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Effects of semiclassical spiral fluctuations on hole dynamics
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We investigate the dynamics of a single hole coupled to the spiral fluctuations related to the magnetic ground
states of the antiferromagnetic J1-J2-J3 Heisenberg model on a square lattice. Using exact diagonalization on
finite size clusters and the self-consistent Born approximation in the thermodynamic limit, we find, as a general
feature, a strong reduction of the quasiparticle weight along the spiral phases of the magnetic phase diagram. For
an important region of the Brillouin zone the hole spectral functions are completely incoherent, whereas at low
energies the spectral weight is redistributed on several irregular peaks. We find a characteristic value of the spiral
pitch Q = (0.7,0.7)π , for which the available phase space for hole scattering is maximum. We argue that this
behavior is due to the nontrivial interference of the magnon-assisted and the free-hopping mechanism for hole
motion, characteristic of a hole coupled to semiclassical spiral fluctuations.
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I. INTRODUCTION

The interplay between charge and spin degrees of freedom
in a 2D doped Mott insulator represents an important problem
in condensed matter physics.1,2 The strong constraint on the
double occupancy gives rise to the nontrivial coupling of
the charge motion with the magnetic background, which is
believed to be well described by the t-J model. In this
context, Shraiman and Siggia3 showed that hole motion
produces a long-range dipolar distortion of the staggered
magnetization resulting in a spiral order characterized by a
pitch proportional to hole doping. Further studies focused on
the spiral stability under low doping4 and its possible relation
with the spin glass behavior found in the superconducting
cuprates. Regarding the charge dynamics, much interest was
concentrated on the possibility of extending the concept of
quasiparticle excitation in hole doped antiferromagnets (AF).
In fact, it was suggested that already for the one hole case
the distortion of the magnetic background would lead to an
orthogonality catastrophe,5 signaled by the vanishing of the
quasiparticle (QP) weight zk. Subsequent works,6 however,
showed that such a dipolar distortion is compatible with a
coherent quasiparticle excitation with a finite zk. Furthermore,
a semiclassical treatment of the magnetic background, based
on the linear spin wave theory (LSWT), captures the main
features of the QP excitation which can be envisaged as a bare
hole surrounded by an AF cloud.6 This interpretation of the
low-lying excitation has been coined the spin polaron picture,
due to the analogy with the phononic polaron problem, and for
unfrustrated AF it seems to be valid for the whole Brillouin
zone (BZ).

When frustration is present in the undoped AF, the hole
dynamics may change significantly due to the stabilization of
more complex magnetic ground states. For instance, already
in the 120◦ Néel ground state of the triangular antiferromagnet
(AF), the validity of the spin polaron picture depends crucially7

on the sign of the hopping t for an important region of the BZ,
while for the kagomé AF the hole spectral functions seem to
be completely incoherent8 for the whole BZ. This behavior
has been attributed to the presence of an exponentially large
number of singlet excitations inside the triplet gap.9 Therefore,

the coupling of the hole with the underlying excitations above
the magnetic ground state is crucial.

Very recently, the phase diagram of the J1-J2-J3 model was
studied exhaustively with functional renormalization group,
coupled cluster method, and series expansion.10 The good
agreement among these complementary techniques allowed
us to establish the location of the quantum disordered (QD)
regime in an important region of the parameter space (see right
panel of Fig. 1). Furthermore, in this QD regime substantial
plaquette and short-range incommensurate spiral fluctuations
were found, in agreement with early exact diagonalization
studies on finite systems.11 Consequently, it is interesting to
investigate whether the spin polaron picture is still valid within
the QD regime of the model.

