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Pressure dependence of the boson peak for repulsive homogeneous potentials
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Isotropic potentials used for studying glasses computationally are often positive homogeneous functions of
the coordinates of the constituent particles or they reduce effectively to such forms at higher pressures. For such
cases we show that the position and the intensity of the Boson peak, when it exists, scales asymptotically with
pressure (P ) as P δ and P −3δ , respectively, where δ = (2 + m)/[2(S + m)], (−m) is the degree of homogeneity,
and S is the spatial dimension. In the same limit the shape of the entire vibrational spectrum saturates and the
Boson peak frequency, the Debye frequency, and the average frequency become proportional to each other. Our
numerical studies on single-component hyperquenched Lennard-Jones glass in three dimensions support the
predicted scaling laws and are largely consistent with the predictions of one existing theory [W. Schirmacher
et al., Phys. Rev. Lett. 98, 025501 (2007)] for the normalized boson peak intensity. However, the scaling exponent
for the variation of the boson peak location and intensity with applied pressure is substantially different in this
case from that found from laboratory experiments.
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I. INTRODUCTION

Due to the absence of long-range positional order, under-
standing the vibrational spectra of glassy materials presents
extremely difficult challenges.1,2 One example that vividly
illustrates these difficulties is the apparently universal exis-
tence of a “boson peak” (BP). This refers to the presence of
an excess of low-frequency vibrational modes, typically in
the THz region, when compared with the predictions of the
Debye model of the vibrational spectrum. If the vibrational
density of states (VDOS) at frequency ω is denoted by G(ω)
this excess manifests itself as a peak in the plot of G(ω)/ω2,
also called the reduced density of states (RDOS), as a
function of ω. A large number of experimental, theoretical, and
numerical studies have been conducted over the past several
decades to understand the exact physical origin of this boson
peak.3–19 Although substantial progress has been made, the
issue is far from closure. To discriminate between the various
explanations that have been proposed it is necessary to expand
the scope of the phenomenology so that additional constraints
can be placed on the theories. For this reason several variations
have been performed on the original experiments involving
boson peaks. The most important of these are perhaps the
influence of temperature and pressure (or densification) on the
various quantifiers of the boson peak.20–29 Here we concentrate
only on the latter.

The aspects that are studied in these experiments are
typically the location (ωBP) and the intensity (IBP) of the
(boson) peak of the RDOS function as well as the shape
of the RDOS function around the peak. The most important
common observations are that (1) ωBP keeps increasing and
IBP keeps decreasing with increasing applied pressure, and
(2) the rescaled RDOS function obtained by normalizing the
frequency by ωBP and the original RDOS by IBP remains
invariant with respect to the applied pressure in the proximity
of the boson peak. What the experiments do not agree upon
is whether the invariance around the boson peak mentioned
above would hold if the Debye frequency (ωD), rather than
ωBP, is used as the unit of frequency.20,27,29–31 This issue is
critical from the point of view of understanding the underlying

basic physics since invariance under rescaling by ωD would
imply that the RDOS around the boson peak is controlled
by the property of elasticity, which operates at length scales
significantly larger than the interatomic distances.

Understanding the difference of outcome in this regard (and
perhaps in other respects) is made difficult by the complex
structural nature of these glasses, the presence of bonding
interactions, etc. For example, let us consider the most detailed
theory presently available for the evolution of the boson peak
frequency with pressure. This theory32 is applicable to cases
where the boson peak owes its origin purely due to disorder. In
particular it is not applicable to situations where the boson peak
merely reflects the broadening of some low-lying vibrational
modes due to disorder. The complexities introduced by the
factors present in experimental situations, as described above,
make it difficult to decide the extent of applicability of a theory
such as this with complete certainty.

Because of these complications in using the existing
experiments to validate theoretical ideas it would be desirable
to study systems where the boson peak, without any ambiguity,
is entirely due to disorder. Presently such structural glasses
cannot be realized in laboratory experiments since the cooling
rate required is well beyond existing capabilities. The only
alternative is to generate such glasses in a computer. This is
the route we take here. The model potentials used in the present
work do not necessarily represent realistically any particular
material (especially at high pressures). Hence we emphasise
that our work has the limited objective of helping generate
and validate theoretical understanding regarding the pressure
evolution of (i) the shape of the reduced vibrational density
of states function and (ii) the location and intensity of the
boson peak—in a situation where we know unambiguously
that the boson peak is due entirely to disorder. For these reasons
any direct comparison of our results with any laboratory
experiment that is presently realized (or is realizable in the
near future) is not permissible.

