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Models of triplet self-trapped excitons in SiO2, HfO2, and HfSiO4
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We predict by means of density functional theory simulations the structures of self-trapped triplet excitons in
HfO2 and HfSiO4, and compare their properties to those of the self-trapped exciton in α quartz. The character
of the hole and electron localization in excitons strongly depends on the geometrical structure and dielectric
properties of these materials. In HfO2, the electron is localized predominantly on one Hf atom while the hole
is localized on one or two oxygen atoms at the nearest or next-nearest-neighbor sites, depending on the crystal
phase. We predict two exciton configurations in HfSiO4 with the excited electron localized either on a Hf or on a
Si atom and the hole localized on the nearest-neighbor oxygen atoms. Excitation and luminescence energies are
calculated for all triplet exciton states and compared with the available experimental data.
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I. INTRODUCTION

Excitons are neutral quasiparticles in the form of electron-
hole pairs, which propagate in a nonmetallic solid. They
drastically alter the optical, magnetic as well as energy and
charge transport properties of solids. In some insulating
crystals excitons may become self-trapped and form small-
radius states, which resemble an excited atom or molecule.1

Self-trapping is caused by exciton-phonon interaction and is
often accompanied by considerable local lattice distortion.
Self-trapped excitons (STEs) can decay radiatively, yielding
a distinctive luminescence, or nonradiatively, producing heat,
transferring energy to impurities, or forming lattice defects.
Radiation damage and scintillating properties are, thus, com-
mon motivations for studying STEs in nominally pure as well
as in doped insulators.1,2

The existence of STEs has so far been firmly established
only in a relatively small number of insulating materials, such
as alkali and alkaline-earth halides, silica, rare-gas solids,
perovskite-structured halides of the MgF3 family and in some
complex oxides.1–4 However, experimental determination of
detailed atomistic models of STEs has not been successful
even for alkali halides, which are traditionally regarded as
archetypal insulating materials, and in which the structure of
STE and the dynamics of self-trapping processes have been
studied most extensively.1

Theoretical studies of the structure and properties of self-
trapped excitons also have a long history. Phenomenological
theories5 produced general criteria for self-trapping of excitons
and suggested qualitative models of their structures.6 However,
they cannot provide detailed information concerning the elec-
tronic and atomic structures of STEs, which would enable full
comparison of the theoretical predictions with experimental
data.

Such atomistic models can be provided by quantum-
mechanical calculations, as reviewed in Refs. 1, 2, 7, and 8. The
early Hartree-Fock-type calculations predicted spectroscopic
properties of STEs in alkali halides and in α-quartz in
good agreement with experiment.8,9 These calculations also
emphasized the importance of accounting for the electron

correlation in modeling STEs.10 Initially, it has been expected
that the electron correlation could be accounted for through
the use of the density functional theory (DFT), but these hopes
were soon dashed when it became clear that the self-interaction
error, inherent in LDA and GGA functionals, prevents electron
and hole localization and underestimates band gaps (see, for
example, discussion in Ref. 11). Since then, several methods,
such as hybrid density functionals with different amounts of the
Hartree-Fock exchange and more accurate techniques using
GW and other approaches (see, for example, Refs. 12–15),
have been used to model polaron and exciton localization and
self-trapping as well as for predicting the exciton spectra and
structure in insulators.

Here, we revisit STE in α-quartz and predict the structures
and study the properties of STEs in HfO2 and HfSiO4,
which were recently employed in CMOS devices. Considering
these three systems provides a unique perspective at how
the structure and properties of STE in oxides depend on the
crystalline structure.

The STE in α-quartz has been studied extensively both
experimentally and theoretically.1,2,14,16,17 Yet, the details of
its atomic structure still remain controversial particularly due
to the small size of clusters and periodic cells used in the
simulations, which are known to constrain the exciton-induced
lattice deformation.

Concerning the two other materials, there have been
several suggestions that a photo-luminescence observed in
monoclinic HfO2 films is due to STE,18,19 contradicted by
the results of other experiments.20 Since unambiguously
detecting STEs in a material and determining their properties
experimentally is extremely challenging,1 theoretical calcu-
lations can provide guidance and aid their identification. In
particular, it has been recently predicted theoretically that
both electrons and holes can self-trap forming small-radius
polarons in the monoclinic phase of HfO2.21 According to
the phenomenological theory,5 this is a strong indication that
excitons can also self-trap in this material. Three stable phases
(monoclinic, tetragonal, and cubic) of HfO2 have different
dielectric tensors22 and, according to the same theory,5,6 one
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can expect that STEs can have different structures in different
phases.

HfSiO4 is the simplest representative of hafnium silicates
(HfxSi1−xO4), which are used as gate oxides and are still poorly
studied. The crystalline structure of HfSiO4 has elements of
both HfO2 and SiO2, which makes it an interesting material
to consider, especially because STE is known to exist in α-
quartz.1 While we are not aware of any experimental studies of
STE in HfSiO4, intrinsic luminescence in a similarly structured
Be2SiO4 has recently been attributed to STE.23 We note that
many properties of HfO2 and HfSiO4 are close to those of
ZrO2 and ZrSiO4 and some of our results can be useful for
understanding the properties of these and other, more complex
oxides, which exhibit luminescence attributed to STE (see,
e.g., Refs. 3 and 4).

This paper is organized as follows. In Sec. II, we describe
the details of the models and methods used for our electronic
structure calculations. The electronic structure of SiO2 (α
quartz), HfO2 (in the cubic, tetragonal, and monoclinic
phases), and HfSiO4 is described in Sec. III. The results
concerning exciton self-trapping in these three materials are
presented in Sec. IV. Finally, our conclusions are presented in
Sec. V.

