PHYSICAL REVIEW B 85, 024303 (2012)

s

X-ray absorption Debye-Waller factors from ab initio molecular dynamics

F. D. Vila, V. E. Lindahl, and J. J. Rehr
Department of Physics, University of Washington, Seattle, Washington 98195, USA
(Received 30 August 2011; revised manuscript received 11 January 2012; published 25 January 2012)

An ab initio equation of motion method is introduced to calculate the temperature-dependent mean-square
vibrational amplitudes o> which appear in the Debye-Waller factors in x-ray absorption, x-ray scattering, and
related spectra. The approach avoids explicit calculations of phonon modes, and is based instead on calculations
of the displacement-displacement time correlation function from ab initio density functional theory molecular
dynamics simulations. The method also yields the vibrational density of states and thermal quantities such as the
lattice free energy. Illustrations of the method are presented for a number of systems and compared with other

methods and experiment.
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I. INTRODUCTION

Thermal vibrations give rise to exponentially damped
Debye-Waller (DW) factors exp[—W(T')] in x-ray absorption
spectra (XAS), x-ray diffraction (XRD), and related spectra.
For example, in x-ray absorption fine structure spectra (XAFS)
W(T) ~ 2k>02(T) where o2 = ([(iig — io) - R]?) refers to
the mean-square relative displacement (MSRD) of a given
bond R with respect to thermal equilibrium, k is the photo-
electron wave number, and 7 the absolute temperature.'
In XRD, and similarly in neutron diffraction (ND) and
the Mossbauer effect, o2(T) = ((ii - k)?) is the mean-square
displacement (MSD) of an atom along the momentum transfer
vector k, ii being the instantaneous displacement vector. Due
to their strong variation with temperature, energy, and the
geometrical structure of a material, accurate DW factors
are crucial to a quantitative analysis of XAS; conversely,
the lack of precise Debye-Waller factors is one of the
main limitations to accurate structure determinations from
experiment, especially for coordination numbers.

Various methods have been developed for obtaining
these DW factors. Phenomenological models (e.g., correlated
Einstein and Debye models>?) are widely used in fitting but
are often only semiquantitative. More generally, they can
be calculated in terms of Debye integrals over appropriate
projected vibrational densities of states (VDOS). In small
molecules, explicit sums over modes can be used to calculate
the VDOS.* Such sums can also be used for periodic solids,
both for crystallographic Debye-Waller factors and other
thermodynamic quantities.®® For complex materials, however,
calculating and summing over modes can be a computational
bottleneck. As an alternative, a Lanczos algorithm can be
used to evaluate the VDOS, starting from a dynamical matrix
(or Hessian), that can be obtained either from force-field
models,”!? or first principles DFT calculations.!! At high
temperatures, brute force classical MD (or DFT/MD) methods
can also be used to obtain moments of vibrational distribution
functions,'>!? but such methods can fail at low temperatures
when quantum statistics and structural disorder dominate.
First principles DFT methods can also be computationally
demanding, especially in complex systems.

In an effort to speed up the calculations, we present here
a first principles approach based on an ab initio equation
of motion (AEM) approach using DFT molecular dynamics
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calculations of displacement-displacement time-correlation
functions. The method is a generalization of the equation
of motion method'* for calculations of the VDOS, which
was adapted for calculations of Debye-Waller factors based
on force-field models.'”> However since accurate force-field
models are not generally available, especially for complex
molecules and solids, DFT or other ab initio methods are
needed. Because o3 depends primarily on the vibrational
structure in the local environment around a given bond R, the
calculations can be carried out using relatively small clusters of
atoms, without the use of periodic boundary conditions or other
symmetry considerations. Thus the approach is applicable to
general aperiodic materials. On the other hand, Debye-Waller
factors become small at low k in the near-edge region.
Thus they do not capture vibrational effects and structural
disorder which lead to symmetry-breaking splittings and other
distortions of the near-edge structure.'®

