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Quenching of initial ac susceptibility in single-domain Ni nanobars
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The ac susceptibility measurement probes the dynamic properties of a magnetic material, which is believed
to consist of magnetization rotation and domain wall motion contributions. Here we report the observation of
a complete quenching of the initial ac susceptibility for a single-domain Ni nanobar array, when the ac field is
aligned with the long axis of the bars. The vanishing of the susceptibility in one direction is a unique nanoscale
phenomena, allowing an unambiguous determination of the magnetic state of the nanostructure and a clean
separation of different contributions to its dynamic properties. For example, an unambiguous determination of
the temperature-dependent surface anisotropy energy is obtained when the field is applied perpendicular to the
long axis, even when the size of the nanobar is still large and the surface anisotropy does not dominate the
magnetic energy.
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I. INTRODUCTION

Magnetic properties of materials anchor the magnetic
recording and nonvolatile memory technologies.1,2 Perfor-
mance optimization has pushed device dimensions smaller
and thinner, rapidly reaching the nanoscale, where many
novel and often unexpected properties begin to emerge.
Such dramatic changes in the properties of the materials
can either benefit or harm device performance. For example,
some out-of-plane magnetized nanostructures may transform
to in-plane magnetization when their size or temperature is
changed.3 This phenomenon, called the spin reorientation
transition (SRT), is caused by the change in the relative size
or even sign of the different contributions to the magnetic
anisotropy energy, whose different parts scale differently with
the dimension of the material. Emerging nanoscale phenomena
are often the consequence of several competing factors,
e.g., the competition between bulk and surface anisotropy
in the case of SRT. Other than theoretical calculations,4 the
experimental determination of the surface anisotropy energy
was basically by estimating from the thickness of the SRT of
the system.5

Recently, a low-field complex ac susceptibility measure-
ment successfully revealed the detailed dynamic domain wall
motion modes of ultrathin magnetic films.6 In pure nickel
film, the peak in the temperature dependence of the initial
ac susceptibility corresponding to the ferromagnetic phase
transition has a tail that extends well into the low-temperature
range. Later, it was reported that this long tail follows a
surprising power-law scaling with temperature.7,8 This result
raises new questions about the relative significance of the
contributions to the low-field susceptibility from domain wall
motion and from moment rotation. There has not been any
experiment where either of these contributions has been
completely removed so that the other contribution can be
studied without any ambiguity.

Scaling to the nanoscale makes it possible to achieve a clean
separation of different contributions. In particular, sufficiently
small magnetic nanodots are single domain, removing any
contribution to the susceptibility from domain wall motion.
Furthermore, because of the large surface-to-bulk ratio, shape
anisotropy becomes dominant in nanostructures, so that by

engineering the geometric shape of the nanodots, the moment
orientation can be precisely controlled, at least within a certain
temperature range.

Here we report low-field ac susceptibility measurements on
single-domain, geometrically engineered Ni nanostructure (Ni
nanobars) arrays, and compare the results with measurements
on arrays containing multidomain nanostructures. At high tem-
peratures (between 170 K and room temperature), the initial
ac susceptibility along the length of the nanobars for single-
domain samples is completely quenched, in sharp contrast to
the multidomain samples which yield results in agreement
with the scaling-law behavior reported previously.7,8 In other
words, for single-domain nanobars along the length of the
bar there is neither a domain wall motion contribution to the
susceptibility, as expected, nor is there any contribution from
moment rotation, leading to the conclusion that the moment
is “frozen” along this direction. Clear identification of this
magnetic state allows the unambiguous determination of the
surface anisotropy energy through the measurement along
directions perpendicular to this axis. Below 170 K, a spin
reorientation transition is observed.

II. EXPERIMENTAL METHODS

The arrays of nickel nanobars were manufactured on
Si(100) wafer using e-beam lithography. A positive e-beam
resist, ZEP 520A (Zeon Corp.) was spin coated onto oxygen-
plasma-cleaned Si wafers and then soft baked for 2 min
on a 180 ◦C hot plate. The resulting photoresist films were
approximately 300 nm thick. The exposures were performed
on a JEOL-9300FS electron beam lithography tool at an
acceleration voltage of 100 kV and beam current of 2 nA.
Completed patterns were developed in xylenes for 40 s, rinsed
with isopropanol, and blow dried with nitrogen gas. The wafers
were descummed in oxygen plasma at 100 W for 6 s using
a Technics reactive ion etching (RIE) system. The resulting
samples were coated with a Ni film in an e-beam physical vapor
deposition (PVD) system. To avoid unnecessary background
signals during magnetic measurements no adhesion layers
such as thin Cr or Ti metallic films were used. Because nickel
(111) surface has the lowest energy, the nanobar is mainly
(111) textured polycrystalline.9 Following the deposition step,
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sonication of the wafers in an acetone bath for 2.5 min
removed the unexposed resist that resulted in a successful
lift-off transfer of the exposed patterns onto the Si surface.
Defect-free patterns covering sample areas as large as 7.3 ×
9.6 millimeters have been reliably reproduced on a number
of wafers. Due to the proximity effect during the e-beam
lithography process the width of the Ni structures is about
40% larger than designed value.