II. COMPUTATIONAL DETAILS

Recently, there has been significant progress in developing
efficient computational techniques for calculating electronic
excitation spectra in wide band gap materials. Some of these
techniques are based on using periodic DFT for the ground
state and then applying Hedin’s GW approximation and other
methods (see, for example, Refs. 14, 15, and 24) to model
excited states. However, modeling self-trapped excitons and
exciton decomposition requires using large supercells and
minimizing forces in excited states. Such calculations are still
computationally challenging and rare.14,17

In this work, we study only the lowest energy triplet
excitons, which is prompted by the experimental evidence1,2

that this is indeed the lowest state of STE in alkali halides,
alkali earth fluorides, α quartz, and other insulators. This
approximation has been employed successfully in previous
calculations of STEs, as discussed in, for example, Refs. 7–10.
However, unlike in those studies, we use DFT and a nonlocal
density functional. We note that the choice of the functional
can be crucial for polaron and exciton description (see, e.g.,
Refs. 25 and 26). As shown below, in all cases considered in
this paper, we predict the STE localization, but the calculated
spectroscopic characteristics of STEs can be affected by the
choice of the density functional.

We use two complementary computational schemes im-
plementing periodic and embedded cluster methods. In both
of them, a configuration of a triplet exciton is found
by minimizing the total energy of a system with re-
spect to the atomic positions and then the exciton lu-
minescence energy is calculated. In addition, the optical
transition energies for STE in monoclinic HfO2 are cal-
culated in an embedded cluster model using the time-
dependent (TD)-DFT method implemented in the GAUSSIAN03
package.27

A. Periodic calculations

Periodic DFT calculations were performed with the CRYS-
TAL06 package,28 which uses local basis sets of Gaussian-type
orbitals (GTOs), and the hybrid B3LYP functional.29,30 This
functional has been used to predict defect and polaron prop-
erties in monoclinic HfO2,21,31,32 crystalline and amorphous
SiO2,33–35 and in other insulators.36,37

The basis set for oxygen includes 14s, 6p, and 1d functions
contracted to 1s, 3sp, and 1d shells using a 8/411/1 scheme.
For Si, the basis set includes 20s, 12p, and 1d functions
contracted to 1s, 3sp, and 1d shells with a 8/831/1 scheme.
For Hf atoms, we used a relativistic effective core potential
(RECP), which replaces all but 12 valence electrons. This
RECP has been introduced by Stevens et al.38 and adapted for
the CRYSTAL code.31 The Hf basis set consists of 6s, 6p, and
4d functions contracted to 3sp and 2d shells using a 411/31
scheme.

The calculations of HfO2 and HfSiO4 were carried out using
96-atom supercells, constructed as 2 × 2 × 2 and 2 × 2 × 1
expansions of the HfO2 and HfSiO4 unit cells, respectively. In
the case of α quartz, we used a 72-atom 2 × 2 × 2 supercell. A
Monkhorst-Pack mesh of nine k points in the irreducible part
of the Brillouin zone was used for integration in the reciprocal
space in all cases.

To facilitate initial hole and electron localization in the
triplet state, we created small precursor distortions around
particular lattice sites.39,40 In particular, cations near a selected
oxygen site have been displaced so as the Hf-O and Si-O bonds
are elongated by ∼0.1 Å in both HfO2 and HfSiO4 and by
∼0.5 Å in SiO2. The magnitude of the perturbation was
selected on the basis of earlier calculations of the defect-
induced atomic displacements in SiO2 and HfO2,31,41 as it
is expected to be sufficient for localizing both the hole and
electron components of the exciton at an anion and some
nearby cations, respectively.

B. Embedded cluster calculations for SiO2

The structure of α–quartz was represented using a nearly
spherical nanocluster. To construct it, we first optimized the
geometrical structure of α-quartz using the periodic model and
the CRYSTAL code. The infinite α-quartz lattice was then con-
structed from Si( 1

2 O)4 tetrahedra. All such tetrahedra within
30 Å of a given oxygen site were attributed to the nanocluster
and remaining ones were discarded. By construction,“halves”
of the oxygen atoms ( 1

2 O) remain only at the periphery of
the nanocluster, while exactly two such halves of oxygen
atoms occupy the same lattice site inside the nanocluster
and therefore form a “full” oxygen atom. The ionic charges
assigned to Si, O, and 1

2 O species relate as Q:−Q/2:−Q/4,
where Q = 2.4|e|. By construction, the dipole moment of
the nanocluster is negligibly small. Therefore as the size of
the nanocluster increases, the electrostatic potential inside
it converges up to a constant to that given by the Ewald
summation of the infinite lattice.42

We used the Si8O25Si∗18 quantum-mechanical (QM) cluster
positioned at the center of the nanocluster. It includes two
shells of Si and O atoms next to a central oxygen atom
and is terminated by Si∗ pseudoatoms described in detail
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elsewhere.41 The QM region is surrounded by a spherical
shell in which Si and O ions are described using the classical
shell model and interact with each other and with the QM
atoms via the interatomic potentials43 modified so as to
reproduce the polarizability of oxygen ions. Finally, atoms in
the remaining part of the nanocluster are treated as rigid ions
and are kept fixed in their ideal bulk positions. They provide
correct potential energy surface for both quantum and shell
model atoms, which are allowed to relax in the course of the
calculations. The QM contributions to the total energies and
forces are calculated using the B3LYP density functional and
standard Pople’s 6-31G(d) basis set, which is comparable to
that used in the periodic model calculations. To reduce the cost
of the computations, oxygen atoms next to the interface region
have been represented using a 6-31G basis set.

