.

1. External field and anisotropy energies

The external field and anisotropy energies (uniaxial and/or
cubic) are calculated in our model in the usual way, i.e.,

Eext = −
N∑

i=1

μiHext (2)

Eun
an = −

N∑
i=1

Kun
i Vi(mini)

2 (3)

Ecub
an =

N∑
i=1

Kcub
i Vi

(
m2

i,x ′m
2
i,y ′ + m2

i,y ′m
2
i,z′ + m2

i,x ′m
2
i,z′

)
(4)

where Hext is the external field; μi and Vi are the magnetic
moment and the volume of the ith element, respectively;
and mi is the unit magnetization vector. Both the anisotropy
constants Ki and the directions of the anisotropy axes ni are
site dependent, as needed for a polycrystalline material. In
the case of cubic anisotropy, the symbols mx′, etc., mean
the components of unit magnetization vectors in the local
coordinate system (attached to the cubic anisotropy axes).

2. Exchange energy

For the exchange energy evaluation, we use the nearest-
neighbor approximation. The continuous integral version of
this energy employs the magnetization gradients

Eexch =
∫

V

A(r)[(∇mx)2 + (∇my)2 + (∇mz)
2]dV. (5)

For a regular cubic grid with the cell size a (and the
cell volume �V = a3), it can be shown rigorously (see the
detailed proof in Ref. 49) that the integral in Eq. (5) can be
approximated as the sum

Eexch = −1

2

N∑
i=1

∑
j⊂n.n.(i)

2Aij�V

a2
(mimj ). (6a)

Here, Aij denotes the exchange constant between cells i

and j , and the notation j ⊂ n.n.(i) means that summation in
the inner sum is performed over the nearest neighbors of cell i.
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(This Heisenberg-like expression is valid only when the angles
between neighboring moments are not too large.49) However,
we use a disordered system of finite elements that has different
volumes, different distances between the element centers, and
different numbers of nearest neighbors for each element, so
the expression in Eq. (6a) cannot be used.

The straightforward way to compute the exchange interac-
tion in our case is to employ a rigorous general formula suitable
for the evaluation of the integral in Eq. (5) for a system, where
the values of the integrand (magnetization vectors m) are
known at arbitrarily distributed spatial points. Such a formula
amounts to approximation of the vector function m(r) using
some polynomial interpolation of this function between the
points where m(r) is defined. Since the integrand in Eq. (5)
includes first spatial derivatives of the magnetization field,
corresponding polynomials should deliver a continuous (and
better, smooth) first derivative of m(r). In addition, keeping
in mind that the condition |m(r)| = 1 must be fulfilled
everywhere, we should use interpolation of magnetization
angles rather than that of Cartesian components of m. Both
features would lead to a highly complicated algorithm for
exchange energy evaluation that is subject to serious stability
problems.

Therefore, we decided to modify the expression in Eq. (6a)
to account in a simpler way for the differences between a
regular grid and a disordered system as mentioned previously.
First, following the derivation of the expression in Eq. (6a)
presented in Ref. 49, the volume �V in the numerator is not the
volume of the cubic discretization cell but the volume enclosed
between the centers of cell i and neighboring cell j (for a
rectangular lattice, this volume is equal to the cell volume,
because it includes two halves of identical rectangular cells).
Therefore, for a disordered system, �V should be replaced by
V̄ij = (Vi + Vj )/2, where Vi and Vj are the volumes of the ith
and j th finite elements, respectively.

The second necessary correction is replacement of the
distance a between the cell centers in a cubical lattice (in
the denominator) by the distance �rij between the centers of
cells i and j .