Magnetic force microscopy (MFM) images were taken
using a Veeco AFM with a NSC14/Co-Cr/50 noncontact
silicon cantilever. The ac and dc magnetization were measured
using a Quantum Design magnetic properties measurement
system (MPMS-XL) with field up to 7 T. Special care was
necessary during mounting of the samples because of their
fragile nature and the very small signals from the samples.
The sample surfaces were never touched during the handling
and measurements. The samples were demagnetized and
the magnet was reset by quenching the superconducting
solenoid and compensating for remnant fields before all the
ac measurements. The ac measurements were conducted with
10 Hz (all the data shown in this paper) and 100 Hz under an
ac field of 1 Oe and zero dc field. ac susceptibilities measured
at different frequencies are essentially the same.

III. RESULTS AND DISCUSSION

Experimental research on magnetic nanostructures has been
performed, in general, on large assemblies of particles.1,2,10,11

The dispersion of morphologies, compositions, orientations,
and separations of the magnetic entities have limited the
interpretation of the results. To simplify the parameters,
we chose laboratory-fabricated arrays of Ni nanobars with
identical aspect ratios, separations, and compositions. The
thickness of the nanobars can be varied to tune the magnetic
properties, creating for example single magnetic domains or
multidomains. Figure 1(a) shows typical scanning microscopy
(SEM) images of the nanobar arrays manufactured on Si(100)
using e-beam lithography. Defect-free patterns covered whole

sample areas. As shown in the schematic drawing in Fig. 1(b),
the Ni nanobars were rectangular, high aspect ratio bars with a
nominal width of 70 nm and 1 micron in length. To minimize
the possible dipolar interactions among the bars, MFM images
of bar arrays with different distances were systematically
studied. The bars used in this paper were arranged on an
orthogonal grid pattern with a pitch of 0.5 microns and 1.5
microns in the X and Y directions, respectively. As shown in
the MFM images (Fig. 2) from different thickness samples,
the magnetic domains from the neighboring nanobars are
uncorrelated to each other, indicating that the bar-bar dipolar
interaction is not strong enough to influence the magnetic
domain configuration. For all the samples we studied, bars with
thickness of 15 nm and 30 nm show single magnetic domains
[Fig. 2(b), bright contrast at one end and dark contrast at the
other end of the bars], while all the 70 nm thick nanobars and
the 50 nm films show multiple magnetic domains [Fig. 2(d),
alternate bright and dark contrast on the bars]. The arrays of
50 nm thick nanobars show the combination of single and
multiple magnetic domains.

The ac and dc magnetizations were measured using MPMS-
XL (7T).10,11 All the samples were measured with magnetic
field polar (out-of-plane), longitudinal parallel (in-plane, along
the long axis), and longitudinal perpendicular (in-plane, along
the short axis) to the nanobars [see the schematic drawing
in Fig. 1(b)]. For comparison, the ac susceptibility χ and dc
magnetization curves are normalized by the thickness a of the
nanobars.

A. Nanobars with multiple magnetic domains

The low-field initial ac susceptibilities χ of multiple
magnetic domain bars are very similar to the χ of Ni
films.7 Shown in Fig. 3(a) are the temperature-dependent
initial ac susceptibilities of a = 70 nm bars measured with
the applied magnetic field in three different directions,
longitudinal parallel, longitudinal perpendicular, and polar
to the sample surfaces. The susceptibility in the parallel
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FIG. 1. (Color online) (a) Typical SEM images of the Ni nanobar arrays; inset shows the details of three bars. (b) Schematic drawing of
the geometry of the nanobars (a, b, c) and the magnetic field direction notations used in the paper, longitudinal parallel (para.), longitudinal
perpendicular (perp.), and polar (polar).
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FIG. 2. (Color online) AFM and the corresponding MFM images
(5 μm × 5 μm) of nanobar arrays with thickness of (a), (b) 15 nm
and (c), (d) 70 nm. MFM image (b) shows single magnetic domains,
while (d) shows multidomains. During imaging, the stray field of the
magnetic tip can flip the domains of the nanobars, which is reflected
in the MFM images as sudden jumps between scanning lines.

direction increases dramatically with increasing temperature,
whereas the temperature dependence is much weaker in
the other two directions. Using the same normalization as
Song et al.7 the susceptibility data of the nanobars for the
parallel direction fall on the same universal scaling curve
for the films as their Fig. 5, confirming the validity of the
low-temperature scaling law in the multiple magnetic domain
nanobars.

