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Elastic constants of solid 4He under pressure: Diffusion Monte Carlo study
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We study the elasticity of perfect solid 4He at zero temperature using the diffusion Monte Carlo method and a
realistic semiempirical pairwise potential to describe the He-He interactions. We calculate the value of the elastic
constants of hcp helium {Cij } as a function of pressure from zero up to ∼110 bar. It is found that the pressure
dependence of all nonzero elastic constants is linearly increasing and we provide accurate parametrization of each
of them. Our Cij results are compared to previous variational calculations and low-temperature measurements
and, in general, we find notably good agreement among them. Furthermore, we report results for the Grüneisen
parameters, sound velocities, and Debye temperature over a wide range of pressures. This work represents a
comprehensive quantum atomistic calculation of the elastic properties of solid helium under compression.
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I. INTRODUCTION

The behavior of solid 4He and of quantum crystals in
general (e.g., H2 and Ne) is exceptionally so rich that, despite
having been investigated for more than about eight decades,
it is to this day not yet completely understood. One example
of helium’s intriguing nature is its elasticity. Experimental
studies on the elastic properties of hcp 4He were already
conducted by Wanner, Crepeau, and Greywall in the early
1970s.1–3 Those original works consisted of a series of
sound-velocity measurements performed at thermodynamic
conditions relatively close to the stability domain of the liquid,
namely, T ∼ 1 K and 25 � P � 50 bar. With the advance
of cryogenic technology and crystal growth techniques, it is
now possible to analyze practically defect-free 4He samples
at just a few mK in the laboratory. Recently, Beamish and
collaborators have developed an experimental technique that
has allowed them to measure directly the shear modulus μ

of hcp 4He under extremely low strains and frequencies.4,5

The temperature dependence of μ within the temperature
interval 0.01 � T � 0.5 K has been determined, and a strik-
ing resemblance with nonclassical rotational inertia (NCRI)
data obtained in torsional oscillator experiments6,7 has been
unraveled. Specifically, the value of the NCRI and shear
modulus increases, respectively, about 1–10% and 2% as the
temperature is lowered down to 0.01 K. While the findings
of Beamish et al. have been initially explained in terms of
pinning (unpinning) of dislocations induced by the presence
of static (mobile) 3He impurities,4,8–10 it remains to be clarified
whether the cited experimental similarities must be regarded
simply as coincidental or are in fact related to the onset of
supersolidity.11–13

Simulation techniques have been demonstrated as invalu-
able tools for predicting and accurately characterizing the
energetic and structural properties of quantum solids.14–22

Nevertheless, computational studies on the elasticity of solid
4He are sparse to date. To the best of our knowledge, there
exist only two recent works in which the shear modulus
of solid helium has been explicitly calculated from first
principles.23,24 This computational scarcity strongly contrasts

with research done in other fields such as classical solid-
state theory or high-pressure physics, where estimation of
the elastic properties of materials (e.g., strain-stress tensor,
Grüneisen parameters, vibrational phonon frequencies, etc.)
is a standard.25–28 The likely explanation for such a contrast
(aside from no particular interest in the matter prior to the
findings of Beamish et al.4,5) are the difficulties encountered
in modeling of bosonic quantum effects, namely, atomic
exchanges and anharmonicity. These quantum atomic effects
are indeed crucial to comprehend the physical nature of solid
4He at low temperatures and, as a matter of fact, they can
not be reproduced correctly within customary quasiharmonic
approaches.29–31

In this work, we present a computational study of the
elastic properties of perfect (e.g., free of defects) solid 4He
in the hcp structure based on the diffusion Monte Carlo
approach. This study is intended to improve our understanding
of the response of solid helium to external strain at zero
temperature, and further extends the work initiated by Pessoa
et al.23 In particular, we provide the dependence of helium
elastic constants and related quantities (e.g., sound velocities,
Grüneisen parameters, and Debye temperature) on pressure
up to ∼110 bar. This is a significantly higher pressure than
previously considered both experimentally and theoretically.
Our results are compared to experimental data and other
calculations when available and, as it will be shown later
on, good agreement is generally found among them. The
computational method that we employ is fully quantum
and virtually exact, that is, in principle only affected by
statistical uncertainties. In this sense, our work also represents
an improvement with respect to previous first-principles
work23 based on variational Monte Carlo calculations (i.e.,
subject to bias stemming from the choice of the trial wave
function).