The third—and most nontrivial—issue is due to the follow-
ing principal difference between the lattice geometries of a
rectangular and those of a disordered lattice. In a rectangular
lattice, each cell has exactly Nnn = 6 nearest neighbors, and
the angles between the directions from the cell center toward
its neighbors in x-, y-, and z-directions are always 90◦. Hence,
the overlapping of the volumes enclosed between the centers
of neighboring cells in, say, x- and y-directions is always the
same and is already taken into account by the derivation in
Eq. (6a) (this overlapping should not be confused with the
overlapping of spheres in the construction of our disordered
mesh in Sec. III A). In contrast to this feature of a rectangular
lattice, for a disordered system of finite elements (polyhedra),
the number of nearest neighbors may vary for different finite
elements and the overlapping of volumes enclosed between the
center of a given cell and the centers of its different neighbors
may also be different. For example, if some particular element
has more than six nearest neighbors, then the volumes enclosed
between its center and the centers of its different neighbors
would overlap more than for a rectangular lattice. In this case,
the exchange energy evaluated using a sum in Eq. (6a)—even

with the two corrections explained previously—would be
overestimated due to this excessive overlapping.

The simplest method to avoid this artifact is the introduction
of the correction factor 6/nav, where nav is the average number
of nearest neighbors for the given realization of our disordered
system. This way, we account for the effect of the incorrect
count of the overlapping regions mentioned previously. The
accuracy of the expression corrected using this simple factor
cannot be estimated in advance, but both the tests presented
in Ref. 54 and the additional tests discussed in Sec. III.C
show that—taking into account its simplicity—the accuracy
achieved by this correction is surprisingly good.

Summarizing, for magnetic moments belonging to the same
phase, we used the following modified form of the Heisenberg-
like expression for the nearest-neighbor exchange:

Eexch = −1

2

N∑
i=1

∑
j⊂n.n.(i)

2Aij V̄ij

�r2
ij

(mimj ), (6b)

where, as mentioned previously, V̄ij = (Vi + Vj )/2, �rij is
the distance between the dipoles i and j belonging to elements
with volumes Vi and Vj , and Aij is the exchange constant.

The last point to be discussed is the choice of nearest
neighbors, which should be used in the inner sum in Eq. (6b).
The definition of these neighbors is not unambiguous in
disordered systems. We adopted the convention that two
magnetic moments are considered nearest neighbors if they
are separated by a distance no larger than dmax = 1.4 · (ri + rj ).
The cutoff factor (1.4) is chosen so that for the overwhelming
majority of finite elements, the two that have a common face
[when they are considered polyhedra; see Fig. 1(c)] are treated
as nearest neighbors.

To describe the exchange between the two finite elements
(polyhedrons) belonging to different phases (hard and soft),
we use another formula for their exchange interaction:

Eex = −1

2

N∑
i=1

∑
〈j,i〉

2Aij (Vsp/2)

(�rij − Rhp)2
(mimj ). (7)

Here, Vsp is the volume of a soft phase element, and Rhp

is the radius of the sphere corresponding to the hard phase
element. The expression in Eq. (7) accounts for, in this case,
the magnetization rotation occurring almost entirely within the
polyhedron corresponding to the soft phase.

3. Magnetodipolar interaction energy

The last energy term—energy of the magnetodipolar
interaction between the moments and the corresponding
contribution to the total effective field—is computed in the
dipolar approximation as

Edip = −1

2

N∑
i=1

μi

∑
j 
=i

3eij (eijμj ) − μj

�r3
ij

; (8)

i.e., magnetic moments of finite elements are treated as point
dipoles located in the centers of generated, closely packed
spheres (see the earlier discussion). This approximation would
be exact only for spherical finite elements. Hence, it results in
some computational errors for our discretized system, which
should be considered, strictly speaking, as composed of finite
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elements in the form of polyhedrons [as shown schematically
in Fig. 1(c)]. However, these errors are small, because the shape
of our finite elements is close to spherical due to the special
algorithm employed for the generation of magnetic moment
location points.

The summation in Eq. (8) is performed by the so-called
particle-mesh Ewald method. A didactically detailed general
introduction to Ewald methods can be found in Ref. 50. The
corresponding specific implementation for the magnetodipo-
lar interaction for lattice-based and disordered systems of
magnetic particles is described in our papers.51,52 The lattice
Ewald method for disordered systems consists of the following
stages: (1) mapping of magnetic moments of the initial
(disordered) system onto a rectangular lattice, (2) evaluation
of the magnetodipolar field for the translationally invariant
system obtained this way using the standard lattice Ewald
method, and (3) backward interpolation of the field obtained
on the rectangular grid in the previous step onto the initial
positions of magnetic dipoles. The most time-consuming step
(2) can be performed using the FFT technique—due to the
presence of a translationally invariant grid—which allows
us to reduce the operation count from N2 (for the standard
Ewald method) to N · log(N ). Hence, simulations of systems
consisting of N ∼ 105 − 106 moments become possible.