Motivated by this issue, we investigate, as a first step, the
spectral function of a hole coupled to the spiral fluctuations
of the J1-J2-J3 model. Using the t-J model, solved with
exact diagonalization and within the self-consistent Born
approximation (SCBA),12,13 we found that (i) for some regimes
the sole inclusion of semiclassical spiral fluctuations in the
SCBA is enough to describe quite well the exact hole spectral
functions on finite systems and (ii) in the thermodynamic limit
the QP coherence is lost, due to the strong interference of
the magnon-assisted and the free-hopping mechanisms for
hole motion of the effective Hamiltonian, which increases
the available phase space for hole scattering. In fact, at low
energies the spectral weight is redistributed on several irregular
peaks, or multipoles. On the other hand, in the weak coupling
regime (J1/t ∼ 10), where only a few magnons are involved,
we have found an important area of the parameter space of
the model where the quasiparticle weight averaged on the
entire BZ is zav � 0.6 (see shaded area of Fig. 5), in contrast
to the expected value zav ∼ 1 for this regime. By fine tuning
frustration, we found that the loss of QP coherence is maximum
when the magnetic pitch is around Q = (0.7π,0.7π ). In many
cases, this spiral pitch corresponds to quite well ordered
spirals. Therefore, we can suggest that the breakdown of the
spin polaron picture, signaled by the QP vanishing, is a direct
consequence of the hole coupled with semiclassical spiral
fluctuations.
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FIG. 1. Phase diagram of the J1-J2-J3 model. Left panel is the
classical one with the magnetic phases characterized by the spiral
pitch indicated in parenthesis (Ref. 10). Right panel: sketch of the
quantum phase diagram for S = 1

2 recently found in Ref. 10.

The paper is organized as follows: In Sec. II A, we briefly
resume the magnetic phase diagram of the J1-J2-J3 model
along with the LSW calculation. In Sec. II B, we present the t-J
model treated within the self-consistent Born approximation.
In Sec. III, we compare the spectra predicted by the SCBA
with exact diagonalization on finite clusters and analyze the
spectra in the thermodynamic limit. In Sec IV, we close with
the conclusions.

II. MODELS AND METHODS

A. J1- J2- J3 model

The J1-J2-J3 AF Heisenberg model on a square lattice is
defined as

HJ = J1

∑
〈ij〉

Si · Sj + J2

∑
〈ik〉

Si · Sk + J3

∑
〈im〉

Si · Sm, (1)

where 〈ij 〉, 〈ik〉, and 〈im〉 indicate sums to first, second, and
third neighbors, respectively. The classical phase diagram of
this model is shown in the left panel of Fig. 1 and contains Nèel
(π,π ), spirals (Q,Q) and (Q,π ), and collinear (π,0) or (0,π )
phases.14 The thick and thin lines indicate continuous and
discontinuous transitions, respectively. Actually, the collinear
(π,0) and (0,π ) phases are degenerated with an infinite number
of interpenetrating Néel states, but it is known that quantum
fluctuations select the collinear ones by the well-known order
by disorder phenomenon.15

For spin S = 1
2 , a semiclassical spin wave study predicts an

intermediate disordered phase along the classical transition
lines between the classical phases.14 For a long time, the
quantum S = 1

2 case of the J1-J2 model has been intensively
studied in the literature.16 Only recently, however, the complete
quantum phase diagram has been investigated with more
sophisticated techniques. In the right panel of Fig. 1, a sketch
of the quantum phase diagram of the recently found model for
S = 1

2 is displayed.10 In particular, in the quantum disordered
regime there is evidence of short-range plaquette and incom-
mensurate spiral correlations. As we have mentioned in the
introduction, in the present work we will consider the effects
of the spiral fluctuations on the single-hole dynamics and leave
the effects of plaquette fluctuations for a future work. Since
the hole dynamics is sensitive to short-range character of the

magnetic fluctuations, and given that the spiral pitch values
practically coincide with the classical ones,10 we assume the
magnetic background within the semiclassical linear spin wave
theory. For spiral phases, the spin operators of HJ [Eq. (1)] are
expressed with respect to a local axis pointing in the classical
direction of the spin at each site. Using the Holstein-Primakoff
transformation in Eq. (1), the following quadratic Hamiltonian
results:

ĤJ =
∑

q

γqâ
†
qâq + 1

2

∑
q

βq(â†
qâ

†
−q + â−qâq) + Ecl, (2)

where

γq = 2s
∑
δ>0

Jδ

[
cos2 Q.δ

2
cos q.δ − cos Q.δ

]
, (3)

βq = −2s
∑
δ>0

Jδ

[
sin2 Q.δ

2
cos q.δ

]
. (4)

Q is the spiral pitch that minimizes Jk = ∑
δ Jδe

ik.δ with the
sums on δ extending up to third neighbors. After Bogoliubov
transformation âq = uqα̂q + vqα̂

†
−q, such as uq = [ γq+ωq

2ωq
]