II. EQUATION-OF-MOTION METHOD

A. Formalism

The theory used in the present study is a first principles
extension of the equation of motion approach'*!3 for calcula-
tions of the VDOS and thermodynamic quantities that can be
expressed as Debye integrals over the VDOS. Our ab initio
equation of motion (AEM) extension builds in dynamical
structure in terms of first principles DFT calculations for a
general structure, but does not rely on explicit calculations
of the dynamical matrix (DM). The technique builds in
Bose-Einstein statistics, and allows one to calculate the DW
factors and related thermal properties either in real time
or the frequency domain. However, this approach neglects
static structural disorder, which can lead to an additive,
temperature independent correction to the DW factors. The
AEM method has a number of computational advantages. It
can be efficient even for large systems, since the method is
local and diagonalization of huge matrices is not necessary. In
addition, the computational time scales linearly with the size
of a cluster. Anharmonic effects such as lattice expansion can
be added using a cumulant expansion.!!

Our AEM method is based on calculations of the
displacement-displacement correlation function in real time,
using solutions of the 3N coupled Newton’s equations of
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motion with DFT/MD methods. Such correlation functions
are Fourier transforms of projected VDOS, which are defined
uniquely by the initial conditions. Physically the VDOS can
be interpreted as the “sound” of a lattice “plucked” along
a given set of initial displacements. Here N is the number
of atoms in the system which is centered within the region
of interest and typically a few near neighbors in radius.
Regarding the total lattice potential energy & of the crystal
lattice as a function of the local atomic displacements u; from
their thermal-equilibrium positions R;, and making use of a
quasiharmonic approximation, the equations of motion can be
written as

d*Qiq(1)
7 —ZDW 8 Qup» (D

kp

with given initial dlsplacements u; (0) (i =1...N),and zero
initial velocities #;(0) = 0. Here Q; = it;/M; denote reduced
displacements at site i where M; is the atomic mass, and
Diyip = Piakp/~/M;My is the dynamical matrix of order
3N x 3N. The matrix ®;, g consists of second derivatives of
the potential energy with respect to the atomic displacements
u;o and ugg, where i, k are atomic sites and o, 8 = (x,y,2).
The initial displacements i;(0) are small, ensuring that we
remain within the harmonic approximation. Formally, the
reduced displacement vectors éi can be expanded in normal
coordinates g; and eigenmodes A as

0 = Z €1 gy (2)
X

Substituting this relation into Eq. (1), leads to a standard
eigenvalue problem for the normal modes,

= Z Diq ip €g(A). 3
kB

wi €ia ()")

After evaluating the thermal averages using Bose-Einstein
statistics, one obtains for the normal coordinates,
ha)x

1 h
Wi q) = <n(a)x) + §>flwx = —= coth w,\,B'

4
5 > “

In applying these results for calculations of interest here, it
is convenient to define a normalized displacement state,

10(1)) = 101(1), 02(2), ... On(2)). )

For example for the MSRD for a given near-neighbor
bond (O R) 5 the initial displacement state |Qg(0)) has
00(0) = —/1tg/MoR; Or(0) = +/1g/MgR, and other-
wise 0;(0) = 0, where ug = (1/Mg + 1/Mp)~" is the re-
duced mass. A frequency domain expression for the MSRD
can then be obtained from Eqgs. (2)—(4) and summing over all
modes, that is,

or = ([(iig — o) - R1)

h A 0))/? n

_ [{(A|Or(0))] cothﬂ ; ©)
2R > Wy 2
h @max d h

= do  (@)coth 1. %)
2R w 2

PHYSICAL REVIEW B 85, 024303 (2012)
Here

pr(@) = Y [ QrO) 80 — w;) ®)
A

is the projected VDOS contributing to relative vibrational
motion along R and B = 1/kgT. The maximum frequency
®max in Eq. (7) can be estimated from the relation wpmax 2

k/ug where z is the coordination number and k is the
near-neighbor force constant.