We study model glassy systems where the interparticle
interactions are isotropic and are described by positive ho-
mogeneous potentials—at least at higher pressures. This type
includes in its scope most of the model studies of glasses
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with isotropic potentials that we are aware of (in particular,
it includes the system (Ref. 8 of this paper) that was referred
to in Ref. 32 as a model candidate for its application). The
particles need not have identical mass but all pairs must interact
via positive homogenous potentials with identical degree of
homogeneity (to be defined later). We show that it is possible
to derive, through rather simple arguments, the asymptotic
pressure dependence of the location as well as the intensity of
the boson peak (the procedure does not require a knowledge of
the origin of the boson peak)—when it exists. Asymptotically
both these quantities have power-law dependence on pressure
and the exponent of the power law can be calculated exactly.
We also show that, for these potentials, the shape of the entire
vibrational spectrum (not just the region around the boson
peak) can be made invariant with respect to pressure if the
unit of frequency is taken to be either ωBP or ωD—since these
two frequencies become proportional to each other at higher
pressures. The actual asymptotic shape depends on the specific
choice of the positive homogenous potential and can only be
calculated numerically.

In this paper we choose the potential to be the familiar
Lennard-Jones potential and present the results of a numerical
study of the pressure evolution of the vibrational spectrum
for the single-component hyperquenched glass in three dimen-
sions interacting via this potential. The results demonstrate the
validity of our analytical calculations (although our analytical
results are applicable to much more complex systems also).
They are also in reasonable agreement with an existing theory
by Schirmacher et al.7 as far as the normalized intensity of
the boson peak is concerned. However, the phenomenology
regarding the evolution of the location and intensity of the
boson peak is quite different from that found in the laboratory
experiments. All our calculations are done at zero temperature.
But this should not be a serious compromise at the high
pressures we are interested in as long as the temperature
stays modest. In Sec. II we introduce the positive homogenous
potentials. The existence of asymptotic shape invariance (with
respect to pressure) for the reduced density of states is shown.
Also the pressure scaling exponents for the location and
the intensity of the boson peak are calculated. In Sec. III
detailed results are presented for the numerical study of the
pressure evolution of the reduced density of states for the
hyperquenched Lennard-Jones glass. Section IV contains a
discussion of the results.

II. SCALING AND SHAPE INVARIANCE: ANALYTICAL
RESULTS

A positive homogeneous function V describing the in-
teractions among the particles in an amorphous system,
which may have one or more species, will have (by def-
inition) the following property: V (α�r1,α�r2, . . . ,α�ri, . . .) =
αkV (�r1,�r2, . . . ,�ri, . . .), where α is a positive real number (in
practice, in a large enough range around unity) and k is the
degree of homogeneity. The simplest example is when the
potential energy is of the form of a sum over pairs and every
pair interacts with a soft potential proportional to the inverse
mth power of the pair distance. Evidently k = −m for such
a case. Examination of almost all isotropic potentials used in
the literature in recent times6,8,14,16,19,33–36 will show them to

be positive homogenous potentials at higher pressures—with
the degree of homogeneity being controlled by the repulsive
part of the pair potential. In principle, even potential-energy
functions containing many-body terms can be homogeneous
functions but instances of this are not likely to be common. In
the following the degree of homogeneity will be taken to be a
negative integer −m.

To derive the pressure dependence of the boson peak and
to demonstrate asymptotic shape invariance of the vibrational
spectrum we follow the route that is taken in the numerical
approach to this problem, i.e., approximate the amorphous
state as a periodic crystal with a large number (N ) of particles
in the unit cell and then take the limit of N → ∞. For a
given finite value of N the amorphous states at pressure P are
represented by the appropriate local minima of the enthalpy
function U + PV where U is the energy per unit cell of
(generalized) volume V . The minima are defined with respect
to the variation of the S sides of the unit cell ( �a1, �a2, . . . ,

�aS with S > 1) and the positions of the particles within the
unit cell. Consider now one such local minimum (in the large
N limit vibrational properties will be the same for all local
minima). For this solid (in S dimension) the VDOS, in general,
is computed by finding the SN eigenvalues of a generalized
eigenvalue problem where one side of the equation contains a
fixed mass matrix and the other side has the dynamical matrix
D(�k). And this has to be done for all �k ∈ the first Brillouin
zone (FBZ).