The major sources of errors in the method are the mapping
of the initial disordered system onto a rectangular grid and the
backinterpolation of the magnetodipolar field (errors for the
properly implemented lattice Ewald method are vanishingly
small). However, these errors may be reduced below the
desired threshold by the proper choice of mapping scheme (see
Ref. 53 for a detailed description). We found that if we choose
the lattice constant equal to the radius of the smallest spheres
used for the mesh generation, then the usage of the linear
mapping scheme, together with the separate evaluation of
the nearest-neighbor contribution, ensures that corresponding
errors are less than 1%.

To minimize the total magnetic energy, obtained as the
sum of all contributions discussed previously, we used the
simplified gradient method, employing the dissipation term
in the Landau-Lifshitz equation of motion for magnetic
moments.46 This means that the magnetization configuration
at each step is updated according to the rule

mnew
i = mold

i − �t
[
mold

i × [
mold

i × heff
i

]]
, (9)

where mi denotes the unit magnetization vector mi = Mi /MS

and heff
i = Heff

i /MS is the reduced effective field Heff
i , evalu-

ated in a standard way as the negative derivative of the total
energy over the magnetic moment projections.46

Since we are looking for the energy minimum, the time
step choice in Eq. (9) is based on monitoring of the total
energy: if after the iteration step the total energy decreased,
we accept this step. If the energy increased, we restore the
previous magnetization state, halve the time step (�t →
�t/2), and repeat the iteration. To avoid unnecessary small
time steps, we used a simple adaptive step size control:
the time step is doubled if the last few steps (typically
5–10 steps) were successful. The minimization process is
terminated if the maximal torque acting on magnetic moments
is sufficiently small: max{i} |[mi × heff

i ]| < ε (this condition

is more sensitive than the often-used criterion of the energy
difference between the two subsequent steps). We found that
in all tested cases, the value ε = 10−4 was small enough to
ensure the convergence of the minimization procedure.

C. Numerical tests of the new methodology

The methodology explained previously was already tested
on two example problems (see the brief report in Ref. 54). First,
we reproduced with high accuracy the analytically known mag-
netization profile for a standard three-dimensional (3D) Bloch
wall. Second, for a trial 3D magnetic configuration defined via
some simple trigonometric functions of coordinates (to ensure
smooth spatial variations of the system magnetization), we ob-
tained good agreement between the energy values found by the
new method and the micromagnetic package MicroMagus,39

which employs standard finite-difference formalism.
In this paper, we present two additional tests in which we

compare the equilibrium magnetization configurations of a
cubic magnetic particle, obtained also via our new method,
and the MicroMagus package. The particle size was chosen
to be 40 × 40 × 40 nm3, saturation magnetization was set to
MS = 800 G, the exchange constant was A = 1 × 10−6 erg/cm,
and the uniaxial anisotropy constant was K = 5 × 105 erg/cm3.
For application of the new method, the cube was discretized
(using the algorithm described previously) into N = 9000
elements with the typical size d = 2 nm. For the standard finite
difference simulations, a cell size of 2.5 × 2.5 × 2.5 nm2 was
used.

For the tests, we chose two magnetization configurations
that are typical for particles of this size: the vortex state and
the so-called flower state. To obtain the vortex state, we started
the minimization procedure from the magnetization state that
is topologically equivalent to the vortex—the so-called closed
Landau domain configuration. The flower state was obtained
by starting the energy minimization from the homogenous
configuration, with magnetization directed along one of the
cube sides.