In order to obtain an equivalent time-domain expres-
sion for the VDOS, we calculate the cosine transform
of the displacement-displacement time-correlation function
(QOr()|QOr(0)) with an ad hoc exponential damping factor
that limits the maximum time f,x of the integration and MD
runs,

2 [ )
pr(@) = ;/0 (Qr(DIQR(0) coswt e dt  (9)

= > 1M Qr0)P8a(@ — w,). (10)
r

Thus as a consequence of the damping factor, the projected
VDOS of Eq. (10) is broadened by narrow §-like functions of
width A typically chosen to be about 5% of the bandwidth. This
broadening also smooths the otherwise discrete spectrum of the
finite system used, but has practically no effect on integrated
quantities. The spectral width A is determined by the cutoff
parameters ¢ = 3/2 ax and foax = «/E/ (wmaxA). These cutoff
parameters also focus on the local environment by cutting
off long distance behavior. The time-correlation function in
Eq. 9) is

ng

(Qr®)IQr0) = Z Qia(1)Qia(0), Y

where ng is the number of nonvanishing displacements in
| Or)- Instead of using the second-order differential equations
in Eq. (1), in our approach the displacement state vector
|Q (1)) is determined by integrating the equations of motion
numerically using velocity-Verlet'"'® molecular dynamics
with initial conditions as in | Q g(0)),

Ri(t + Aty = Ri(D) + 5i(OA + La,ar?,  (12)
Uit + A1) = 0:() + 5[a; (1) + a;(r + An]Ar, - (13)

where 13 (¢), v;(¢), and a; (¢) are, respectively, the instantaneous
posmon Veloc:1ty, and acceleratlon of atom i. The acceleration
a;(t) = f,(t)/M and f,(t) is the force on atom i. At the elec-
tronic ground state, the Hellmann-Feynman theorem ensures
that the forces can be calculated as the expectation value
of the analytical derivative of the Hamiltonian with respect
to the nuclear positions. Thus, the forces can be calculated
analytically and efficiently at each time step. This algorithm
is advantageous since an explicit calculation of the dynamical
matrix at each time step is not necessary.

Finally areal time expression for the MSRD can be obtained
by substituting Eq. (9) for pgr(w) into (7) and evaluating the
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Fourier transform, yielding

h Tmax
o2(T) = / d1{QR(DI QR (0))
MRTT Jo

-1
x In |:<2 sinh ﬂ—t> :| e~ (14)
B

Equations (7), (9), and (14) are the key formulas used in
our AEM calculations. Throughout this work results obtained
with Egs. (7) and (9) will be labeled AEM-FT, while those
obtained with Eq. (14) will be labeled AEM-RT. The form
of Eq. (14) shows that it is not essential to determine the
VDOS pr(w) as an intermediate step, and hence that o,%(T) can
be calculated directly from the corresponding displacement-
displacement autocorrelation function. Note that in the time
domain the analog of the Bose-Einstein weight factor is

—In[2sinhwt/Bh] = mt/Bh — In[exp(2rt/Bh) — 1]. Atlong
times when fi/2wt < kgT the weight factor is negative and
reduces to —m¢/Bh at high temperatures and to — In (27r¢/8h)
atlow. Due to the exponential damping, the net time integration
limit £, is usually several vibrational cycles and typically
requires about 25-35 time steps per cycle for accuracy to a few
percent. In addition, the singular behavior of the integrands
in Egs. (9) and (14) must be handled with care. This is
especially important at low temperatures due to zero-point
motion. Thus in the time domain, we further stabilize the long
time behavior by convolving the time-correlation function with
the inverse Fourier transform of a smoothed, low-frequency
cutoff function ®(w — w,), where w, is an appropriate cutoff
frequency. In the frequency domain in Eq. (7) we replace
the very low-frequency region with a similar cutoff or a
Debye-model chosen to fit the very low frequency behavior
of pr(w). All the integrals in our implementation of the AEM
method are evaluated using the trapezoidal rule, which is
appropriate for highly oscillatory integrands.