1
2

and vq = −sign(βq)[ γq−ωq

2ωq
]

1
2 , the Hamiltonian is diagonalized

as

ĤJ =
∑

q

ωqα̂
†
qα̂q + 1

2

∑
q

ωq +
(

1 + 1

s

)
Ecl., (5)

with a magnon relation dispersion

ω2
q = s2[Jq − JQ]

[
1
2 (Jq+Q + Jq−Q) − JQ

] = γ 2
q − β2

q. (6)

While the first member is the usual expression used in the
literature for the spin wave dispersion,14 the second one, in
terms of functions γq and βq allows us to write down a more
compact expression for the hole-magnon vertex interaction
(see below). Notice that besides the three Goldstone modes at
q = (0,0) and Q = ±(Q,Q), corresponding to the complete
SO(3) symmetry rupture, at the linear spin wave level, two
extra zero modes appear at k = (−Q,Q) and (Q,−Q) that
reflect the lattice symmetry in the spectrum [Eq. (6)]. In fact,
a classical spiral (Q,Q) is related to (Q,−Q) and (−Q,Q)
by a global rotation combined with a reflexion about the y

and x axis, respectively.17 Higher orders beyond linear spin
wave theory will lift these degeneracies;18 nevertheless, for
our purposes, it is enough to keep up to quadratic order since
the main effects on the hole dynamics will be related to the
noncollinearity of the magnetic background characterized by
the spiral pitch Q (see below).

B. t- J model and SCBA

The dynamics of a hole coupled with the magnetic exci-
tations of a Mott insulator is properly described by the t-J
model2 defined as

Ht-J = Ht + HJ = −t
∑
〈ij〉σ

(c̃†iσ c̃jσ + H.c.) + HJ , (7)

where the electronic operators are the projected ones, c̃iσ =
(1 − ni−σ )ciσ , that obey the no double occupancy constraint,
and in our present case HJ is Eq. (1). To take care of the
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constraint, we use the spinless fermion representation12 for
Ht , leading to the following effective Hamiltonian for the hole

Heff =
∑

k

εkh
†
khk + 2s√

N

∑
k,q

(Mk,qĥ
†
k−qĥkα

†
q + H.c.). (8)

The first term of Eq. (8) describes the free hop-
ping of the hole without disturbing the magnetic back-
ground, and is characterized by the hole dispersion
εk = 2s

∑
R>0 2tR cos( Q·R

2 ) cos(k · R) with R = (1,0),(0,1),
in units of lattice space a. The second term describes the
magnon-assisted mechanism for the hole motion, and is
characterized by the hole-magnon vertex

Mkq = ı(ηk−quq − ηkvq), (9)

where ηk = 2s
∑

R >0 2tR sin( Q·R
2 ) sin(k · R).

For the Néel phase Q = (π,π ), the only source involved
for hole motion is the magnon-assisted mechanism, owing
to the vanishing of the hole dispersion εk = 0. Nonetheless,
it is known that the string of overturned spins generated
by this mechanism is partially erased by the zero-point AF
spin fluctuations, leading to a coherent propagation of the
hole surrounded by an AF cloud. This is the spin polaron
picture that is widely accepted in the literature.12,13 For spiral
phases, instead, the free-hopping processes interfere with the
magnon-assisted ones. This feature is counter intuitive if one
compares it with the usual polaron problem where a free band
is renormalized by phonons. In particular, we will show that
the interference depends strongly on the spiral pitch Q, which
for certain values of frustration leads to the vanishing of zk.
Regarding the hole-magnon vertex, it is interesting to note that
while for the Néel phase Mkq vanishes at q = (0,0) and (π,π ),
for spiral phases it behaves as

Mkq � −2ı

[
γ0

2ωq

] 1
2 ∑

R>0

tR (q · R) sin
Q.R

2
cos k · R (10)

Mk,Q+q = 2ı

[
γQ

2ωQ+q

] 1
2 ∑

R>0

tR sin Q.R sin

(
k − Q

2

)
· R

(11)

for small q. As ωq ∼ |q| and ωQ+q ∼ |q|, the above vertices
behave as Mkq ∝ |q| 1