C. Embedded cluster calculations for m-HfO2

Based on the relatively small radius of the lattice defor-
mation induced by the STE in m-HfO2, we used a simplified
approach, where a quantum cluster including the STE and its
vicinity was embedded in the rest of the crystal represented by
a lattice of classical rigid ions.31

First, using a 96-atom supercell of m-HfO2 as a building
block, we constructed a nearly spherical nanocluster of the
radius of ∼25 Å. The coordinates of ions in this supercell were
preoptimized using the B3LYP functional and the CRYSTAL

code. The classical ions of the nanocluster have been assigned
charges of +4|e| and −2|e| for Hf and O, respectively. 15 Hf
and 30 O atoms at the center of the nanocluster form a part of
the system considered quantum mechanically and embedded
into the electrostatic potential produced by the remaining part
of the nanocluster. We represent classical Hf ions within
10 Å from the border of the QM cluster by large core
pseudopotentials,44 which substitute all but four outermost
electrons. These atoms form an interface between the QM
cluster and the classical environment and prevent artificial
polarization of the electron density toward the positive point
ions outside the QM cluster (see Ref. 31 for more details). We
used the same GTO basis sets, pseudopotentials, and B3LYP
density functional as in the periodic calculations.

To simulate the STE localized inside the QM cluster,
positions of ions within 5 Å around the QM cluster center were
made identical to those of the STE as obtained in the periodic
model calculations. The displacements of ions induced by the
STE beyond this distance are negligibly small.

In the case of HfSiO4, the interface between the classical
and the quantum regions includes both Hf and Si atoms.
Creating such an embedding scheme is a complex task that
goes beyond the aims of this study and we studied this material
using only the periodic model.

III. DESCRIPTION OF THE LATTICES

In order to characterize the structure and electronic states
of excitons in the three oxides considered in this work, we first
briefly describe the differences in geometrical and electronic
structures of these materials. A much more detailed description
can be found in Refs. 45–47.

FIG. 1. (Color online) Geometrical structures of (a) cubic, tetrag-
onal, and monoclinic HfO2 (unit cells), (b) HfSiO4 (unit cell), and
(c) α-quartz SiO2.

HfO2 has three polymorphs at ambient pressure: a
monoclinic phase (m-HfO2), stable at temperatures below
2000 K, a tetragonal phase (t-HfO2) stable between 2000 and
2870 K, and a cubic phase (c-HfO2) stable at temperatures
above 2870 K. Their geometric structures are shown in Fig. 1.
Hf ions in m-HfO2 are sevenfold coordinated by O ions and
there are two oxygen sublattices: in one of them, oxygen
ions are three coordinated and in the other, four coordinated
by Hf ions. In the two other phases, there is only one
oxygen sublattice with fourfold coordination and Hf atoms
are eightfold coordinated.

The optimized lattice parameters along with the corre-
sponding experimental values are summarized in Table I. The
one-electron B3LYP band gaps for the cubic, tetragonal, and
monoclinic phases are about 5.9, 6.5, and 6.1 eV, respectively.
The value for the monoclinic phase agrees well with the
experimental estimates of around 5.8 eV.48,49 In all phases,
the valence band is mainly composed of oxygen 2p states.

TABLE I. Lattice parameters calculated in this work using the
B3LYP density functional. The corresponding experimental values
have been obtained from Refs. 53 (HfO2), 54 (SiO2), and 55 (HfSiO4).

Compound Parameters This work Expt.

SiO2 (α-quartz) a (Å) 4.964 4.902
c (Å) 5.469 5.400

γ (deg) 120.0 120.0

m-HfO2 a (Å) 5.153 5.119
b (Å) 5.212 5.170
c (Å) 5.314 5.298

γ (deg) 99.47 99.18

t-HfO2 a (Å) 5.076 5.06
c (Å) 5.195 5.18

c-HfO2 a (Å) 5.09 5.07

HfSiO4 a (Å) 6.632 6.57
c (Å) 6.046 5.97
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The bottom of the conduction band is mostly composed of 5d

states of hafnium, with some small contribution of oxygen 3p

states. In the monoclinic phase, the contributions from the
three-coordinated and four-coordinated oxygen ions are
equally distributed in the whole of the valence band except for
the states near the VBM: these states are exclusively composed
of linear combinations of 2p states of three-coordinated
oxygens.

HfSiO4 is tetragonal at room temperature. Hf atoms are
sevenfold coordinated and Si atoms are fourfold coordinated
by oxygen atoms, whereas oxygen atoms are coordinated by
two Hf atoms and one Si atom [see Fig. 1(b)]. The calculated
band gap in this system is about 7.5 eV. While we are not
aware of experimental reports of this band gap, the estimates
for amorphous phases of (HfO2)x(SiO2)1−x at different values
of x suggest50,51 that the band gap of crystalline HfSiO4 can
be between 6.5 and 7.0 eV. The top of the valence band is
mainly composed of oxygen 2p states. The conduction band
is formed from the Hf 5d states and Si 3p states with Hf states
dominating the lower part of the conduction band up to about
3 eV above the CBM.

The α-quartz lattice is shown in Fig. 1(c). Each Si atom
is fourfold coordinated by a pair of “long” (1.62 Å) and
“short” (1.61 Å) bonds with oxygen atoms, while oxygen
atoms are twofold coordinated. This lattice has lower atom
number density than that of HfO2 and large interstitial spaces.
The calculated one-electron band gap of 9.2 eV is slightly
larger than the experimental value of 8.9 eV.52 The bottom of
the conduction band is formed of Si 3p and 3d and O 3p states.