B. Maximum entropy method

Since the MSRDs are obtained from Debye integrals over
the VDOS, a precise determination of the spectra is not
important, as long as the leading moments are accurate. Thus,
as an alternative approach, the projected density of states can be
obtained approximately using the maximum entropy method
(MEM)." In this approach the VDOS is approximated as

-1
) s)

M

1 + Z akeikwAt

k=1

or(@) = ap

where Ar is the sampling interval in the time domain and
M is the desired order of the approximation. The MEM
approach is well suited to represent phonon densities with
sharp resonances, due to the presence of poles in Eq. (15). The
coefficients a; can be obtained by solving the system of linear
equations,

k=1,...M), (16)

M
- Z Plj-kaj = Px
j=1
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where
NI

N7 (QrDIQrO)(QrUi4DIQr), (A7)
i=1
and N is the number of MD evolution steps. Although the
MEM method can be less efficient than the direct FT approach,
we find that it can be more stable in the low frequency region,
since it is less sensitive to nonperiodic trends in the time
evolution. The reduced efficiency arises from the high order
of approximation (M > 200) needed to achieve an accurate
representation of pgr(w) at all frequencies. Throughout this
work results obtained with Egs. (7) and (15) will be labeled
AEM-MEM.

C. Multiple scattering o}

The above real-time AEM method can also be used to
calculate the MSRD 01.2 for a given multiple-scattering path
Jj in XAFS. This MSRD corresponds to the mean-square
fluctuation in the effective MS path length SR, '

o7 = ((6R)) <|:Zu <M>T> (18)

Here R;j+ represent the directional unit vectors between the
site i and the atoms before and after along the multiple-
scattering path j. In analogy with the single scattering results,
we obtain expressions similar to Eq. (7) for sz and Eq. (8) for
pj(w), but with the weights in mode A given by

[Mj <R11—+Ru+> (}L)

These weights can be interpreted as the normalized probability
that an initial displacement state |Q;(0)), corresponding to
a multiple-scattering path stretch, is in vibrational mode
|A) Thus the initial displacements in the state |Q;(0)) are

\/:u'j/Ml(Rlnj + Ri2)/2and Q; = VI M (R - +

(A1 Q0N (19)

,,+) /2,...0) (i =2,...n;). Here the inverse reduced mass
is
1 S (R Ras \
g Z - ii— i+ . (20)
rj oM 2

which is defined so that (Q;(0)|Q;(0)) = 1.

D. Other dynamical properties

Other dynamical properties can be obtained similarly,
by generalizing the seed state |Q(0)) appropriately.'! For
example, when the seed state is defined as a single-atom
displacement, the resulting correlation function yields the
mean-square atomic displacements u?(T) in x-ray scattering
DW factors. Furthermore, when all symmetry unique Cartesian
atomic displacements are added, one obtains the total VDOS
per site pr(w). This permits calculations of thermodynamic
functions such as the vibrational free energy per site,'!

F(T) = 3kBT/Ooda) In [2 sinh (ﬁhTwﬂ pr(w), — (21)
0
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where kp is the Boltzmann constant. Finally, if the |Q g(0))
seed state is initialized with atomic displacements perpendic-
ular to R instead of parallel to it, we can generate Uf_(T), the
perpendicular component of the DW factor.'!