2 and Mk,Q+q ∝ |q|− 1
2 around (0,0) and

(Q,Q), respectively. To investigate the hole dynamics, we
compute the hole spectral function Ak(ω) = −(1/π )ImGh

k(ω),
where Gh

k(ω) = 〈AF |hk[1/(ω + iη+ − Heff)]h
†
k|AF 〉 is the

retarded hole Green function, and |AF 〉 is the undoped
magnetic ground state in the LSW approximation. In the
SCBA, the hole self-energy is given by the following self-
consistent equation:7,12,13

�k(ω) =
∑

q

|Mkq|2
ω + iη+ − ωq − εk−q − �k−q(ω − ωk−q)

,

(12)

which must be solved numerically. The QP spectral weight
can be calculated as

zk = [1 − ∂�k(ω)/∂ω]−1|Ek , (13)

where the QP energy is given by the equation Ek = εk +
Re�k(Ek).

III. RESULTS: SCBA AND LANCZOS

A. Finite systems

In this subsection, we compare the hole spectral functions
predicted by the SCBA and exact diagonalization on a cluster
size of N = 20 sites. For collinear phases (π,π ) and (π,0),
we have already confirmed in a previous work a very good
agreement between both techniques for the hole dynamics in
the context of the J1-J2 model.19 Here we are interested in
frustration values that induce spiral correlations. In previous
exact studies of the J1-J2-J3 model,11 a coexistence of spiral
and plaquette fluctuations has been shown,which, in principle,
would couple with the hole. Therefore, a careful comparison
of the exact hole spectral functions with that of the SCBA
would allow us to discern the relevance, or lack thereof, of the
spiral fluctuations. It is worth stressing that for finite systems
the parameter space is restricted to frustration values that give
rise to spiral pitch values coincident with the momenta of the
N = 20 BZ. Even in this case, the strong finite size quantum
fluctuations renormalize the classical magnetic wave vector
Qcl . So, in order to perform a faithful comparison, we have
assumed the position qm of the maximum exact structure factor
S(q) as the actual spiral pitch characterizing the magnetic
background within the SCBA. In Fig. 2, the comparison of
the hole spectral functions with Lanczos and SCBA in the
strong coupling regime, J1/t = 0.4, is shown, along with the
exact structure factor for different values of J3/J1 at constant
values of J2 and hole momentum khole. It can be seen that
the agreement is reasonably good. In particular, when the
magnetic structure factor is characterized by only one main
peak such as that at � = ( 3

5π, 4
5π ) (see upper panels of Fig. 2),

the agreement is quite good, in contrast to the case of two
peaks [see � and X = (π,π ) in the lower panels of Fig. 2].
The latter is related to the strong competence of spiral and
Néel fluctuations for this regime; however, in the SCBA only
the main spiral peak at momentum � is considered. Given that
the exact results incorporate all kind of magnetic fluctuations,
our results suggest that to describe the main features of the
hole spectral function, at least in the regimes considered,
it is enough to take into account the coupling of the hole
with magnonic excitations above the spiral correlations. In
addition, in the spiral regime there is a strong reduction of
the quasiparticle weight in the low-energy sector of the above
spectra. This issue will be studied in the next subsection for
the thermodynamic limit.

B. Thermodynamic limit

We have computed the hole spectral functions for cluster
sizes up to 1600 sites. In complete agreement with previous
works, we found that for the frustrated Néel (π,π ) regime
the hole spectral functions show a coherent low-energy peak
for the whole BZ, which is identified with a well-defined
quasiparticle excitation, i.e., spin polaron. This is shown
in the dashed line of Fig. 3, where we have plotted the
A(k,ω) for a hole with momentum khole = (0.8π,0.8π ) at
point A of the magnetic phase diagram (see Fig. 5). For

024402-3



I. J. HAMAD, L. O. MANUEL, AND A. E. TRUMPER PHYSICAL REVIEW B 85, 024402 (2012)

-6 -3 0 3 6
ω/t

0.0

0.2

0.4

A
(k

,ω
)

-6 -3 0 3 6

-6 -3 0 3 6
ω/t

0.0

0.2

0.4

A
(k

,ω
)

-6 -3 0 3 6
ω/t

M Γ Δ X
0.0

0.2

0.4

0.6

S(q)

M Γ Δ X
0.0

0.2

0.4

S(q)