IV. STRUCTURE OF SELF-TRAPPED EXCITONS

Below we describe the results of the calculations, including
the geometrical structures of relaxed STEs and changes in the
one-electron densities of states, for the triplet excited state
for each of the crystals. We also report the exciton excitation
energies for vertical singlet-triplet transitions Ee the relaxation
energies in the triplet state Er and the photo-luminescence (PL)
energies El .

The exciton excitation energies Ee are calculated using the
�SCF method as differences between the total energies of a
crystal in the perfect lattice configuration in the ground singlet
and the lowest triplet states.

The exciton relaxation energy Er is the difference between
the energies of relaxed and unrelaxed lowest triplet states.
In these calculations, the unrelaxed triplet state in the perfect
lattice supercell represents the hole and electron states delocal-
ized over sublattices forming the band edges in the particular
material. For instance, in the case of HfSiO4, the obtained
solution had partial electron localization on Hf atoms of the
lattice responsible for the bottom of the conduction band.

The photoluminescence energies correspond to the vertical
triplet-singlet transition at the geometrical configuration of
the relaxed triplet state and are calculated using the �SCF
method as the difference between the total energy of the
fully relaxed triplet state and the ground singlet state at the
triplet geometric structure. We also used TD-DFT to calculate
the photoluminescence energies and the optical absorption
energies of the electron and hole components of STE in
m-HfO2 and α quartz within the embedded cluster method.

A. Exciton in α-quartz SiO2

Electrons in α quartz can be excited via singlet-singlet tran-
sitions using different types of ionizing and optical radiation
(see, for example, discussion in Ref. 56). These excitations
are accompanied by a long-lived luminescence attributed to
recombination of the electron and hole components of triplet
STEs.1,57 Since the recombination occurs via a spin-forbidden
transition, the photoluminescence has lifetime of the order of
milliseconds. While two luminescence energies of ∼2.5 and
∼2.7 eV have been reported, the assignment of the 2.5 eV
band to the STE is not universal.58,59

The first attempt to predict theoretically a configuration and
properties of the triplet STE in SiO2 by quantum-mechanical
methods used an idealized β-cristobalite structure and a
cluster model and calculated the luminescence energy of
2.3 eV.60 Subsequent ab initio calculations of α-quartz using
periodic and cluster models and different theoretical methods
reported qualitatively similar STE models and luminescence
energies broadly in agreement with experiment14,16,17 and
have provided models of the spin localization and lattice
distortion induced by the presence of the exciton state. In
addition, periodic DFT calculations were carried out for
excitons trapped in amorphous silica.61

The periodic model offers a better representation of the
perfect lattice and, thus, is less biased an approach to
predicting whether an exciton would self-trap in a particular
crystal structure. Due to computational constrains, most of
the previous calculations have been performed in supercells
containing between 18 and 72 atoms. However, in the case
of the small supercells, the lattice relaxation is not accounted
for beyond the nearest neighbors. A deficiency of the earlier
periodic calculations in relatively large cells is that these have
been carried out at the LDA or GGA levels, which tend to
exaggerate the spatial extend of both the hole and electronic
components of the exciton. This could be one of the main
reasons why the most common configuration of the STE was
found to be unstable in the 72 atom unit cell calculation.17

1. Configurations of the STE in α-quartz

Using the B3LYP functional and both a 72-atom period
cell and the embedded cluster model we obtained two STE
configurations, denoted STE1 and STE2, shown in Fig. 2.
They effectively correspond to breaking “long” and “short”
Si-O bonds as a result of excitation. In the periodic calculation
of the STE1, an electron is strongly localized at one Si (Si1)
atom (73% localization according to the Mulliken population
analysis), while the hole is predominantly localized at the
nearest-neighbor O atom (O1). The exciton is also inducing
spin polarization of six nearest-neighbor oxygen atoms seen
in Fig. 2. This charge transfer excitation is accompanied by
significant local lattice relaxation. In particular, the distance
between the Si1 and O1 atoms increases by about 1.0 Å. At
the same time, the length of the Si2-O1 bond is reduced by
0.05 Å only and its electronic structure remains unaffected. The
distance between the two Si atoms bridged by O1 is increased
by ∼0.4 Å.

In the STE2, the hole is also at O1 but the electron is
localized at Si2 (see Fig. 2). The local relaxation is, however,
slightly different with the O1-Si2 distance increasing by about
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FIG. 2. (Color online) Schematic of the lattice relaxation and spin
localization in the STE1 and STE2 configurations in SiO2. Left part
shows the lattice relaxation and right part shows the surface of the
constant spin density with value S = 0.01. Bright and dark spheres
represent Si and O atoms, respectively.

0.8 Å with respect to that in the ideal lattice. In periodic
calculations, this configuration is by about 0.3 eV higher in
energy than that of STE1. Assuming that a transition between
the two STE configurations may take place adiabatically, we
calculated the height of the transition barrier using a linear
interpolation approach and found that the STE2-to-STE1
barrier is 1.5 eV, while the barrier for reverse transition is
1.8 eV.

The embedded cluster calculations predict a qualitatively
similar exciton model. The geometric parameters of the
local structure in both configurations are shown in Table II.
In fully relaxed configurations, the Si-O bond lengths are
nearly identical in the STE1 and STE2. However, the Si-O
distances corresponding to the broken bonds differ by more
than 0.2 Å and the Si-O-Si angles — by 7◦ from those in
periodic calculations. The fully relaxed excitons are almost
isoenergetic, with STE2 being by only 0.03 eV more stable
than STE1.