The remainder of this paper is structured as follows. In
Sec. II, we review the basics of elasticity in hcp crystals and
provide the details of our computational methodology. In the
following section, we present our results along with some
discussions. Finally, we summarize the main conclusions and
comment on prospective work in Sec. IV.
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II. THEORY AND COMPUTATIONAL DETAILS

A. Elastic constants

For small strains, the zero-temperature energy of a crystal
can be expressed as

E = E0 + 1

2
V0

6∑
i,j=1

Cij sisj , (1)

where V0 and E0 are the volume and internal energy of
the undistorted solid, {Cij } the elastic constants, and {si}
the strain components defined such that s1, s2, and s3 are
fractional increases in the x, y, and z directed axes, and s4,
s5, and s6 angular increases of the xy, xz, and yz angles.32–34

The symmetry properties of the crystal under consideration
define the number of elastic constants that are nonzero. In
hcp crystals, this number reduces to five, namely, C11, C12,
C33, C13, and C44, where C44 is commonly known as the
shear modulus.35 In order to calculate these nonzero elastic
constants, it is necessary to compute the second derivative of
the internal energy of the crystal with respect to the strain
tensor σij . For this, the hcp crystal must be considered in
hexagonal symmetry, that is, expressed in terms of its unit
cell with primitive translational vectors a1 = a(+ 1

2 i +
√

3
2 j),

a2 = a(− 1
2 i +

√
3

2 j), and a3 = ck (where a and c are the lattice
parameters in the basal plane and along the z axis, respectively,
and i, j, and k correspond to the usual unitary Cartesian
vectors), and two-atom basis set r1 = 1

3 a1 − 2
3 a2 + 1

4 a3 and
r2 = 2

3 a1 − 1
3 a2 + 3

4 a3 (see Fig. 1).
The relationships between strain and the elastic constants

{Cij } in a hcp crystal were determined in the past within the
framework of elasticity theory. These are32–34

K = −V

(
∂P

∂V

)
V =V0

= C33(C11 + C12) − 2C2
13

C0
(2)

FIG. 1. (Color online) (a) Representation of the hcp unit cell with
primitive translational vectors a1, a2, and a3, and two-atom basis
set (see text). (b) Sketch of the 200-atom supercell used in the pure
shear calculations, which is built in by replicating the hcp unit cell
5 × 5 × 4 times along the primitive translational vectors a1, a2, and
a3, respectively.

and

−V

(
∂ ln c/a

∂V

)
V =V0

= C33 − C11 − C12 + C13

C0
, (3)

with

C0 = C11 + C12 + 2C33 − 4C13. (4)

In addition, one defines

C66 = 1
2 (C11 − C12) (5)

and C44.
Equations (2) and (3) correspond to homogeneous strains

that change the volume and shape of the hcp unit cell. The
dependence of pressure P and c/a ratio on volume can be
readily obtained from standard equation-of-state calculations.
On the other hand, quantities C0, C66, and C44 represent the
response of the crystal to heterogeneous strains that keep the
volume of the hcp unit cell fixed. In order to calculate the value
of these pure shears, it is necessary to compute the variation of
the internal energy of the equilibrium structures with respect to
certain crystal deformations. These crystal deformations can
be expressed as transformed primitive translational vectors,34

which in the C0 case are

a1
0 = aφ−1

(
+1

2
i +

√
3

2
j

)
,

a2
0 = aφ−1

(
−1

2
i +

√
3

2
j

)
, (6)

a3
0 = cφ2k,

where φ = (1 + η)1/2 is a dimensionless parameter and C0 =
2
V0

( ∂2E
∂η2 )V =V0 (the equilibrium condition is satisfied at η = 0).