-π 0 π-π

0

π

M

Δ
X

Γ

FIG. 2. (Color online) Lanczos (continuous) vs SCBA (dashed) hole spectral functions for a 20 site cluster, momentum khole = (0,π ) (left
panels) and khole = (0,0) (middle panels), and J2/J1 = 0.2, J1/t = 0.4. Upper (lower) panels correspond to J3/J1 = 1.5 (J3/J1 = 0.45). Right
panels: Exact static structure factor S(q). In the SCBA calculation, the magnetic wave vector Q corresponding to the highest value of S(q) in
the exact calculation has been chosen. M = −(0.8,0.4)π , � = (0.8,0.6)π , and � = (0,0).

this case, the QP weight is around zk ∼ 0.2, which means
a considerable contribution of multimagnon processes to the
spin polaron wave function. As frustration increases, the
magnon dispersion bandwidth decreases, allowing the hole
to emit and absorb magnons more easily.19 Then, there is an
increasing contribution of the multimagnon processes in the
spin polaron wave function, accompanied by a reduction of the
quasiparticle weight. Therefore, as quantum fluctuations are
enhanced by frustration, the QP weight and the magnetization
decrease monotonically. It can be seen that the QP weight
remains finite even when long-range order is destroyed, which
confirms the idea that the hole dynamic is more sensitive to
the short-range magnetic fluctuations.

In the incommensurate spiral phase, we have found that
the hole spectral functions are completely incoherent for an
important region of the BZ. This is shown in the solid line of
Fig. 3 where it is plotted A(k,ω) at point B of the magnetic
phase diagram (see Fig. 5) for the same khole. In the inset of
Fig. 3, the peculiar structure of the low-energy sector which
is composed by several irregular peaks where no signal of
QP excitation is present is shown. In the SCBA, this feature
of the hole spectral function is typical for incommensurate
spiral correlations and is related to the fact that there are two
mechanisms for hole motion—the magnon assisted and the
free one—whose interference may increase the available phase
space for hole scattering, leading to the loss of QP excitations.
In fact, this effect depends strongly on the spiral pitch which
can be fine tuned by frustration. For instance, we have found
that when the spiral pitch is around Q = (0.7,0.7)π , the
effect is maximum with a vanishing of the QP weight in
approximately 50% of the BZ. Given that here the local
magnetization of the spiral state is about m ∼ 0.24, one can

conclude that the nontrivial hole dynamics is already present
at a semiclassical level. We have found a similar behavior for
a hole injected in other noncollinear magnetic backgrounds
such as the 120◦ Néel order7 and canted Néel phases,20

although the incommensurate spiral correlations seems to be
more effective in destroying the QP excitations. It is worth
noting that the strong reduction of the QP weight along
with the rapid redistribution of the spectral weight on several
multipoles has been observed previously on finite systems.
Alternatively, these features were related to a scenario of
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FIG. 3. (Color online) Hole spectral functions obtained by SCBA
for 1600 sites, khole = (0.8,0.8)π , J2 = 0, and J1/t = 0.4. Dashed
(red) line: J3/J1 = 0.1 (Neel phase). Continuous line: J3/J1 = 0.425
[spiral phase, Q = (0.7,0.7)π ]. Inset: low energy sector is zoomed.
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FIG. 4. (Color online) QP weight averaged on the entire BZ,
zav = (1/N )

∑
k zk, as a function of J3/J1, predicted by the SCBA

for 1600 sites in the weak coupling regime, J1/t = 10. In between
the vertical lines m = 0 within the LSW approximation. The dots B

and C indicate the values of frustration for which Q ≈ (0.7,0.7)π
(they are displayed in the magnetic phase diagram of Fig. 5). Inset:
QP weight for khole = (0.3,0.3)π computed with the SCBA (solid
line) and Eq. (14) (dashed line).

spinon deconfinement21 which, of course, is out of the scope
of our present approximation.