E. Computational details

The microcanonical (i.e., NVE) ensemble MD simulations
for the applications presented here were done using VASP? for
the crystalline systems and SIESTA%!?? for the Zn-imidazole
complex. These codes were chosen on the basis of efficiency,
although in principle, any program capable of NVE dynamics
can be interfaced with the AEM codes used in this work.
The VASP simulations used standard ultrasoft pseudopotentials,
and were optimized for efficiency in MD runs. The Ge
calculations used a 2x2 x 2 k-point grid with a plane-
wave cutoff of 105 eV, while for ZrW,0Og the grid was
4 x 4 x 4 and the cutoff was 297 eV. The SIESTA calculations
used Troullier-Martins norm-conserving pseudopotentials®®
and standard double-¢ basis sets with a single polarization
function (DZP). The confinement-energy shift defining the
numerical atomic orbitals was 10 meV. Finally, the Hartree
and exchange-correlation potentials were represented on
a real-space grid with a plane-wave-equivalent cutoff of
120 Ry within a (18.4 A)? cell. Both crystalline and molecular
simulations used the PBE functional.”* We have previously
shown that the choice of exchange-correlation functional plays
an important role in obtaining accurate MSRDs for metallic
systems.!! However, here we only focus on nonmetallic
and molecular systems, for which the PBE functional yields
reasonable accuracy compared to experiment.'!

F. Efficiency considerations

The efficiency of the AEM method depends on three
factors: (1) the number of individual MSRDs that need to
be computed, (2) the minimum and maximum frequencies
that contribute to the VDOS, and (3) the quality of the
ab initio MD. First, if a large number of MSRDs is needed,
the computation of the full DM may be preferable since
it yields all necessary DW factors with minimal additional
effort. However, in most XAFS analysis only a handful of
local DW factors need to be known accurately while those
for more distant shells can be approximated roughly using
correlated Debye or Einstein models. For example, in the
case of the coordination shell around a metallic center in
a complex biomolecule the AEM approach can provide an
efficient alternative to the Lanczos DM approach. Second, if
a given MSRD has similar contributions from low and high
frequency modes, the MD must have a short enough time step
to accurately represent the high frequency (25-35 steps per
cycle) and a total run time with sufficient cycles of the low
frequency (4-8 cycles). Third, the AEM approach can take
advantage of efficient implementations of DFT energies and
forces such as those used here, without relying on analytic
second derivatives needed in the Lanczos DM approach or the
equations of motion in Eq. (1).

Of the applications presented here, results for Ge and
Zn*2-tetraimidazole can be more efficiently treated using the
Lanczos DM approach. In the case of Ge this is due to the
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simplicity of the unit cell. In the case of Zn*?-tetraimidazole,
first there are a relatively small number of modes and second
the modes cover a broad range of frequencies that would
require small time steps and a long total simulation time
to represent accurately. On the other hand, the zirconium
tungstate (ZrW,Og) system illustrates the definite advantage of
the AEM approach for complex systems, since only a handful
of MSRDs are needed for XAFS, while the unit cell contains
hundreds of atoms. Based on our experience with the DM
Lanczos approach, we estimate that the AEM approach would
be nearly two orders of magnitude faster than a dynamical
matrix calculation.

III. APPLICATIONS

A. Germanium

As a relatively simple test case, the AEM was applied to
a crystalline germanium system using a 64-atom supercell
generated by repeating 2 x 2 x 2 times the diamond cubic cell,
with the experimental lattice constant of 5.6575 A. The MD
simulations used a 2-fs time step and a total simulation time
of 4.5 ps. The initial structure was generated by introducing a
4.8% bond stretch to one of the nearest-neighbor pairs in the
cell.

The correlation function resulting from the velocity-Verlet
time evolution is shown in Fig. 1. As expected, the oscillations
are dominated by a single mode with a period of about 117 fs,
associated with the Ge-Ge optical mode stretch. This dominant
behavior can also be observed in the VDOS shown in Fig. 2,
where the optical modes are centered at about 8.5 THz. An
integration time of about 2 ps is adequate to obtain phonon
spectra with a spectral broadening of about 5%. The centroid
of the VDOS is located at about 8 THz, in good agreement
with Einstein models for the nearest-neighbor single-scattering
path with an Einstein frequency of 7.55 THz.?> It should be
noted that although the integration time for the optical mode
is well above that needed for convergence, the net integration
time for lower frequencies around 5 THz is just adequate.