Comparison of energies for the equilibrium magnetization
states (Fig. 2) obtained by the new method and the standard
finite difference simulations (MicroMagus package) is pre-
sented in Table I. The energies obtained by both methods
agree well. The only energy exhibiting a significant relative
difference is the anisotropy energy for the flower state;
however, this significant relative difference (�E/E) arises
simply due to a very low value of this energy. In all, agreement
between the new and the established methodologies for all
cases in which the standard methods are applicable are fully
satisfactory.

IV. SIMULATIONS OF MAGNETIZATION PROCESSES
AND MAGNETIC SANS IMAGES FOR

NANOCOMPOSITES

A. Simulation of magnetization processes

To study the micromagnetic properties of nanocomposites,
we first performed simulations of magnetization processes
for a two-phase model system. This system should imitate
the Nanoperm composite studied in Ref. 18, where the hard
phase consisted of Fe precipitates with the average size
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FIG. 2. (Color online) (a) Vortex (2D cross-section) and (b) flower (3D plot) magnetization configurations obtained by the new method
explained in Sec. III.A and III.B.

Dhard = 12 nm and the volume fraction of precipitates chard ≈
40%. For this reason, we chose by the mesh generation
algorithm spheres with the diameter Dlr = 10 nm for the
representation of magnetically hard grains and spheres with
the much smaller diameter Dsm = 5 nm to discretize the
soft matrix (Dlr is chosen to be somewhat smaller than Dhard,
because the distance between the centers of spheres, generated
as explained in Sec. III A, is on average somewhat larger
than the sum of their radii). An example of the generated
mesh is shown in Fig. 5. Furthermore, we used the following
magnetic parameters for hard and soft phases: magnetizations
Mhard = 1750 G (as for bulk Fe) and Msoft = 550 G (calculated
from the average saturation magnetization of the material and
parameters of Fe crystallites), as well as anisotropy constants
Khard = 4.6 × 105 erg/cm3 (also a typical value for bulk Fe)
and Ksoft = 1.0 × 103 erg/cm3 (the matrix is supposed to be
nearly amorphous).

The problem of how to choose the exchange stiffness
constants is addressed in detail here. For the example shown in
Fig. 3, we set A = 1.0 × 10−8 erg/cm both for the interaction
within the soft phase and between the hard and the soft phases.
The magnetization direction is assumed to be constant within
a single Fe grain, so there is no need to choose A for the hard
phase. Such a low value of the exchange constant was used
to increase the saturation field value and to make the relation
between the crystalline and the magnetic microstructures more
evident.

The size of the simulated system (rectangular box) was set
to 125 × 380 × 380 nm3, which was discretized into N = 105

elements. Periodic boundary conditions were applied to avoid
the effect of the stray field from the system borders.

The simulated magnetization curve, together with color
images visualizing the evolution of the spatial magnetization
configuration, is shown in Fig. 3(a). The color coding repre-
sents magnetic moment directions in the image plane as shown
on the color wheel at the right of the panel (red on the right
side of the wheel corresponds to the magnetization along the
applied field and green on the wheel’s left side corresponds to
the opposite direction).

An important feature of the simulated magnetization pro-
cess is the strong correlation between the system microstruc-
ture and the local magnetization direction. In Fig. 3(a), (in
fields far from saturation) substantial magnetization deviations
from the applied field direction occur where the hard phase
grains are located. This correlation is evident from the
comparison of locations of hard inclusions (shown by dark
blue spots in the right inset at the bottom of the panel), with
areas on the left inset where the magnetization substantially
deviates from the field direction - visible as light (yellow) or
dark (blue) spots.

A more detailed picture (on the length scale comparable to
the average size of hard magnetic grains) of the local mag-
netization configuration obtained near saturation is shown in
Fig. 3(b). This image shows that magnetic moments within the

TABLE I. Comparison of energies and reduced magnetizations (last row) for the vortex and flower magnetization states by the new method
and the standard finite difference simulations (MicroMagus software).