Such large displacements of atoms in the first coordination
shell of the STE drive strong distortions of the surrounding
lattice. For both exciton configurations, atoms located within
3.5 Å from the STE site in periodic calculations displace,
on average, by 0.3 Å, while other atoms of the supercell
displace by 0.1 Å. However, a more detailed analysis of
the lattice deformation (see Supplemental Material62) clearly
demonstrates that the directions and values of displacements
in periodic calculations are strongly affected by the interaction
between periodically translated excitons in different cells.
These interactions induce competing forces leading to, e.g.,

TABLE II. Comparison of the geometric parameters for quartz
STE calculated in this work using the periodic and cluster models.
Parameters in the table are silicon-oxygen distances (Sik-O, k = 1,2)
and silicon-oxygen-silicon angle θ (Si1-O-Si2) at the STE site. The
distances are given in Å, the angles are in degrees.

Si1-O Si2-O θ (Si1-O-Si2)

Fully relaxed structure
Periodic STE1 1.67 2.61 106.4
Periodic STE2 2.42 1.67 119.4
Cluster STE1 1.69 2.45 112.0
Cluster STE2 2.19 1.70 119.0

Partially relaxed structure (15 atoms)
Periodic STE1 1.68 2.41 107.2
Periodic STE2 2.29 1.73 98.3
Cluster STE1 2.40 1.69 111.2
Cluster STE2 1.72 2.15 113.2

Other works
Ref. 14 1.68 1.97 ...
Ref. 16 1.693/1.672 2.45/2.032 146.1
Ref. 17 ... 2.5 ...

artificial rotations of SiO4 tetrahedra. This is not surprising
as it has been shown that the defect-induced relaxation in α

quartz can propagate as far as 10 Å or more from the defect
site.41,63 Such relaxation, when modelled using the periodic
supercell approach, can be inadequately reproduced if the size
of the supercell is not sufficiently large. In our case, the size of
the embedded QM cluster alone is ∼12 Å, which is larger than
the linear size of the 72 atom supercell used to model STE.

The geometric parameters of STE calculated in this work
are compared with the results of earlier calculations9,14,16,17

in Table II. Reference 16 reports two structures obtained by
optimizing two nine-atom clusters of different shapes using
the Hartree-Fock method. The elongation of the Si–O distance
obtained there for STE1 is similar to our results (the STE2
state is not described). Reference 17 reports several structures,
however, only one of them (labeled STE-A) is thought to
be responsible for the 2.5–2.7 eV luminescence bands. The
geometrical structure of this STE configuration is similar to our
STE1 structure. The STE configuration found in Ref. 14 using
the GW method in a 18-atom periodic supercell is slightly
different from our calculations. In particular, the Si atom of
the broken Si–O bond adopts the sp2 configuration and is
displaced into the plane of the three oxygen atoms attached
to it. However, in our case, this Si atom remains outside the
plane. This comparison demonstrates qualitative agreement of
the STE1 models obtained in different calculations of α-quartz
and β-cristobalite.39 However, the details of the STE structure
strongly depend on the supercell or cluster size.

To investigate the dependence of the exciton properties on
the size of the region in which the STE-induced relaxation
is accounted for, we used the following approach. In the
Si8O25Si∗18, QM cluster embedded in the rest of the classical
lattice as described above, we considered the STE relaxation
within five successively expanding regions (see the top panel
in Fig. 3). The smallest region includes the central O and its
Si neighbors only (OSi2), while the four other regions are
constructed by adding sequentially the shells of six O atoms

024120-5
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FIG. 3. (Color online) Properties of self-trapped excitons in α-quartz calculated using embedded cluster approach for several relaxation
regions. Top panel shows the fully relaxed regions, shown with spheres, superimposed on the fixed lattice, shown with sticks only. Bottom
panels show the calculated properties: (a) lengths of the broken and nonbroken Si-O bonds at the STEs sites, (b) STE potential energy surfaces,
and (c) luminescence energies.

(+O6), six Si atoms (+Si6), 18 O atoms (+O18), and 18
interface Si∗ pseudoatoms (+Si∗18). All other QM and classical
atoms were fixed in their perfect lattice sites and only O-atom
shells were allowed to relax after the system was excited
into the triplet state. The results of these constrained STE
calculations are summarized and compared with the results
obtained for the fully relaxed excitons in Figs. 3(a)–3(c) and
Table II.

The dependence of the Si-O distances at the exciton site
on the size of the relaxed region is shown in Fig. 3(a). In
both STE1 and STE2 states, the length of the Si-O bond does
not change as long as O-Si2-O6 atoms are allowed to relax
near the exciton site. The length of the broken Si-O bond is
sensitive to both the local and medium-range atomic structures
and converges slowly with increasing the size of the relaxation
region.

Figure 3(b) shows the total energies of the relaxed triplet
and the corresponding ground-state singlet states for partially
and fully relaxed STEs calculated with respect to the total
energy of the ground state (E0). The triplet state of STE2 is
always higher than that of STE1 except for the case of the
fully relaxed configurations. Importantly, the triplet state of
STE2 is unstable if the relaxation is confined to the O-Si2-
O6 region only. Moreover, for the relaxation region including
O-Si2-O6-Si6-O18 atoms, the barrier for the transition from
STE2 to STE1 is only 0.35 eV, while the reverse STE1-to-
STE2 barrier is ∼0.7 eV. These results explain quantitative
differences between the results of different calculations of STE
geometry and suggest that even bigger discrepancies can be
expected in calculated spectroscopic properties.