dc hysteresis loops are essential to help understand the
above ac susceptibility behavior. As shown in Fig. 3(b), the 2

K dc loop in the polar direction shows almost full remanence
and coercivity, which indicates a strong out-of-plane easy
axis. The RT dc loops [Fig. 3(c)] show neither significant
remanence nor coercivity in both polar and parallel directions,
which normally indicates the existence of a temperature
induced out-of-plane to in-plane spin reorientation transition.
However, the monotonically increased ac susceptibility and
the out-of-plane magnetic domains in the RT MFM im-
age, Fig. 2(d), strongly indicate that the out-of-plane easy
axis is maintained up to RT. The similar counterintuitive
magnetization of Ni films was quantitatively studied and
carefully addressed previously by the magnetization of domain
walls,12,13 which we believe also validates its occurrence in
the nanobars. By combining the literature results12,13 and
both MFM images and dc magnetization loops, the most
plausible magnetic domain model is schematically drawn in
Fig. 3. The magnetic domain configuration of the Ni bars
is perpendicular domains with Bloch domain walls, which
are capped with canted closure domains on the surface. The
number of domain walls in the perpendicular direction of
the bars should be zero because of the small width (b) of
the bars [Fig. 2(d)]. Such a configuration makes the polar
and perpendicular directions similar, in contrast to the two
in-plane directions and one out-of-plane direction for a film
geometry.

When magnetizing the bars along the polar direction, the
polar magnetization is a combination of short-range Bloch
domain wall motion processes and the closure magnetization
rotation. The in-plane magnetization (perp. and para.) is
dominated by the long-range rearrangement of Bloch domain
walls and the magnetization rotation of the out-of-plane
domains and the canted closure domains.12 Although all the RT
hysteresis loops show no remanence and coercivity, they show
very different magnetization behaviors as marked by the black
arrows in Fig. 3(c). The magnetization process (increasing
field) along the polar direction involves the growing of domains
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FIG. 3. (Color online) Temperature dependence of the ac susceptibilities (a) and magnetic hysteresis loops [(b) at 2 K and (c) at 300 K] of
arrays of 70 nm nanobars (a = 70 nm), measured with the magnetic field applied longitudinal parallel, longitudinal perpendicular, and polar to
the sample surfaces. The schematic drawing shows the out-of-plane magnetization configuration of the bars, which consists of the out-of-plane
domains (blue), the Bloch domain walls (yellow), and the canted closure domains (green).
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along the field and shrinking of the domains opposite the
field, thus requiring domain wall motion. In contrast, the
magnetization process in the parallel direction only involves
moment rotation due to the dipolar coupling created by the
parallel field between the out-of-plane domains. Thus the
former process needs more energy than the latter, yielding
a slower rise of the moment with the applied field (black curve
for increasing field). In contrast, the curves for decreasing
fields reflect thermally activated magnetization relaxation
process, which is similar for both directions. It is not surprising
then that the two curves almost coincide for decreasing fields.
At RT, although a large polar field can move the Bloch domain
walls, the walls recover through thermal activation when the
field is removed, leading to zero remanence and coercivity. At
2 K, domain wall energy becomes too large to be overcome by
thermal energy, leading to a nearly full remanence.

The ac susceptibilities in the three directions can be readily
understood with the above magnetic domain configuration.
The ac susceptibility is the rate of change of the magnetization
of a material in response to an applied magnetic field.
The higher energy required for Bloch domain wall motion
when field is applied in the polar direction results in a
correspondingly small low-field ac susceptibility.7,12 The weak
temperature dependence of the polar χ indicates that the
domain wall motion is not thermally activated at low field.
The perpendicular direction for nanobars is more difficult
to magnetize than the parallel direction due to the shape
anisotropy of the elongated geometry.

The larger values of ac susceptibility χ in the parallel
direction than in the other two directions arises from the fact
that the magnetization rotation of the out-of-plane domains
along the parallel direction, which as we discussed earlier
makes up the contribution to the parallel χ , is much easier
than domain wall motion (needed for the polar χ ) or mag-
netization rotation along the perpendicular direction (needed
for the perpendicular χ ). Because in the parallel direction the
magnetization rotations of different domains are correlated due
to the long-range dipolar interaction, a situation quite similar
to thin films, it is not surprising that the χ scales with the
temperature with the same scaling law as in thin films.7

B. Nanobars with a single magnetic domain

The ac susceptibilities of single-domain bars show very
different behavior than the films and multidomain bars. Shown
in Fig. 4 are the summarized data of χ for a = 15 nm, 30 nm,
50 nm, and 70 nm bars. In both parallel and perpendicular
directions, the temperature dependence of χ is nonmonotonic
for single-domain bars in sharp contrast to the monotonic
increase for 70 nm multidomain bars.