Vortex energies (×10−11 erg) Flower energies (×10−11 erg)

New method MicroMagus New method MicroMagus

Etot 8.225 8.270 7.813 7.843
Ean 1.361 1.385 0.137 0.127
Eexch 4.409 4.562 0.434 0.441
Edem 2.455 2.324 7.242 7.275
M/MS 0.400 0.406 0.972 0.974
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FIG. 3. (Color online) (a) Magnetization curve of a nanocomposite, together with the color images representing the magnetization states
displayed for the cross-section through a 3D simulation volume. The inset in the lower right corner shows in blue squares the locations of
the hard inclusions that clearly correlate with the magnetization deviations from the external field direction (inset in the lower left corner).
(b) Magnetization state of the system near saturation displayed on the scale comparable to the size of a hard magnetic inclusion (see text for
discussion).

soft phase roughly follow the directions of magnetic moments
of hard inclusions—mainly due to the exchange interaction
between the phases. The influence of the magnetodipolar
interaction (which, as discussed later, is responsible for the
appearance of a “clover-leaf” pattern) is too weak to be
visible without averaging over a sufficiently large volume that
includes many hard inclusions.

As mentioned previously, an important parameter is the
exchange stiffness constant inside the soft phase and for
the soft–hard phase exchange. This parameter can vary in a
wide region, because it strongly depends on the concentration
of iron atoms in the soft phase. Unfortunately, independent
measurements of the exchange constant in the soft phase are
not available. A rough estimation of the exchange constant
in Nanoperm (Fe89Zr7B3Cu) can be done using the Curie
temperatures of the similar alloy Fe91Zr7B2

55 and of body-
centered cubic (bcc) iron:

ANp ∼ AFe · T
Np
c

T Fe
c

≈ 2.5 · 10−6erg/cm · 370K

1000K

≈ 0.9 · 10−6erg/cm

(we used the literature value AFe ≈ 2.5 × 10−6 erg/cm for the
exchange constant of bcc Fe, which was computed from the
data given in Ref. 56).

In addition, we simulated the dependence of the mag-
netization curves on this exchange constant. In principle,
corresponding results could be used to establish the value
of A by comparing simulated curves with those measured
experimentally. Simulations were performed for the following
exchange values: A = 2.5 × 10−6, 1.0 × 10−6, 0.5 × 10−6, and
0.1 × 10−6 erg/cm for exchange interactions both within the
soft phase and between the hard and the soft phases, as well as
without exchange interaction. Simulation results are presented
in Fig. 4. Each point is the result of averaging over two to
eight independent realizations of the configuration of finite
elements with parameters listed previously. With increasing
A, the system saturates faster (the saturation field strongly

decreases), as it should be for a system consisting of random
on-site anisotropy particles interacting via a ferromagnetic
exchange that is mediated by a nearly amorphous matrix. A
meaningful quantitative comparison of our results with the
experimental magnetization curve presented in Ref. 18 is not
possible yet, because the latter contains a strong paramagnetic-
type contribution (probably from the small Fe clusters in
the amorphous phase) not included in our numerical model.
For comparison of our micromagnetic simulation results with
experimental neutron-scattering data (described later), we used
the value A = 0.5 × 10−6 erg/cm, which provides the best
agreement with the experimental data.

H (kOe)
0.0 0.2 0.4 0.6 0.8 1.0

M
/M

S

0.0

0.2

0.4

0.6

0.8

1.0

A = 0 

A = 0.1 x 10−−−−6
 

A = 0.5 x 10−−−−6

A = 1.0 x 10−−−−6

A = 2.5 x 10−−−−6

FIG. 4. (Color online) Magnetization curves for different ex-
change constants A for the soft phase (equal to the exchange constant
applied for the interaction between the soft and the hard phases).
Increase in the exchange constant leads to rapid decrease of the
saturating field value.
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θ
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FIG. 5. (Color online) Geometry of the neutron scattering exper-
iment used in simulations, together with the microscopic structure of
the nanocomposite generated by the algorithm described in Sec. III.A
(blue spheres correspond to magnetically hard grains).