For C66, we have

a1
66 = aγ 1/2

(
+1

2
i + γ −1

√
3

2
j

)
,

a2
66 = aγ 1/2

(
−1

2
i + γ −1

√
3

2
j

)
, (7)

a3
66 = ck,

where γ is also a dimensionless parameter and C66 =
1
V0

( ∂2E
∂γ 2 )V =V0 (the equilibrium condition is now satisfied at

γ = 1). And finally, for C44,

a1
44 = a

(
+1

2
i +

√
3

2
j + ε

2
k

)
,

a2
44 = a

(
−1

2
i +

√
3

2
j − ε

2
k

)
, (8)

a3
44 = ck,

where again a dimensionless parameter ε is introduced and
C44 = 1

V0
( ∂2E

∂ε2 )V =V0 (the equilibrium condition corresponds to
ε = 0).

Once the value of the bulk modulus K and quantities
∂ ln (c/a)/∂V , C0, C66, and C44 are determined, one can
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calculate the corresponding Cij �= 0 hcp elastic constants
straightforwardly by solving the nonlinear system of equations
defined by Eqs. (2)–(5).

B. Diffusion Monte Carlo

The grounds of the diffusion Monte Carlo (DMC) method
have been reviewed with detail in other works,36–39 so we
recall here only the essential ideas. In the DMC approach, the
time-dependent Schrödinger equation of a quantum system of
N interacting particles is solved stochastically by simulating
the time evolution of the Green’s function propagator e− i

h̄
Ĥ t

in imaginary time τ ≡ it
h̄

. For τ → ∞, sets of configurations
(walkers) {Ri ≡ r1, . . . ,rN } rendering the probability distri-
bution function (	0	) are generated, where 	0 is the true
ground-state wave function of the system and 	 the trial
wave function used for importance sampling. Within DMC,
virtually exact results (i.e., subject to statistical uncertainties
only) are obtained for the total ground-state energy and
related quantities of bosonic quantum systems.40–42 It is worth
noticing that despite the fact that asymptotic DMC values
do not depend on the choice of the trial wave function,
the algorithmic efficiency is greatly affected by the quality
of 	.

We are interested in studying the ground state of perfect
hcp 4He, which we assume to be governed by the Hamiltonian
H = − h̄2

2mHe

∑N
i=1 ∇2

i + ∑N
i<j VHe-He(rij ), where mHe is the

mass of a 4He atom, N the number of particles, and VHe-He

the semiempirical pairwise potential due to Aziz et al.43

It is worth noting that this two-body potential provides an
excellent description of the He-He interactions, including
weak long-ranged van der Waals forces, over all the pressure
ranges considered in this work.17,44

The trial wave function that we use for importance sampling
	SNJ simultaneously reproduces crystal ordering and Bose-
Einstein symmetry45 (that is, remains unchanged under the
permutation of atoms). This model wave function was recently
introduced in Ref. 46 and it reads

	SNJ(r1, . . . ,rN ) =
N∏

i<j

f (rij )
N∏

J=1

(
N∑

i=1

g(riJ )

)
, (9)

where the index in the second product runs over perfect
lattice position vectors (sites). In previous works, we have
shown that 	SNJ provides an excellent description of the
ground-state properties of bulk hcp 4He (Ref. 46) and quan-
tum solid films.18,22,47 The key ingredient for this progress
is the 	SNJ localization factor [second term in Eq. (9)],
which is constructed in such a way that voids originated
by multiple occupancy of a same site are energetically
penalized. Correlation functions in Eq. (9) were adopted
in the McMillan f (r) = exp[−1/2(b/r)5] and Gaussian
g(r) = exp[−1/2(ar2)] forms. The value of the parameters
in functions f and g were optimized variationally at density
ρ = 0.480σ−3 (σ = 2.556 Å, b = 1.08σ , and a = 10.10σ−2)
and used in the rest of simulations.