2. Properties of STE in α quartz

The triplet exciton in α quartz (as well as in other oxides
discussed below) induces localized states in the band gap

and quasilocal electronic states in the valence and conduction
bands of the crystal. Some of these states, pertinent to further
discussion of optical transitions, are shown schematically in
Fig. 4. In particular, the periodic calculations demonstrate
that STE1 induces three localized levels in the gap. The
electronic component of the STE1 (state A) is represented
by the occupied spin-up state, formed by a 3sp hybrid of
Si1, while its hole component (state B) is represented by
an unoccupied spin-down state split from the valence band
maximum (VBM) and dominated by the O1 2p states (see
Fig. 4 and Table III). The third state, split by 3.4 eV from
the conduction band minimum (CBM), is an unoccupied
spin-down state with contributions of the 3s and 3p states

FIG. 4. (Color online) Schematic of the exciton-induced spin-up
(α) and spin-down (β) localized states. States A and B correspond
to the electron and the hole components of an exciton localized on
a cation and an oxygen atom, respectively. Dashed lines indicate
resonant exciton-induced quasilocal states inside the bands. Arrows
show optical transitions between the localized states in the gap and
the resonant states.

024120-6



MODELS OF TRIPLET SELF-TRAPPED EXCITONS IN . . . PHYSICAL REVIEW B 85, 024120 (2012)

TABLE III. Splitting � (eV) of the exciton one-electron energy
levels A and B (see Fig. 4) from the conduction and the valence band
edges, respectively. Values δ (eV) show dispersion for each state.

States A States B

� δ Atom � δ Atom

SiO2 STE1 5.4 <0.05 Si(3sp) 3.0 0.05 O(2p)
SiO2 STE2 5.0 <0.05 Si(3sp) 3.0 0.05 O(2p)
m-HfO2 0.9 0.06 Hf(5d) 1.4 <0.05 O(2p)
t-HfO2 0.9 0.1 Hf(5d) 2.6 0.2 O(2p)
c-HfO2 0.7 0.1 Hf(5d) 2.4 0.3 O(2p)
HfSiO4 STE-Hf 0.6 0.05 Hf(5d) 0.4 0.2 O(2p)
HfSiO4 STE-Si 2.8 0.3 Si(3sp) 1.9 0.1 O(2p)

of Si1, which is induced by the lattice distortion. In addition,
the second spin-up state of the triplet is localized on O1 and
is situated inside the VB. We note that the small dispersion
of these states indicates weak interaction between periodically
translated excitons.

The excitation, relaxation, and photoluminescence energies
corresponding to this STE are summarized in Table IV. The
triplet luminescence energy obtained for this configuration is
about 2.0 eV, which is smaller than the lowest experimental
PL energy of 2.5 eV. This value is broadly in agreement with
those obtained in previous works, which cite values between
2 and 3 eV for the luminescence energy of α-quartz.14,17

For STE2, the A and B states have similar character and
dispersion to those induced by STE1, but appear at slightly
different energies, as seen in Table III. The third state in the
gap is an unoccupied spin-down state again induced by the
lattice distortion. It is localized on the 3s and 3p states of
Si2 and is split by only 1.5 eV from CBM. The calculated
luminescence energy is 2.5 eV, i.e., larger than that in the
STE1 case and similar to the lowest experimental PL energy.

The differences between the geometrical structures of STEs
in the periodic and cluster models result in different PL
energies: the El values obtained using the �SCF method and
the embedded cluster approach are 2.4 eV for the STE1 and

TABLE IV. Excitation (Ee), relaxation (Er ), and photolumines-
cence (El) energies and one-electron band gaps (Eg) obtained using
the periodic approach and the �SCF method. The experimental
luminescence energies (El,exp) and band gaps (Eg,exp) are provided,
where possible. All energies are in eV.

Ee Er El El,exp Eg Eg,exp

SiO2 STE1 9.51 2.84 2.01 2.5a 9.2 8.9b

SiO2 STE2 9.51 2.54 2.46 2.7a 9.2 8.9b

m-HfO2 6.34 0.85 4.74 4.4c 6.1 5.8d

t-HfO2 6.27 0.90 4.0 ... 6.5 ...
c-HfO2 6.34 2.28 3.20 ... 5.9 ...
HfSiO4 STE-Hf 8.16 1.47 6.69 ... 7.5 6.5–7.0e

HfSiO4 STE-Si 8.16 1.24 4.10 ... 7.5 6.5–7.0e

aReferences 58 and 56.
bReference 52.
cReferences 18 and 19.
dReferences 48 and 49.
eReferences 50 and 51.

2.9 eV for the STE2. This is not surprising as the calculated PL
energies are rather sensitive to the size of the relaxed region
[see Fig. 3(c)], which suggests that supercells exceeding the
3 × 3 × 3 extensions of the unit cell are needed in order to
accurately account for this exciton-induced relaxation.

The PL energies can be also computed as the lowest singlet-
triplet excitation energies at the geometrical configuration
of the relaxed triplet exciton. According to TD-DFT,27 such
excitation energies are 2.0 eV for STE1 and 2.5 eV for STE2.
By analyzing the character of these transitions we have also
identified two corresponding singlet-singlet transitions, which
have energies of 2.76 eV for STE1 and 3.03 eV for STE2. We
then used the transition dipole components of these allowed
singlet-singlet transitions to estimate the polarization of the
emission with respect to the crystal lattice c axis as 0.55 for
STE1 and–0.4 for STE2.

These results compare fairly well with the experimen-
tally observed PL energy of 2.74 eV and polarization of
0.48 ± 0.02, as reported in Ref. 59 although the triplet lu-
minescence energies obtained in this paper are systematically
lower than the experimental values. The existence of two types
of STE with different luminescence energies and polarization
has been discussed in Refs. 58 and 56 and our calculations
provide a possible explanation to these data.