The most striking result for single-domain bars is the
quenching of the ac susceptibility above about 170 K up
to room temperature in the parallel direction in which the
external field is applied along the long axis of the nanobars in
Fig. 4(a). In this temperature range, the susceptibility decreases
to zero within the sensitivity of the equipment. In the vicinity
of 170 K, the average susceptibility is 0.02 emu/Oe cm3,
compared to the equipment sensitivity of 0.05 emu/Oe cm3.
The quenching of the ac susceptibility χ remains almost
complete all the way up to room temperature, only increasing
slightly to 0.09 emu/Oe cm3 at 300 K.

The measured susceptibility is also quite unusual in the
perpendicular direction in which the external field is applied
along the short axis of the bar, Fig. 4(b). Unlike for the
multidomain nanobars where χ is almost constant at a small
value for the whole temperature range, χ changes dramatically
with the temperature for single-domain nanobars. At high
temperatures, χ appears to be almost thickness independent.
A distinct peak in χ is observed around 130 K for single-
domain samples but not for multidomain samples. At the
low-temperature end all curves seem to converge to about
the same value, and within the same range as χ for the parallel
direction.

The ac susceptibilities of a = 15 nm bars (Fig. 4) share
nonmonotonic trends in both directions similar to but stronger
than those in the 30 nm bars, with a higher peak height in the
medium-temperature range and a smaller susceptibility at the
low-temperature end.

The unusual features of χ are not due to the existence of
other phases such as those observed in antiferromagnetic NiO.
The oxidation of Ni bars is negligible since NiO normally
shows very large coercivities and loop shifts (�10 KOe),14

(a) (b)

FIG. 4. (Color online) Temperature dependence of the ac susceptibilities of nanobars (a = 70, 50, 30, and 15 nm) measured with the
magnetic field applied (a) longitudinal parallel and (b) longitudinal perpendicular.
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FIG. 5. (Color online) Magnetic hysteresis loops of arrays of 30 nm and 15 nm nanobars (a = 30 nm, 15 nm) (a), (c) at 2 K and (b), (d) at
300 K measured with the magnetic field applied longitudinal parallel, longitudinal perpendicular, and polar to the sample surfaces.

which were never observed in our Ni samples—freshly
fabricated or old, films or nanobars.

The dc magnetic hysteresis loops for a = 30 nm and a =
15 nm single-domain bars are shown in Fig. 5. At RT in the
parallel direction, Figs. 5(b) and 5(d), both samples have full
remanence and large coercivity, indicating this as the easy axis.
The preference for the easy-axis direction is not so clear at low
temperatures [Figs. 5(a) and 5(c)]. The polar direction is the
hardest axis over the whole temperature range compared to
the perpendicular direction. It is interesting to compare to the
hysteresis loops for 70 nm bars [Figs. 3(b) and 3(c)]. Contrary
to the multiple magnetic domain bars, the easy-axis preference
of the single-domain bars is stronger at room temperature than
at low temperature. We will see in the analysis later that this is
due to a spin reorientation transition in the single-domain bars
around 130 K.

C. Understanding the ac susceptibility

The peak in the temperature dependence of the ac
susceptibility for the single-domain nanobars near 130 K
can be understood as the signature of a spin reorientation
transition. However, at higher temperatures the quenching of
the susceptibility along the parallel direction and the nearly
thickness-independent susceptibility along the perpendicular
directions call for a further analysis.

To understand the physics underlying the complicated
ac susceptibilities of the single magnetic domain bars, it is
necessary to recall the energy terms involved in the system.
For a low-dimensional magnetic system, the energy terms
might include spontaneous-magnetization-related exchange
energy, magnetocrystalline anisotropy controlled by the crys-
talline structure of the system, stress-induced magnetoelastic
anisotropy, magnetostatic anisotropy or the demagnetizing
energy caused by the shape of the system, surface anisotropy
resulting from the broken symmetry of the system, and Zeeman
energy.15–17

For a simple phenomenological model, it would help to
extract only the part that makes the difference. For the multiple
and single magnetic domain bars in the current study, the main
difference is the thickness of the bars (above 50 nm or below).
This means that the main energy terms involved in changing
the ac susceptibility behavior are the magnetostatic anisotropy
(shape anisotropy) and the surface anisotropy. In the following
calculation, the sum of these two anisotropies is expressed as
Es . The sum of the rest of the anisotropy energies that are
independent of the geometry of the nanobars is called the bulk
anisotropy energy Eb. Then the total energy of the nanobars
can be written as E = Eb + Es .

The bulk anisotropy energy per unit volume for a cubic
lattice is in the form

Eb = K1
(
m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1

) + K2m
2
1m

2
2m

2
3, (1)
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where m1, m2, and m3 are the components of m along three
crystallographic axes.