=
>

— Undamped
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FIG. 1. (Color online) Displacement-displacement correlation
function for the nearest-neighbor Ge-Ge bond, with and without a
damping factor € = 7 x 1077 fs~2, obtained from a constant energy
molecular dynamics simulation.
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FIG. 2. (Color online) Phonon density of states projected on
the nearest-neighbor Ge-Ge interaction calculated with the AEM-
MEM and AEM-FT approaches, and for comparison, the broadened
Lanczos DM results.

Due to the singular behavior in Eq. (6), an adequate time
integration for the lower frequency components is essential,
and is especially important at low temperatures for some of
the systems discussed in the next section.

The MSRDs calculated for the nearest-neighbor Ge-Ge
bond are shown in Fig. 3. The agreement with experiment
is quite good, with an average error of 4% for the AEM-
FT approach and 2% for the AEM-MEM approach. For
comparison, the DM-Lanczos approach has an average error of
2%. Figure 3 also shows the results obtained with the real-time
approach of Eq. (14) and a frequency cutoff of 1.7 THz
as in the FT and MEM approaches. As expected, given the
formal equivalence between Eq. (14) the FT approach with an
intermediate calculation of the VDOS, the results are nearly
identical.

To explore the accuracy and efficiency of the AEM-FT
and AEM-MEM approaches, we have also integrated the

T
i »—= DM-Lanczos 4
or —o EOM-FT 1
r =—a EOM-MEM ]
5 +—o EOM-RT -
L + Expt. ]
NA |- 4
o 4 ]
f'l} 4
- ]
= ]
~ 3 ]
© ]
2 .
1t .
Okl 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 1‘
0 100 200 300 400 500 600
T (K)

FIG. 3. (Color online) Nearest-neighbor Ge-Ge MRSD calcu-

lated with the AEM-FT, AEM-MEM, and AEM-RT approaches,
and for comparison, Lanczos DM and experimental® results. The
experimental results are shifted as in Ref. 11.
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correlation function both for shorter times and for larger time
steps. For Ge we find that the total integration time can be
reduced to about 1 ps without significant loss of accuracy.
This corresponds to about 10 periods of the 8.5-THz dominant
frequency. For integration times of about 500 fs the mean error
for the MSRD increases to 8% for the FT approach and to 16%
for MEM. From the point of view of the length of the time step,
both the FT and MEM approaches are extremely resilient. In
both cases the mean errors for the Ge MSRD remain constant
with time steps up to 24 fs. This corresponds to approximately
five samples per period of the 8.5-THz frequency. Such large
time steps, however, might not be feasible within the MD
simulation itself due to loss of energy conservation in the
Verlet algorithm.

As an example of other dynamical quantities that can be
obtained with the AEM approach, Fig. 4 shows the total
phonon density of states for Ge calculated with the FT
and MEM approaches. For comparison broadened dynamical
matrix Lanczos and experimental® results are also included.
This VDOS was obtained by applying a single atomic
displacement along the X axis, as described in Sec. II C, and
by propagating as for o for 4.5 ps. Overall, the centroid
of the DOS is accurately reproduced by all methods: The
centroid of the experimental DOS is located at 5.8 THz, while
the FT and MEM approaches place it at 6.0 and 5.7 THz,
respectively. The spread (i.e., second moment) of the DOS
is also well reproduced with the FT and MEM, giving 2.8
and 2.9 THz, respectively, versus 2.6 THz in the experiment.
Finally, all methods reproduce the positions and weights of
main features of the experimental VDOS quantitatively. On
average the positions of the peaks deviate by at most 0.4 THz
(i.e., about 4% of full bandwidth) and the relative weights are
within 5% of those observed in experiment.