We now show that, when the potential is a positive
homogeneous function, the frequencies thus obtained will
satisfy the following scaling law:

ωi(�k) = W (P )Fi(n
− 1

S �k), (1)

where the branch index i = 1,2,3, . . . ,SN (with the conven-
tion that i = 1, . . . ,S corresponds to the acoustic branches);
n is the number density of particles and W (P ) is a characteristic
scale of frequency that depends on pressure. The functions Fi

are independent of pressure. Since the vibrational frequencies
are the square roots of the eigenvalues, validity of the scaling
law of Eq. (1) would be demonstrated if we can show that
D(�k) itself has the structure of a function of n−1/S �k multiplied
by a function of pressure only. For this purpose let us consider
the geometry of any particular local minimum representing
the amorphous solid at a pressure P1 that is high enough (if
necessary) to permit the homogeneous potential description.
Now examine the configuration obtained from this one by
shrinking it as a whole by a factor of β > 1. Since the
first derivative of a homogeneous function of degree k with
respect to any of its arguments is also a homogeneous function
[but of degree (k − 1)] this contracted geometry is again an
equilibrium arrangement corresponding to a higher pressure of
P2 = θP1 where θ = β(m+S). Thus the geometry of the solid
is independent of the applied pressure, which controls only
the scale of the interparticle distances and this scale varies
as P −[1/(m+S)].

Now the dynamical matrix D(�k) is a Fourier trans-
form of a derivative matrix D( �R)—the latter being the
matrix of second derivatives of the potential energy
with respect to the coordinates of two particles, which
are situated in two unit cells separated by the Bravais
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lattice vector �R. In fact D(�k) ≡ ∑
�R D( �R)e−i�k· �R =

∑
n1,n2,...,nS

T(n1,n2, . . . ,nS)e−i�k·(n1 �a1+n2 �a2+···+nS �aS ), where the
values of n1,n2, . . . ,nS span all integers. The elements of
the T matrix are homogeneous functions of degree −(m + 2)
and are inversely proportional to the (m + 2)th power of the
characteristic length scale. Thus the T matrix has the form
of a product of P [(m+2)/(m+S)] and a matrix that depends
only on (n1,n2, . . . ,nS) and the geometry of arrangement
of the particles within the unit cell (but not on the length
scale). The vectors �a1, �a2, . . . , �aS are all proportional to n−1/S .
Hence �k · �R is actually a dot product between n−1/S �k and a
vector that depends only on (n1,n2, . . . ,nS) and the (pressure
independent) directions of �a1, �a2, . . . , �aS . Thus D(�k) is indeed
a product of a function of pressure (that defines the scale
of the vibrational frequency) and a function of the product
n−1/S �k. Equation (1) follows immediately from this—with the
additional specification that W (P ) is actually proportional to
P [(m+2)/2(m+S)].

The shape of the FBZ does not change with pressure but its
linear size is proportional to n1/S . It follows that the normalized
VDOS function G(ω) will have the following form:

G(ω) = [1/W (P )]H [ω/W (P )], (2)
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FIG. 1. Reduced density of states [G(ω)/ω2] is plotted as function
of frequency (ω). The Debye value is shown as a horizontal
dashed line. Also shown is the value (χ ) of G(ωBP)/GDebye(ωBP).
(a) P = 1, (b) P = 16, (c) P = 64, (d) P = 128, (e) P = 256, and
(f) P = 512.

where the normalized function H is independent of pressure.
The boson peak, if it exists, will show up as a peak in the plot
of H (x)/x2 vs x. Clearly, in that case ωBP is proportional
to P δ with δ = (m + 2)/2(m + S). Similarly, IBP scales
as W (P )−3.

The expression for δ shows that it has a universal value
of 1/2 in two dimensions. In three dimensions δ is bounded
above by 1/2 and its dependence on m is very weak. For
example, varying m from 7 to 20 causes δ to change merely
from 0.45 to 0.48. From Eq. (1) it can be seen that the speed
of sound is proportional to n−1/SW (P ) and, consequently, that
the Debye frequency (ωD) is also proportional to W (P ). Thus
ωBP, ωD , and the average frequency are all proportional to
each other. Given this mutual proportionality and the form of
G(ω) in Eq. (2) it should be obvious that shape invariance of
the rescaled RDOS can be realized in the entire spectrum (not
just around the boson peak) by scaling the frequency either by
ωBP or by ωD . As mentioned earlier this is not always the case
in experiments.