B. Calculation of the SANS cross-section

Most SANS experiments rely on scattering geometry, where
the applied magnetic field H is perpendicular to the wave
vector k0 of the incident neutron beam (Fig. 5). In this case,
the purely magnetic elastic differential SANS cross-section
d�/d� (for unpolarized neutrons) of a bulk ferromagnet can
be expressed as15

d�

d�
(q) = 8π3

V
b2

H [|M̃x |2 + |M̃y |2 cos2 θ + |M̃z|2sin2θ

− (M̃yM̃
∗
z + M̃zM̃

∗
y ) · sinθ cos θ ]. (10)

Here, V is the scattering volume (in our simulations, a
rectangular prism with 125 × 380 × 380 nm3 and with the short
side along the neutron beam, as in Fig. 5), bH = 2.699 × 10−15

m/μB (μB is the Bohr magneton), a∗ denotes a quantity
complex conjugated to a, θ is the angle between the external
field H and the scattering vector q = (0, q · sinθ , q · cosθ ), and
M̃(q) = [M̃x(q),M̃y(q),M̃z(q)] is the Fourier transform of the
magnetization M(x). The relative contributions of the different
terms (squared magnetization projections and mixed terms
∝M̃yM̃z) to the total cross-section in Eq. (10) are discussed in
detail elsewhere.

In Eq. (10), we ignored the nuclear SANS contribution,
because the present study is devoted to simulations of
magnetic SANS. For samples with a statistically isotropic
microstructure, nuclear coherent scattering is also isotropic
and independent of the applied magnetic field. Even more
importantly, the magnetic scattering that is relevant here,
because of static spin misalignment, is generally several orders
of magnitude larger than the nuclear SANS signal (cf. Figs. 10,
11, 18, 22, 35, and 36 in Ref. 15). Therefore, the simu-
lated cross-section computed using Eq. (10) can be directly

compared to experimental SANS data on nanocrystalline
magnetic materials.

The Fourier components of the magnetization distribution
for a disordered system can be calculated in the most efficient
way by mapping (interpolating) this distribution onto a regular
grid. We used the following method: if the center of the regular
grid element (j ,k,l) is inside the ith finite element of our
disordered system and this element represents the hard phase
fraction, the corresponding magnetic moment is calculated
as

Mhard
jkl = miMS,iVi

Nhard
i

,

where Nhard
i is the number of regular grid elements whose

centers are within the ith hard phase mesh element of the initial
disordered system. If the center of the regular grid element is
inside the soft phase, its magnetic moment is

Mjkl

soft = miMS,iVi

〈N soft〉 ,

where 〈N soft〉 is the average number of regular grid elements
inside the finite elements used for the discretization of the soft
phase. Use of the average number 〈N soft〉 instead of the number
N soft

i of regular elements belonging to the ith finite element
helps suppress nonphysical fluctuations of the magnetization
distribution that arise because of significant fluctuations of
N soft

i for different finite elements (for computing the Fourier
transform of the magnetization, we use the regular mesh that is
only about two times finer than the size of a soft phase element
of the initial disordered mesh). Corresponding averaging of
the number of regular grid elements for the hard phase is
not necessary, because each hard phase polyhedron includes a
relatively large number of regular grid nodes.

Numerical results for the SANS cross-section obtained by
evaluating the expression in Eq. (10) using the algorithm
outlined previously are presented in Fig. 6 (lower row of
images), together with the experimental results reported in
Ref. 18. Both numerical and experimental pictures represent
so-called difference-intensity data;18 i.e., they are obtained
by subtracting the SANS cross-section in the saturated
magnetization state from the cross-section obtained at each
particular field. Numerical images were averaged over eight
random realizations of the nanocomposite microstructure.

Clearly, Fig. 6 demonstrates good semiquantitative agree-
ment between experimental and numerical results, including
their dependencies on the external magnetic field, which is ap-
plied in the horizontal direction with respect to the images. At
zero field, the total (i.e., without subtracting the cross-section
at saturation) scattering intensity is isotropic (not shown here,
see Ref. 54 for details). The scattering intensity at saturation—
which is used to calculate the difference-intensity images
shown in Fig. 6—exhibits the angular dependence ∼sin2θ ,
in agreement with Eq. (10): at saturation, Mx = My = 0
and Mz = MS , so the only remaining term in Eq. (10)
is ∼sin2θ .