The accuracy of the total VDOS can also be gauged by
comparing with the experimentally measured atomic MSD
u®> for Ge. Figure 5 shows the MSD computed using the
total VDOS shown in Fig. 4. The AEM results for u? are
in excellent agreement with those obtained with the full DM
Lanczos approach, and in good agreement with the available

g
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=)

EOM-MEM |

e
%

EOM-FT

/_/vs/\DM-Lanczos |
| L
4

6 8 10 12
Freq. (THz)

Total Phonon DOS (Arb. units)
Y 3
T

g
>
T

=)
N

FIG. 4. (Color online) Total phonon density of states for Ge
calculated with the AEM-MEM and AEM-FT approaches, and
compared to results from the Lanczos DM and experiment.?
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FIG. 5. (Color online) Mean-square atomic displacement for
Ge calculated with the AEM-FT approach using a single atomic
displacement, and for comparison, Lanczos DM and experimental?’
results.

experimental results>’ except at low temperatures, where the
experimental results required an extrapolation.

B. Zn*2-tetraimidazole

As an example of a complex molecule, Zn*2-tetraimidazole
was simulated using the full structure shown in Fig. 6. This
structure was optimized in SIESTA and one of the equivalent
Zn-N bonds was distorted with a 3.4% bond stretch. The
MD simulations used a 3-fs time step and a total simulation
time of 3.9 ps. Given its large number of degrees of free-
dom, the dynamics of Zn*?-tetraimidazole are significantly
more complicated than those of Ge. This can be seen in
the correlation function shown in Fig. 7, which exhibits a
superposition of several modes. The dominant contributions
can be analyzed by examining the VDOS in Fig. 8. The DM
approach exhibits three dominant frequencies at 5, 13, and
25 THz, which contribute 32%, 18%, and 24%, respectively, of
the MRSD value. It is interesting to note that the weight of the
associated poles is 9%, 13%, and 31%, further highlighting the
importance of the correct representation of the low frequency

FIG. 6. (Color Structure of Zn*?-tetraimidazole,

online)
Zn*?(C3H4N,)4, where Zn is orange (central atom); C, black (dark
gray); N, blue (medium gray); and H, white (light gray).
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FIG. 7. (Color online) Displacement-displacement correlation
function for the nearest-neighbor Zn-N interaction, with and without
a damping factor € = 6 x 107 fs~2, obtained from a constant energy
molecular dynamics simulation.

modes. In principle, the Zn-N path should be dominated by low
frequency Zn-ligand tetrahedral modes. Loeffen et al.* find
that these modes appear at about 6.5 THz, in fair agreement
with our principal contribution at 5 THz. Although the VDOS
calculated with the AEM-FT and AEM-MEM approaches are
in good agreement with each other, they have small differences
with respect to the Lanczos DM VDOS. For instance, the
mode at 25 THz is blueshifted about 2 THz in the real-time
approaches. Figure 9 shows that the agreement between the
MSRDs calculated from the different VDOS is quite good. At
8% error, the theoretical results are less accurate than those
obtained for Ge. They are, however, close to the error margins
of the available experimental value at 20 K. The larger error
is likely due to the quality of the basis set used in the SIESTA
calculations.
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FIG. 8. (Color online) Phonon density of states projected on
the nearest-neighbor Zn-N interaction calculated with the AEM-
MEM and AEM-FT approaches, and for comparison, the broadened
Lanczos DM results.
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FIG. 9. (Color online) Nearest-neighbor Zn-N MRSD calculated
with the AEM-MEM and AEM-FT approaches, and for comparison,
Lanczos DM and experimental* results.

C. ZI'WZ 08

Our final example is zirconium tungstate (ZrW;Os), a
ceramic that exhibits negative thermal expansion (NTE).
This system is quite challenging, having a complex unit
cell that puts the calculation of the DM for the Lanczos
approach beyond the reach of our current implementation
and computational capabilities. Here we have applied the
AEM approach to a 352-atom supercell (Fig. 10) made of
2 x 2 x 2 repetitions of the unit cell. The simulations used
the experimental unit cell lattice constant of 9.1546 A and
a time step of 4 fs, for a total simulation time of 1.5 ps.
ZrW,0Og has several interactions of interest, including Zr-Zr,
W-W, W-0, and two inequivalent nearest-neighbor Zr-O bonds
with distances 2.03 and 2.11 A. In principle, any of these
interactions can be studied using the AEM approach. As a
proof of principle here we study the 0% of the shortest of the
Zr-O bonds by using an initial structure corresponding to a
3.8% bond stretch.