We have further investigated the effect of spiral fluctuations
for the very weak coupling regime (J1/t 
 1). For a Néel
phase, the only mechanism for hole motion is magnon assisted,
and, owing to its high energy cost, it is expected that the hole
reaches a quasistatic regime where the QP weight approaches
unity. For spiral phases, however, the hole can move via the
free hopping term of Eq. (8), reducing the QP weight even with
a very low average number of magnons promoted. Then, in the
weak coupling regime, zk can be approximated by perturbative
theory as12,19

zk ≈ 1

1 + ∑
q[Mk,q/(εk − εk−q − ωq)]2

, (14)

where the QP dispersion Ek has been replaced by the bare
dispersion εk. In the inset of Fig. 4, the good agreement
between Eq. (14) (dashed line) and the QP weight computed
with Eq. (13) (solid line) for different values of frustration is
shown. In particular, for the selected hole momentum, zk is
strongly reduced once the magnetic background reaches the
spiral regime. In principle, one can attribute the reduced value
of zk for spiral phases to the vertex behavior near (Q,Q),
Mk,Q+q ∝ |q|− 1

2 . Nonetheless, we have checked that the most
important contribution comes from the small values assumed
by the denominators εk − εk−q − ωq. In order to quantify
globally this behavior, we have plotted in Fig. 4 the QP spectral
weight averaged on the entire BZ, zav = (1/N )

∑
k zk, for

J1/t = 10. Again, it can be observed that as J3/J1 increases,
zav decreases notably when the magnetic background reaches
the spiral regime. In particular, for J2/J1 < 0.5, a single
minimum at Q ≈ (0.7,0.7)π is always observed, analogous to
that found in the strong coupling regime (Fig. 3). For J2/J1 =
0 (continuous line in Fig. 4), Q occurs in a region where

0 0.2 0.4 0.6 0.8
J2 /J1

0.0
1.0

0.1

0.2

0.3

0.4

0.5

J3/J1

(π,π)

(Q,Q)

(Q,π)
A

Β

(0,π)

C

FIG. 5. The shaded area indicates the region of the magnetic
phase space where the averaged quasiparticle weight zav � 0.6 in the
weak coupling regime (J1/t = 10). For the strong coupling regime,
J1/t = 0.4, the SCBA predicts the vanishing of zk in some area
of the BZ. Dots A = (0,0.1), B = (0,0.425), and C = (0.2,0.32)
correspond to the frustration values used in Figs. 3 and 4, respectively.

m ≈ 0.24, while for J2/J1 = 0.4 (dashed line), Q is inside the
region where m = 0. In the latter, we have modified the LSW
approximation by introducing a gap in the magnetic dispersion
in order to describe the short-range spiral order properly.22

In order to show that the strong reduction of the QP weight
is a general feature of the subtle coupling of the hole with
the spiral magnetic fluctuations, we have studied the hole
spectral functions for an important region of the magnetic
phase diagram. The shaded area of Fig. 5 indicates the region
of the magnetic phase diagram where the averaged QP weight
is zav � 0.6 for the very weak coupling regime. Notice that in
this regime, one would expect a value of zav ∼ 1, as occurs
within the Néel (π,π ) and the Collinear (0,π ) phases.19 Since
this behavior is independent of the range of the magnetic
fluctuations, we expect the same effect for a hole coupled to the
short-range spiral fluctuation of the actual quantum magnetic
phase diagram (see right panel of Fig. 1).

IV. CONCLUSIONS

We have investigated the effect of semiclassical spiral
fluctuations on single hole dynamics. Based on the magnetic
phase diagram of the J1-J2-J3 model, and solving the hole
Green function with exact diagonalization and within the
SCBA, we found that for the weak (J1/t 
 1) and the strong
(J1/t � 1) coupling regime there is a characteristic value of
the spiral pitch Q ≈ (0.7,0.7)π , for which the available phase
space for hole scattering is maximum. Notably, for the whole
spiral regimes [(Q,Q) and (Q,π )] of the model, we found a
strong reduction of the averaged QP weight zav . In particular,
for some momenta the QP weight vanishes and the spectral
weight at low energy is redistributed on several irregular
peaks, or multipoles. Even if in our study the spirals have been
described semiclassically; we think that this effect should be
also observed in the short-range spiral phases recently found
in the disordered regime of the quantum phase diagram.10
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Similar features have been found in finite size studies of the
same model, although the strong reduction of the QP weight
has been attributed to the spinon deconfinement inherent of the
plaquette fluctuations.21 Based on our results and given that
the alternative scenario for spinon deconfinement is based on
short-range spiral correlations,23 it would be important to go
beyond the semiclassical description and investigate, within
the context of the present model, the hole dynamics on spirals

treated in terms of spinon excitations.24 Work in this direction
is in progress.
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