The expressions of Es are very different for nanobars with
multiple or single magnetic domains because of the existence
of magnetic domain walls. In this analysis we focus our interest
on the single magnetic domain case. For nanobars with single
magnetic domains, the lowest order shape anisotropy and
surface anisotropy can be written as a surface integral,

Es = 1

2
Ks

∫
(m · n)2dS, (2)

where m is the unit vector along the direction of the magnetic
moment and n is the unit vector along the normal of the surface.
For a nanobar, if it favors the moment orientation along the
direction with the longest dimension then it implies that Ks >

0.
Neglecting the thermal excitation of the magnetic moment,

which is negligible for sufficiently large moments, the orien-
tation of the moment is at the minimum of the total energy F

per unit volume under an external magnetic field,

F (θ,φ) = E(θ,φ) − MsH cos θ, (3)

where Ms is the saturation moment per unit volume and H is
the magnetic field; θ and φ are the usual polar coordinates.
Under this approximation, the temperature dependence of the
moment orientation arises from the temperature dependence
of the coefficients KS , K1, and K2 in the anisotropy energy.

1. Longitudinal parallel direction

Let us first consider the magnetic moment and susceptibility
for a field along the longitudinal parallel direction of the
nanobars. For sufficiently large H , the minimum is at θ = 0,
i.e., the direction along the magnetic field. For this case,
∂M/∂H ≈ 0. Additional minima exist if H is less than a
saturation field Hs by minimizing Eq. (3) with respect to θ

and φ.
Here we list two possible minima and the corresponding

values of F (θ,φ) that we are interested in. All the other possible
minima are listed in the Appendix.

Case 1, for sin θ = 0, which only is a minimum if Ks > 0,

F (θ,φ) = F1 = −MsH. (4)

This minimum does not have a corresponding saturation field,
and the initial susceptibility

∂M/∂H ≈ 0. (5)

Case 3, for sin φ = 0 and (for small H )

cos θ ≈ − MsH

2Ks

(
1
a

− 1
c

) + 4
3K1 + 7

9K2
, (6)

where a, b, c are the dimensions of the bar along the x, y, z

directions, respectively, and a < b < c. This is a minimum if
2Ks(1/a − 1/c) + 4K1/3 + 7K2/9 < 0. The saturation field
is

Hs = −2Ks

(
1
a

− 1
c

) − K1 + 1
6K2

Ms

, (7)

and the initial susceptibility,

∂M

∂H
≈ M2

s

7
3K1 − 11

18K2 − HsMs

. (8)

2. Longitudinal perpendicular direction

Similarly, we can calculate the moment and the susceptibil-
ity for a longitudinal field perpendicular to the bar (along the
b direction). Please note that for this calculation the coordinate
system is rotated so that a is along y, b is along z, and c is
along x.

Again, we list the two possible minima corresponding to
those in the parallel direction; the other minima are included
in the Appendix.

Case 1′, we have sin φ = 0 and

cos θ = MsHbc

2Ks(c − b)
. (9)

The saturation field is

Hs = 2Ks(c − b)

Msbc
, (10)

and the initial susceptibility is

∂M

∂H
= M2

s bc

2Ks(c − b)
. (11)

Case 3′ is cos φ = 0 and

cos θ ≈ − MsH

2Ks

(
1
a

− 1
b

) + 4
3K1 + 7

9K2
. (12)

The saturation field is

Hs = −2Ks

(
1
a

− 1
b

) − K1 + 1
6K2

Ms

, (13)

and the initial susceptibility is

∂M

∂H
≈ M2

s

7
3K1 − 11

18K2 − HsMs

. (14)

If a � b then the initial susceptibilities along the b and c

directions are essentially the same. Consequently the values
for cos θ and the initial susceptibility are both the same as in
case 3 of the longitudinal parallel direction.

The initial susceptibility data, including the unusual
quenching of the single-domain nanobars, can be explained
nicely by the above simple theory if at the high-temperature
range the system is in cases 1 and 1′ and at low temperature
it falls in cases 3 and 3′. Note that there is an energy barrier
between the low-field state and the high-field state so that the
hysteresis cannot be predicted by small-field theory.

At the high-temperature end, in the parallel direction, as
predicted by the theoretical calculation in case 1 [Eq. (5)],
the ac susceptibilities for single-domain bars are all near 0
[Fig. 4(a)], i.e., a complete quenching of the χ . The few percent
of deviation from zero in the experimental data is from the
thermal activation effect; the higher the temperature, the larger
the deviation is. In the perpendicular direction, as shown in
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FIG. 6. (Color online) Surface anisotropy constant Ks vs temper-
ature curves calculated from perp. Ms and χ of 30 nm and 15 nm
nanobars. Blue star and triangle are the values calculated from Ms

and Hs of the corresponding nanobars.