III. LENNARD-JONES GLASS:
NUMERICAL RESULTS

We now present results of a numerical study of the evolution
of the boson peak at zero temperature in the case of the single-
component hyperquenched Lennard-Jones glass (m = 12) in
three dimensions (the boson peak aspect of this problem was
studied in Ref. 19 but only at P = 0; see also Ref. 36). In
appropriate reduced units the expression for the pair potential
in this case for a pair distance of r is (1/r12 − 1/r6) (please
note the absence of the prefactor of 4). The mass of every
particle is unity and the number (N ) of particles in the unit
cell is 3375. Calculations were done at P = 1, 16, 64, 128,
256, and 512 (for the Lennard-Jones parameters of argon
typically used in the literature P = 512 corresponds to about
90 GPa). Amorphous geometries at P = 1 were obtained
through hyperquenching of low-temperature uncorrelated liq-
uid configurations. Configurations at higher pressures were
derived from these through sequential minimization of the
enthalpy function—as described earlier. For each pressure
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FIG. 2. Superposition of the plots of the reduced density of states
[with normalized frequency (ν) as the argument] at various pressures
is shown to demonstrate their asymptotic convergence.
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TABLE I. Pressure dependence of various physical parameters for the Lennard-Jones glass.

Volume per Frequency of Intensity of Excess at Strain Bulk
Pressure particle boson peak boson peak boson peak parameter modulus
(P ) (v) (ωBP) (IBP) (χ ) (ε) (B)

1 0.9238 0.60 0.0098 2.88 0.0171 24
16 0.7213 1.15 0.0013 3.24 0.0950 129
64 0.5861 1.94 0.00025 2.85 0.1555 418
128 0.5218 2.85 0.00011 2.83 0.1876 764
256 0.4619 3.48 0.000044 2.58 0.2199 1494
512 0.4072 5.66 0.000018 2.50 0.2520 2772

G(ω) was calculated by combining the spectra from 12
amorphous local minima. In Figs. 1(a)–1(f) we show the plots
of the RDOS. Also shown is the (constant) value of the RDOS
predicted by the Debye model. Next to each plot the value
of χ = G(ωBP)/GDebye(ωBP) is also given. For homogeneous
potentials χ should saturate at high pressures. From our
numerics this limiting value would appear to be somewhat
below 2.5—which is a little higher than the value of 2 predicted
by a theory of Schirmacher et al.7 that ascribes the origin of
the boson peak to random spatial fluctuations of the elastic
constants. It may be noted that Ref. 7 quoted a value of 2.4 for
this parameter for the Lennard-Jones potential—although the
value of pressure that the data related to was not mentioned.

Given the error bars in Figs. 1(a)–1(f) there can be no
reasonable doubt about the existence of the boson peak (see
also Ref. 19)—although the uncertainty in the location of ωBP

is higher than desirable. This is confirmed further in Fig. 2
where superposed plots at various pressures are shown for
g(ν)/ν2 (focussing attention near the boson peak) where g(ν)
is the normalized density of states but with ν ≡ ω/〈ω〉 where
〈ω〉 is the spectral average of ω. While converting ω to ν the
value of 〈ω〉 specific to the local minimum is used. Although
not seen fully in Fig. 2, there is indeed asymptotic convergence
of the rescaled RDOS function over the entire range of ν.
The effect of somewhat poor statistics is visible at the lowest
frequencies. And this is further amplified due to division by the
square of the rather low value of frequency in the proximity
of the boson peak [in a superposed plot of g(ν) for all six
pressures it is hard to distinguish between the six figures]. But
there is little doubt that νBP indeed becomes independent of
pressure at higher pressures. From Fig. 1 it can be seen that
ωBP and IBP vary by a factor of about 9 and 600, respectively,
across the range of pressures studied. These and other relevant
data at various pressures are recorded in Table I. Figures 3(a)
and 3(b) show the log-log plot of ωBP and IBP against pressure.
The best-fit values of the slope (using data for the three highest
pressures only, since the predictions are asymptotic in nature)
in Figs. 3(a) and 3(b) are 0.49 and −1.36, respectively. These
values are to be compared with the analytical predictions of
0.467 and −1.4, respectively.

IV. DISCUSSION

This work is based on the observation that most of the
isotropic potentials used in the literature for computational

studies of glasses reduce to homogenous repulsive potentials
at high pressures and hence it is enough to study the latter kind
of potential if one is interested in high-pressure vibrational
properties of these model potentials. We have demonstrated
that the pressure scaling of the location and the intensity
of the boson peak, when it exists (the proof of existence is
numerical, not analytical), is of the power-law type and the
exponent can be calculated without invoking the mechanism of
BP formation. Since one motivation of this work is to generate
data that unambiguously comply with the basic requirements
of a theory such as Ref. 32, it is natural to ask how far our results
are consistent with its predictions regarding the dependence of
ωBP on pressure.