B. Exciton in monoclinic HfO2

The periodic calculations predict the existence of a stable
triplet exciton state in m-HfO2. According to the Mulliken
population analysis, 80% of the exciton’s hole component is
localized on a single 3C oxygen atom (O∗), while 53% of
the electron component is localized on the neighboring Hf
atom (Hf∗), as shown in Fig. 5. In addition, two other nearby
Hf atoms share approximately 20% of the electron density of
the excited electron. The exciton-induced lattice distortion is
much smaller than that in α quartz. The O∗-Hf∗ bond length
increases by 0.2 Å, while other O∗-Hf bond lengths increase
by 0.1 Å. We did not find any exciton state with the hole
component localized at a 4C oxygen atom, probably due to
the higher stability of the hole on the 3C oxygen atom over the
hole on the 4C oxygen atom.21

The triplet exciton in m-HfO2 induces two localized gap
states, A and B in Fig. 4, with dispersion smaller than
0.1 eV (see Table III). The hole state B is formed mainly
by the 2p orbitals of O∗. The electron state A is dominated by

FIG. 5. (Color online) Triplet exciton in m-HfO2: (a) exciton-
induced lattice relaxation and (b) the surface of constant spin density
with value S = 0.05, superimposed on the local geometrical structure.
Changes of the interatomic distances are shown in Å. Bright and dark
spheres represent Hf and O atoms, respectively.
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5d states of Hf∗ with smaller contributions of the two other
neighboring Hf atoms. The excitation energy of the triplet
exciton in the perfect lattice and the luminescence energy
of the relaxed exciton, calculated using �SCF, are 6.3 and
4.7 eV, respectively. The exciton relaxation energy in the triplet
state is 0.8 eV (see also Table IV).

A similar picture emerges from the embedded cluster
calculations: the band gap is larger than that in the periodic
calculations by about 0.5 eV and splittings of the states B
and A from their respective band edges are larger by 0.1 and
0.4 eV, respectively. Both �SCF method and TD-DFT put the
PL energy of the STE at ∼4.8 eV.

Using TD-DFT, we have also calculated optical transitions
from the valence band states to the B state of the exciton, and
from the A state of the exciton to the unoccupied states in the
conduction band (see Fig. 4); 20 transitions of each type have
been calculated. The onset of the VBM-to-B transitions is
at 0.69 eV, and the highest oscillator strength transition (at
1.29 eV) is from the oxygen ions surrounding O∗ to the
localized hole state at O∗. The onset of the A-to-CBM
transitions is at 0.46 eV and the maximum oscillator strength
transition (at 1.47 eV) is to a resonant state composed of 5d

orbitals of Hf atoms surrounding the Hf∗ atom.

C. Excitons in tetragonal and cubic HfO2

By analogy with the STE in m-HfO2, we have considered
several precursor configurations that were expected to favor
localization of the electron and hole at neighboring Hf and O
sites. However, subsequent full geometry relaxation restored
the perfect lattice and a delocalized exciton state, indicating
that geometrical configurations of the STEs in c- and t-HfO2

are qualitatively different from that in m-HfO2. Indeed, after
further search, we found that in a stable STE configuration
in t-HfO2, the electron is localized by about 73% on one
Hf atom (Hf*) but the hole is distributed between two
oxygen atoms at the next-nearest-neighbor sites with respect
to Hf*, with populations of 52% and 40%, respectively (see
Fig. 6). This STE configuration stems most likely from the
higher dielectric constant of the tetragonal phase (41 in our
calculations), which increases the lattice polarization due to
the electron and hole separation and screens the electron-hole
interaction. For comparison, the dielectric constant of m-HfO2

is only 15–25,22,32 resulting in the stronger electron-hole
attraction. The atomic displacements in this configuration
are of the order of 0.1 Å, which is comparable to those in
m-HfO2, but the radius of the exciton is larger. As a result,
the luminescence energy is smaller than in m-HfO2 (see

FIG. 6. (Color online) Surface of the constant spin density with
value S = 0.05 calculated for the triplet STE in t-HfO2.

Table IV). The characteristics of the gap states A and B are sim-
ilar to those found in m-HfO2, but the B state splitting is larger
than that in m-HfO2 by 1.2 eV; it also has a slightly larger dis-
persion due to the interaction between more delocalized holes.

In the cubic phase, the STE also self-traps, so that the hole
and electron components are localized at the next-nearest-
neighbor sites, with the similar Mulliken populations (73% of
the electron on Hf and 42% and 50% on each oxygen). Again,
a large dielectric constant, of about 31 in our calculations, may
be responsible for this arrangement of the hole and the electron.
The relatively large dispersion of the B state (>0.3 eV)
indicates that it is more delocalized than analogous states in
the m-HfO2 and t-HfO2. Finally, the calculated luminescence
energy is the smallest among the three HfO2 polymorphs due
to the large lattice relaxation (see Table IV).

D. Excitons in HfSiO4

Our calculations predict the existence of two types of
self-trapped excitons in HfSiO4 due to the presence of the
two cation sublattices in this crystal. In one of them, denoted
STE-Hf [see Figs. 7(a) and 7(c)], the electron is localized on a
Hf atom (Hf∗) with a Mulliken population of 86% and the hole
is localized mainly on a nearest-neighbor O atom (O∗) with
35% population. Approximately 12% of the hole is delocalized
over three other anions bonded to a Si atom next to Hf*. The
STE-induced elongation of the Hf*-O bond is ∼0.1 Å and
other bonds around the Hf ion increase by 0.06 Å on average.