Fig. 4(b), both 15 nm and 30 nm bars show a similar nonzero
value, consistent with the thickness (a)-independent result in
case 1′. From the model, Eqs. (10) and (11), we see that both
the saturation field Hs and the ac susceptibility χ depend only
on the surface anisotropy and the saturation magnetization Ms .
This is a unique phenomenon for single-domain nanobars that
allows an accurate determination of the surface anisotropy
constant Ks even when the size of the nanobar is still large
and the surface anisotropy energy small compared to the bulk
contribution. Using Eq. (11), the temperature dependence of
the surface anisotropy constant Ks can be calculated from
the saturation magnetization Ms and perp. ac susceptibility χ

(Fig. 6). The Ks can also be calculated using Eq. (10), from
the saturation magnetization Ms and perp. Hs . As shown in
the Fig. 6, those data points calculated from Eq. (10) fall right
on the Ks curves from Eq. (11).

At the low-temperature end the susceptibility is consistent
with cases 3 and 3′. Cases 3 and 3′ predict that the two
directions have the same ac susceptibility, Eqs. (8) and (14),
which is a function of Hs that increases with Hs . By comparing
the experimental curves in Figs. 5(a) and 5(c), we see that the
30 nm bars have a larger saturation field in both directions than
the 15 nm bars. Correspondingly, the ac susceptibilities in both
directions [Figs. 4(a) and 4(b)] show the predicted trend.

Between these two temperature limits, the broad peak
at about 100–150 K indicates the occurrence of a spin
reorientation transition. The SRT occurs as the result of the
competition between the shape anisotropy and the surface
anisotropy, the latter arising from the broken translational
symmetry at the surface, via ferromagnetic exchange coupling
among neighboring atomic layers.18 All three anisotropy
parameters, Ks , K1, and K2, are temperature dependent. Ks

normally increases with the temperature and can be found
from the saturation field of the initial magnetization curve
perpendicular to the bar. The tendency for spins to align along
the parallel direction weakens as the temperature is lowered.

The spin reorientation from along the length of the bar to the
other two directions starts at a temperature below 150 K. The
thinner the bar is, the stronger the reorientation, and the larger
the peak in the ac susceptibility. As evidenced by Figs. 5(c)
and 5(d), the easy axis is strongly along the parallel direction
at 300 K, but the parallel and perpendicular directions for the
15 nm bars are almost balanced at 2 K.

IV. SUMMARY

We conducted low-field ac susceptibility measurements on
multidomain and single magnetic domain Ni nanostructures
(Ni nanobars) arrays. While the thicker nanobars show results
consistent with the scaling behavior previously observed in
Ni films, thinner nanobars containing only single magnetic
domains show a completely quenched ac susceptibility when
the ac field is aligned along the long axis of the bars at
high temperatures. We identify the magnetic configuration
in this case as the “frozen” magnetic moment along this
direction. Taking advantage of this identification, we are able to
determine the magnetic surface anisotropy energy with cleanly
separated energy terms.
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APPENDIX: DERIVATION OF INITIAL SUSCEPTIBILITY
FOR EACH MAGNETIC CONFIGURATION

Here we consider a single-domain magnetic nanobar of
dimension a × b × c with a < b < c. Because nickel (111)
surface has the lowest energy, the nanobar is mainly (111)
textured polycrystalline.9

In order to derive the magnetic susceptibility, we need
first to find the magnetic energy as a function of the
moment orientation and the external applied field. The bulk
anisotropy energy per unit volume for a cubic lattice is in the
form

Eb = K1
(
m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1

) + K2m
2
1m

2
2m

2
3, (A1)

where m1, m2, and m3 are the components of m along three
crystallographic axes (not to be confused with x, y, and z). The
angle θ between m and the (111) direction (which we choose
as the z axis) is given by

cos θ = m1 + m2 + m3√
3

. (A2)

In order to average over different crystalline orien-
tations, we first choose ( 1

2
1
2 1̄) as the x axis, and

find the second polar coordinate φ by projecting
m − (cos θ/

√
3)(111) onto ( 1

2
1
2 1̄),

cos φ = m1 + m2 − 2m3√
6

. (A3)
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From these we find

m1 + m2 = 2√
3

cos θ +
√

2

3
cos φ, (A4)

m3 = 1√
3

cos θ −
√

2

3
cos φ. (A5)

Thus,

m2
1 + m2

2 = 1 − m2
3 = 1

3
sin2 θ + 2

3
sin2 φ

+ 2
√

2

3
cos θ cos φ, (A6)

2m1m2 = (m1 + m2)2 − m2
1 − m2

2

= 5

3
cos2 θ + 4

3
cos2 φ − 1 + 2

√
2

3
cos θ cos φ.