This theory, based on the soft potential model (SPM) of the
origin of the boson peak, predicts a P 1/3 dependence of the
boson peak frequency for an intermediate range of pressures
where the pressure is high compared to an intrinsic and system
dependent scale of P0 but is low enough to satisfy the following
two conditions assumed implicitly in the derivation of the
predictions: (i) In the Hamiltonian the coupling between the
strain induced by pressure and the displacement coordinates
of the quasilocal vibrational (QLV) modes stays bilinear.
(ii) The compressibility can be taken to be constant. In any
comparison between experimental/computational data and a
theory such as this, caution must be exercised in making
sure that (A) the system is indeed of the type to which the
theory is applicable, and (B) conditions under which the
predictions are made are actually satisfied by the range of
pressures used in the experiment/computation. As stated in
the introduction of this paper our systems satisfy criterion
(A) by design. Criterion (B) requires that the pressure should
be in the range that satisfies the conditions (i) and (ii) stated
above.

Validity of condition (i) stated above is hard to check
a priori but the applicability of condition (ii) can be tested
through a measurement/computation of the compressibility as
a function of pressure. We have computed compressibility at
the pressures used for the present calculation via interpolation
through the pressure-volume data of a much denser set of
pressures computed with N = 343. From the results available
in Table I it is obvious that the variation of compressibility
is very large over the range of pressures used by us. In
fact if one were to demand only a small variation of the
compressibility over the studied pressure range the latter would
be so narrow that the resulting variation of ωBP over that
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range would be too small to permit any meaningful test of
the P 1/3 prediction. This problem is not limited to our study.
They are also known to be present in the experimental studies
of amorphous silica25 and PIB polymeric glass27 (which are
among those considered as confirmations of the P 1/3 law)—
although to a lesser degree. For amorphous silica, over the
studied range of ambient through 50 GPa, the compressibility
varies by a factor of about 10. For the PIB study, which
extends up to 1.4 GPa, this variation is by a factor of more
than 2.5. We do not have access to similar compressibility
data for glassy As2S3.26 When compressibilty varies so
much, what actually is the predicted pressure dependence
of ωBP?

A careful reading of Ref. 32 shows that the prediction can
be written as a dependence of ωBP on the strain parameter
(ε)—the latter being a function of pressure. Again there is a
system dependent scale ε0 for the strain such that a model
independent prediction exists only when ε 	 ε0 and in this
pressure range ωBP ∝ ε1/3. For the laboratory experiments
the strain parameter is not measured directly but it can
be estimated if the compressibility is known as a function
of pressure. In any case, on the basis of the fact that the
compressibility rises monotonically with pressure, it can be
inferred that ωBP should rise slower (possibly substantially
slower) than P 1/3. Hence if the pressure dependence of
compressibility is not properly taken into account it can
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FIG. 3. Log-log plot against pressure (P ) is shown for
(a) frequency of the boson peak (ωBP) and (b) intensity of the boson
peak (IBP).
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FIG. 4. Plot of the boson peak frequency (ωBP) against the strain
parameter (ε).

seriously compromise the process of confirming the theoretical
predictions. Experiments, however, seem to show fairly close
to P 1/3 dependence. These issues need to be understood more
carefully.

For the present study of homogenous repulsive potentials
the predicted and observed pressure dependence of ωBP is P δ

where δ is close to but a little lower than 1/2. For the particular
example of the Lennard-Jones potential we have available the
pressure-volume data from which we can calculate the strain
parameter as a function of pressure via the definition ε ≡
{1 − [v(P )/v(0)]1/3} where v(P ) is the volume per particle at
pressure P . The data for this is available in Table I. A plot
of ωBP vs strain is shown in Fig. 4. It should be obvious that
the dependence of ωBP on strain is strongly superlinear and
is certainly far from being proportional to ε1/3. We conclude
that our data cannot be fitted to the predictions of Ref. 32. A
simple explanation for this observation may be that the values
of the strain parameter for the higher pressures in our study are
beyond the limit of validity of the bilinear coupling between
the strain parameter and the displacement coordinate of
the QLV.

The observations of the asymptotic shape invariance of
the vibrational spectrum and the proportionality of Debye
and boson peak frequencies are equally important in our
view. This has been observed in some laboratory experiments.
However, to the best of our knowledge, no explanation has
been forwarded until now. Here we have pointed out that this
is a generic feature of all homogeneous repulsive potentials.
However, without further developments, this cannot be con-
sidered an explanation of any laboratory experiment. But at
least we have demonstrated that the experimentally observed
phenomenology is shared by most of the computationally
studied models of glasses.
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