However, at intermediate fields (see the image for
H = 2.9 kOe), the SANS intensity shows a nontrivial angular
anisotropy in a clover-leaf shape, first observed experimentally
in Ref. 29. The qualitative explanation of this effect is based
on the magnetization jump at the boundary between the hard
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FIG. 6. (Color online) Comparison of the SANS intensities
obtained experimentally (Exp., upper row) and simulated numerically
(Num. sim., lower row) for different external fields as indicated
(a logarithmic scale for the intensities was used). Color scales for
experimental and simulated images coincide up to the scaling factor
used for the normalization. Pixels in the corners of the images
have a momentum transfer q = 0.64 nm−1. The external field is
applied horizontally in the plane. Experimental data were taken from
Ref. 18.

and the soft phases, as discussed in Ref. 18. According to
this explanation, the magnetodipolar field, arising because
of this jump around the hard inclusions, leads to deviation
of the magnetization direction in the amorphous phase from
the external field direction. The angular dependence of this
deviation is similar to the corresponding dependence of the
stray field created by the hard inclusion (∼sinθ cosθ ) and
introduces an additional angular dependence into the SANS
intensity via M̃x(q),M̃y(q),M̃z(q). This additional dependence
is superimposed onto the trigonometric functions of θ present
in Eq. (10), leading to substantial deviations of the intensity
maxima locations from their trivial values θ = ±45o (for
H = 2.9 kOe, the SANS image shown in Fig. 6 exhibits
intensity maxima at θ ≈ ±35o).

To check this explanation, we performed simulations for
the same system as discussed previously but neglected the
magnetodipolar interaction (i.e., the corresponding energy

and effective field contributions were “switched off”). The
main result of this simulation is shown in Fig. 7, where
we compare the angular dependencies of the |M̃y(q)|2 com-
ponent (computed for both systems at the same magneti-
zation value in the applied field direction) for the system
with [Fig. 7(a)] and without [Fig. 7(b)] the magnetodipolar
interaction.

For the system where the magnetodipolar interaction is
present, the typical clover-leaf-type pattern can be clearly seen
in |M̃y(q)|2; for certain q and H , it delivers the main contri-
bution to the corresponding pattern present in the total SANS
cross-section. On the other hand, when the magnetodipolar
interaction is neglected, this pattern disappears, thus verifying
that this interaction is the main reason for the presence
of the clover-leaf structure in SANS images. In magnetic
nanocomposites, the internal dipolar field is mainly due to
different magnetization values of the hard and soft phases,
which results in significant “surface magnetic charges” on the
border between these phases. These charges, in turn, induce a
significant stray field. Hence, the results presented here can
be considered as supporting the conclusion from Ref. 18
that the clover-leaf pattern observed in SANS is due to the
magnetization jump on the border between the two magnetic
phases.

V. CONCLUSION AND OUTLOOK

We have introduced a new micromagnetic methodology
that is especially suitable for numerical simulations of widely
used many-phase magnetic nanocomposites consisting of
magnetically soft and hard phases, where the hard phase
inclusions have an approximately spherical shape. By apply-
ing this new approach to the simulations of magnetization
distribution and subsequent calculations of the SANS cross-
sections of nanocomposites of the Nanoperm type, we could
achieve good agreement with experimental data obtained
on these alloys. Our preliminary studies of the role of the
various magnetic interactions in this highly nontrivial material
confirm that the qualitatively new clover-leaf shape seen in

FIG. 7. (Color online) Comparison of the angular dependencies of the Fourier component |M̃y(q)|2 for systems (a) where the magnetodipolar
interaction is taken into account and (b) where it is neglected in the applied field H = 2.9 kOe. For the system without the magnetodipolar
interaction in (b), the clover-leaf-type pattern seen in (a) is absent and the angular dependence of |M̃y(q)|2 is fully isotropic.
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experimental SANS data appears due to the magnetodipolar
field within a nanocomposite, as previously suggested in
Ref. 18. The important question of whether the abrupt jump
in magnetization magnitude at the boundaries between hard
and soft magnetic phases present in two-phase composites is
a necessary condition for the observation of such a clover-leaf
pattern will be addressed in detail in a separate publication.
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