(A7)

From the last equation, we have

m2
1m

2
2 = 25

36
cos4 θ + 4

9
cos4 φ + 1

4
+ 4

3
cos2 θ cos2 φ

− 5

6
cos2 θ − 2

3
cos2 φ + 5

√
2

9
cos3 θ cos φ

+ 4
√

2

9
cos θ cos3 φ −

√
2

3
cos θ cos φ. (A8)

We obtain〈(
m2

1 + m2
2

)
m2

3

〉 = 1
6 − 1

3 cos2 θ − 1
9 cos4 θ, (A9)

〈
m2

1m
2
2

〉 = 1
12 − 1

6 cos2 θ + 25
36 cos4 θ, (A10)

where the angle brackets indicate averaging over φ. Thus,〈
m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1

〉 = 1
4 − 1

2 cos2 θ + 7
12 cos4 θ.

(A11)

We also get〈
m2

1m
2
2m

2
3

〉 = 1
108 + 1

12 cos2 θ − 7
36 cos4 θ + 25

108 cos6 θ.

(A12)

These provide the necessary terms for calculating the average
bulk anisotropy for (111) textured polycrystalline solid.

Next, we consider the surface and shape anisotropy. The
lowest order surface anisotropy can be written as a surface
integral,

Es = 1

2
Ks

∫
(m · n)2dS, (A13)

where m is the unit vector along the direction of the magnetic
moment and n is the unit vector along the normal of the surface.
Now we orient the bar so that a, b, c are the dimensions of the
bar along the x, y, z directions, respectively. Integrating Es ,
we find

Es = Ks[ab + a(c − b) sin2 θ + c(b − a) sin2 θ cos2 φ],

(A14)

where θ and φ are the usual polar coordinates of the magnetic
moment m. If the surface anisotropy favors the moment

orientation along the direction with the longest dimension,
i.e., the z direction, then it implies that Ks > 0.

In order to sum the surface and bulk anisotropy energies
together, we orient the (111) direction along the x axis instead
of the z axis; thus we need to replace cos θ in the bulk
anisotropy by sin θ cos φ. The total anisotropy energy per unit
volume takes the form

E(θ,φ) = Ks

c − b

bc
sin2 θ

+
(

Ks

b − a

ab
− 1

2
K1 + 1

12
K2

)
sin2 θ cos2 φ

+
(

7

12
K1 − 7

36
K2

)
sin4 θ cos4 φ

+ 25

108
K2 sin6 θ cos6 φ. (A15)

The orientation of the moment at zero temperature is at the
minimum of the total energy per unit volume,

F (θ,φ) = E(θ,φ) − MsH cos θ, (A16)

where Ms is the saturation moment per unit volume and H is
the magnetic field. Minimizing with respect to θ and φ, we
find

∂F (θ,φ)

∂θ
= 0 =

[
2Ks

c − b

bc
cos θ

+
(

2Ks

b − a

ab
− K1 + 1

6
K2

)
cos θ cos2 φ

+
(

7

3
K1 − 7

9
K2

)
sin2 θ cos θ cos4 φ

+ 25

18
K2 sin4 θ cos θ cos6 φ + MsH

]
sin θ,

(A17)

∂F (θ,φ)

∂φ
= 0 = −

[
2Ks

b − a

ab
− K1 + 1

6
K2

+
(

7

3
K1 − 7

9
K2

)
sin2 θ cos2 φ

+ 25

18
K2 sin4 θ cos4 φ

]
sin2 θ sin φ cos φ.

(A18)

For sufficiently large H , the minimum is at θ = 0, i.e., the
direction along the magnetic field. For this case, if we neglect
the temperature smearing, then ∂M/∂H ≈ 0. Additional
minima exist if H is less than a saturation field Hs . This
possible minima and the corresponding values of F (θ,φ) are
listed below. Case 1, for sin θ = 0, which is a minimum if
Ks > 0,

F (θ,φ) = F1 = −MsH. (A19)

This minimum does not have a corresponding saturation field.
If we neglect temperature smearing, the initial susceptibility
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∂M/∂H ≈ 0. Case 2 is cos φ = 0 and

cos θ = − MsHbc

2Ks(c − b)
, (A20)

for which we have

F (θ,φ) = F2 = Ks

(
1

b
− 1

c

)
+ M2

s H 2bc

4Ks(c − b)
. (A21)

For F2 to be a lower energy than F1, it requires Ks < 0. The
saturation field is

Hs = −2Ks

Ms

(
1

b
− 1

c

)
, (A22)

and the initial susceptibility,

∂M

∂H
= − M2

s bc

2Ks(c − b)
. (A23)

Case 3 is sin φ = 0 and (for small H )

cos θ ≈ − MsH

2Ks

(
1
a

− 1
c

) + 4
3K1 + 7

9K2
. (A24)