In the second STE, denoted STE-Si [see Figs. 7(b) and
7(d)], the electron is localized on a Si atom (Si∗) and the hole is
localized predominantly (94%) on one of the four surrounding
O atoms (O*). As a result, the Si*-O* bond is elongated by
about 0.4 Å, while the other three Si-O bonds elongate by
about 0.05 Å.

FIG. 7. (Color online) Triplet STE-Hf (top) and STE-Si (bottom)
in HfSiO4. (a) Lattice relaxation in STE-Hf. (b) STE-Hf surface of
the constant spin density. (c) Lattice relaxation in STE-Si. (d) STE-Si
constant spin density surface. Spin density value is 0.01. Changes
of the interatomic distances are shown in Å. Bright, black, and dark
spheres represent Hf, Si, and O atoms, respectively.
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Comparison of the total energies shows that the STE-Hf
is by about 0.2 eV more stable than the STE-Si. This energy
difference results from two main factors. On one hand, the Hf
states dominate the lower part of the conduction band, while
the Si states only become predominant at about 3 eV above
the CBM. However, this 3 eV difference is offset by the larger
relaxation in the STE-Si.

We did not manage to obtain a solution for the perfect
lattice triplet state in which the electron and the hole would be
delocalized. Therefore we can only provide a lower bound for
the Ee and El of the system. Despite underestimating the values
of Ee and El , both of them are larger than their counterparts
in m-HfO2 (see Table IV). This is attributed to the larger band
gap in this system than in any of the HfO2 phases.

In the case of STE-Hf, the hole state (state B in Fig. 4)
exhibits a larger splitting than that found for the HfO2

polymorphs (see Table III), which is attributed to the effect of
flexible SiO4 structural elements. The splitting of the electron
state (state A) is similar to that found in HfO2 as it is dominated
by the 5d states of Hf∗.

In the case of STE-Si, the B state is split from the VBM
by a slightly lower energy than in SiO2. Interestingly, this
splitting is similar to that found for the hole state in t-HfO2

and c-HfO2, most likely due to the similar character of the hole
redistribution over more than one oxygen atom. The electron
state A has a large dispersion. Since it is formed by 3s and 3p

states of Si∗, we have also calculated its splitting � from the
Si conduction subband. The magnitude this splitting is about
6.8 eV, which is similar to the splitting of the electron level in
the STE states of SiO2 discussed above.

The presence of the two excitons in HfSiO4 suggests that
exciton transfer may take place between the Si and the Hf
sites via an adiabatic hopping mechanism. Using the linear
interpolation procedure, we found a 0.5 eV barrier energy for
the transfer from the STE-Si to the STE-Hf, and 0.7 eV for
the opposite process. These barriers are not as large as the
ones found in quartz due to the smaller extent of the lattice
relaxation induced by the HfSiO4 excitons.

The 2 × 1 × 1 supercell of HfSiO4 used in these calcula-
tions provides a separation of only 6.0 Å between STEs in the
c direction. In order to examine whether using this relatively
small supercell could induce any artefacts, we calculated the
STE-Hf state in a 2 × 2 × 2 supercell including 192 atoms
and found the same character of spin localization and lattice
relaxation for the exciton state. This suggests that the 2 × 1 × 1
supercell is sufficient for calculations of the HfSiO4 STE states.

V. CONCLUSIONS

We used periodic and embedded cluster DFT calculations
and the nonlocal density functional B3LYP to study the
structure and properties of triplet excitons in α-quartz, HfO2,
and HfSiO4. Unlike in previous calculations, we obtained two

configurations for the triplet STE in α quartz corresponding
to breaking the so-called short and long Si-O bonds. Both
configurations induce large lattice distortions in the vicinity of
the exciton. We demonstrate that this distortion strongly affects
the electronic structure of the STE and its photoluminescence
energy and cannot be treated properly in relatively small (less
than 72 atoms) periodic cells and clusters. The calculated
luminescence energies are broadly similar to the published
experimental values.

We predict the existence of self-trapped triplet exciton states
in HfO2 and HfSiO4. The character of the hole and electron
localization in HfO2 strongly depends on the symmetry and
the dielectric properties of the lattice. In the monoclinic
phase having the lower dielectric constants, the hole and
the electron are localized predominantly on a single three-
coordinated oxygen and the nearest-neighbor single hafnium
atom, respectively. In the tetragonal and cubic phases, the hole
is distributed over the two nearest-neighbor oxygen atoms,
while the electron is localized on one hafnium atom at a
next-nearest-neighbor site with respect to the hole. The STE
luminescence energy predicted in m-HfO2 is close to that
attributed to STE in experimental studies,18,19 which lends
some support to the existence of the STE in this material.

For HfSiO4, we predict the existence of two different triplet
STE configurations with two distinct luminescence energies.
In one of them, the electron is localized on an Hf atom, whereas
the hole is delocalized over the four oxygen atoms. In the other
one, the electron is localized on a Si atom whereas the hole is
strongly localized on the nearest-neighbor O atom.

It is interesting to note the charge transfer character of
all STE models obtained in this work. The models and
photoluminescence energies predicted for HfSiO4 are in a
qualitative and even semiquantitative agreement with those
discussed for triplet STE in Be2SiO4 and more complex sili-
cates in Ref. 4. More generally, these results shed light on the
processes and models of localization of electronic excitations
in low-symmetry complex oxides with different structures and
dielectric constants, which have been discussed recently in
the context of new scintillators as well as microelectronic
devices.4,23,64,65
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