FIG. 10. (Color online) Structure of 2 x 2 x 2 supercell of zirco-
nium tungstate, ZrW,Og, where Zr is light blue (light gray); W, dark
blue (medium gray); O, red (dark gray).
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FIG. 11. (Color online) Displacement-displacement correlation
function for the short Zr-O bond nearest-neighbor interaction, with
and without a damping factor € = 6 x 10~° fs~2, obtained from a
constant energy molecular dynamics simulation.

For a Zr-O distortion, the dynamics of ZrW,Og are not
as complex as those observed for Zn*?-tetraimidazole. The
correlation function (Fig. 11) is mostly dominated by a mode
with a 40-fs period superposed on a mode with a period
approximately three times longer. Visual inspection of the
MD trajectory reveals that the 40-fs mode is associated
principally with the longitudinal Zr-O stretch mode. These
vibrational modes can be clearly seen at about 25 and 8 THz,
respectively, in the VDOS shown in Fig. 12. As in the previous
examples, the agreement between the AEM-MEM and AEM-
FT approaches is very good. The agreement with the mode
frequencies observed in the experimental Raman spectrum is
also quite good. The FT and MEM VDOS show modes at
approximately 7.7, 24.5, 27.7, and 31.7 THz, compared to
the experimental peaks at 5.7-11.8, 23.8, 27.9, and 31.0 THz.
The 5.7-11.8 THz peaks are associated mostly with modes
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FIG. 12. (Color online) Phonon density of states projected on
the short Zr-O bond nearest-neighbor interaction, calculated with
the AEM-FT and AEM-MEM approaches, and for comparison the
experimental Raman spectrum.?®
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FIG. 13. (Color online) MRSD of the shortest nearest-neighbor
Zr-0 calculated with the AEM-FT, AEM-MEM approaches, and for
comparison experimental®® results.

located on the tungstate ion and with some low frequency
WO, modes.”® The 23.8,27.9, and 31.0 THz peaks correspond
exclusively to asymmetric WO4 modes. It is interesting to note
that the dynamics of this system are quite complex. Since
the WOy units are very stiff, the ZrOg units must rotate as
the WO, units translate.”® Thus, a simple distortion of the
Zr-O bond is able to activate both the low and high frequency
modes.

Figure 13 shows the nearest-neighbor Zr-O MSRD as a
function of temperature. As expected, given the similarity of
their VDOS, the FT and MEM values are in very good agree-
ment. The agreement with experiment” is also quite good,
with all theories falling within the experimental error bars
for most of the temperature range. The largest disagreement
occurs in the 80—140-K region where other MSRDs (W-W and

PHYSICAL REVIEW B 85, 024303 (2012)

Zr-Zr) are known to have an anomaly that is likely related to
the NTE.”

IV. CONCLUSIONS

We have introduced an ab initio equation of motion
(AEM) method for calculations of the MSRDs o2, needed,
for example, for Debye-Waller factors in x-ray absorption,
x-ray scattering, and related spectra. The method is based
on calculations of displacement-displacement time corre-
lation functions from ab initio density functional theory
molecular dynamics simulations, using the velocity-Verlet
time-evolution algorithm. Thus the approach avoids the need
for explicit calculations of phonon modes or the dynamical
matrix. The AEM method builds in Bose-Einstein statistics
and yields the vibrational density of states as either cosine
Fourier transforms of the correlation functions or through the
maximum entropy method. The MSRDs and other thermal
quantities such as the lattice free energy, are obtained in terms
of Debye integrals over the VDOS. Alternatively, the MSRDs
can be computed directly from the correlation functions by
using the time-domain counterpart of the Bose-Einstein weight
factor. Application of the method to a number of systems shows
that the approach is computationally advantageous for large,
complex systems, and is in quantitative agreement with other
methods and with experimental results.
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