This is a minimum if 2Ks(1/a − 1/c) + 4K1/3 + 7K2/9 < 0.
The corresponding energy is

F (θ,φ) = F3 ≈ Ks

(
1

a
− 1

c

)

+ 1

12
K1 + 13

108
K2 + O

(
M2

s H 2). (A25)

For F3 < F1, it requires Ks(1/a − 1/c) + K1/12 +
13K2/108 < 0. For F3 < F2, it requires Ks(1/a − 1/b) +
K1/12 + 13K2/108 < 0. The saturation field is

Hs = −2Ks

(
1
a

− 1
c

) − K1 + 1
6K2

Ms

, (A26)

and the initial susceptibility,

∂M

∂H
≈ − M2

s

2Ks

(
1
a

− 1
c

) + 4
3K1 + 7

9K2
. (A27)

The last solution of Eq. (A17) for sin φ = 0, case 4, is

cos θ ≈ cos θ0 + MsH

4Ks

(
1
a

− 1
c

) + 8
3K1 + 14

9 K2
, (A28)

where θ0 is the angle when H = 0 and satisfies

2Ks

(
1

a
− 1

c

)
− K1 + 1

6
K2

+ 7

9
(3K1 − K2) sin2 θ0 + 25

18
K2 sin4 θ0 = 0.

(A29)

To the lowest order in H , the total energy is

F (θ,φ) = F4 ≈ − 7

36
(3K1 − K2) sin2 θ0 − 25

54
K2 sin4 θ0

− MsH

cos θ0
− 1

2
MsH cos θ0. (A30)

For this to be a minimum, it requires either 3K1 > K2 or
7K1 + 29K2/9 > 0. The initial susceptibility is

∂M

∂H
= M2

s

4Ks

(
1
a

− 1
c

) + 8
3K1 + 14

9 K2
. (A31)

There are additional minima due to the sixth-order term
involving K2. However, these should usually be higher in
energy and will not be considered here.

To calculate the moment and the susceptibility for field
perpendicular to the bar (along the b direction), we rotate the
coordinate system so that a is along y, b is along z, and c is
along x. We have

Es = Ks

[
ab + a(c − b) cos2 θ + b(c − a) sin2 θ sin2 φ

]
.

(A32)

The anisotropy energy per unit volume is

E(θ,φ) = −Ks

c − b

bc
sin2 θ

+
(

Ks

c − a

ac
− 1

2
K1 + 1

12
K2

)
sin2 θ sin2 φ

+
(

7

12
K1 − 7

36
K2

)
sin4 θ sin4 φ

+ 25

108
K2 sin6 θ sin6 φ. (A33)

We are interested in the solutions near H = 0, where the
solutions should be exactly the same as before except that the
axes are rotated and the field-dependent terms are changed.

∂F (θ,φ)

∂θ
= 0 =

{
−2Ks

c − b

bc
cos θ

+
(

2Ks

c − a

ac
− K1 + 1

6
K2

)
cos θ sin2 φ

+
(

7

3
K1 − 7

9
K2

)
sin2 θ cos θ sin4 φ

+ 25

18
K2 sin4 θ cos θ sin6 φ + MsH

}
sin θ,

(A34)

∂F (θ,φ)

∂φ
= 0 =

[
2Ks

c − a

ac
− K1 + 1

6
K2

−
(

7

3
K1 − 7

9
K2

)
sin2 θ sin2 φ

+ 25

18
K2 sin4 θ sin4 φ

]
sin2 θ sin φ cos φ.

(A35)

Case 1′, we have sin φ = 0 and

cos θ = MsHbc

2Ks(c − b)
. (A36)
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The saturation field is

Hs = 2Ks(c − b)

Msbc
, (A37)

and the initial susceptibility is

∂M

∂H
= M2

s bc

2Ks(c − b)
. (A38)

Case 2′ is now the trivial solution of sin θ = 0 which yields
∂M/∂H ≈ 0. Case 3′ is cos φ = 0 and

cos θ ≈ − MsH

2Ks

(
1
a

− 1
b

) + 4
3K1 + 7

9K2
. (A39)

The saturation field is

Hs = −2Ks

(
1
a

− 1
b

) − K1 + 1
6K2

Ms

, (A40)

and the initial susceptibility is

∂M

∂H
≈ − M2

s

2Ks

(
1
a

− 1
b

) + 4
3K1 + 7

9K2
. (A41)

If a � b then the initial susceptibilities along the b and c

directions are essentially the same. Case 4′ is sin θ ≈ 1 and
sin φ satisfies the equation

2Ks

c − a

ac
− K1 + 1

6
K2 −

(
7

3
K1 − 7

9
K2

)
sin2 φ

+ 25

18
K2 sin4 φ = 0. (A42)

Then the values for cos θ and the initial susceptibility are both
the same as in case 1′.
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