The technical parameters in our calculations were set in
order to ensure convergence of the total energy per particle
to less than 0.02 K/atom. For instance, the value of the mean

population of walkers was 400 and the length of the imaginary
time step (�τ ) 5 × 10−4 K−1. Statistics were accumulated over
105 DMC steps performed after system equilibration, and the
approximation used for the short-time Green’s function e−Ĥ τ

is exact up to order (�τ )2.39,48

C. Computational strategy

In order to work out Eq. (2), we used the bulk modulus
volume dependence reported in Ref. 49, where the equation of
state of hcp 4He was already calculated employing the DMC
method and considering accurate finite-size corrections to the
total energy.17 Prior to this, we performed a series of geometry
optimizations at each volume aimed at determining the value
of the corresponding equilibrium c/a ratio (that is, the one that
minimizes the ground-state energy). We found that regardless
of the pressure considered, the optimal c/a value was always
1.63(1) (so that the equation of state reported in Ref. 49
could be used for our present purposes without any concern;
we also note that our optimal c/a ratio result is consistent
with previous first-principles calculations performed by other
authors50). Consequently, the left-hand side of Eq. (3) vanishes
and the solution to the system of equations defined by (2)–(5)
reduces to

C11 = K + C66 + 1
18C0,

C12 = K − C66 + 1
18C0,

(10)
C13 = K − 1

9C0,

C33 = K + 2
9C0.

The simulation box used in our pure shear calculations
contains 200 4He atoms and was generated by replicating
the hcp unit cell five times along the a1 and a2 direc-
tions, and four times along the c axis (see Fig. 1). In
proceeding so, hexagonal symmetry in our supercell cal-
culations is guaranteed by construction. Periodic bound-
ary conditions were imposed across the three directions
defined by the edges of the nonorthorhombic simulation
box.

The value of the second derivatives involved in the
computation of the elastic constants were obtained following
the next strategy. For each volume and pure shear consid-
ered, first we calculated the total energy per particle in a
series of supercells generated by incrementally distorting the
equilibrium geometry according to the translational lattice
vectors (6)–(8). Up to eight different and equally spaced
shear increments were considered for each volume, taking
both positive and negative values within the intervals −0.15 �
ε � 0.15, −0.10 � γ − 1.0 � 0.10, and −0.20 � η � 0.20.
Subsequently, the series of shear-dependent total energies so
obtained were fitted to a third-order polynomial function of
the form f (x) = a + bx2 + cx3 (we note that second-order
polynomial curves provided identical elastic constants results
to which we are going to present next). In all the cases, we
found that the optimal a, b, and c values reproduced the series
of calculated total energies per particle within their statistical
errors (see Fig. 2). In the calculations involving pure shear
strains, the volume of the cell was kept constant by construction
[see Eqs. (6)–(8)]. Therefore, performing the correction due
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FIG. 2. Energy per particle results obtained by varying the degree
of shear stress, as defined in Eq. (8), in perfect hcp 4He at density ρ =
0.480σ−3. The equilibrium value corresponding to the undistorted hcp
structure is found at ε = 0 and the solid line represents a third-order
polynomial fit to the energies. Statistical uncertainties in the energies
are represented with error bars.

to finite size of the system was not necessary, as it would
not affect the second derivatives used for the computation of
the elastic constants. We shall stress that this is not the case
in bulk modulus and ∂ ln (c/a)/∂V calculations where the
volume of the simulation cell is varied and, consequently,
accurate energy corrections for the finite-size effects are
required.

III. RESULTS AND DISCUSSIONS

A. Elastic constants

In Figs. 3, 4, and 5, we show the pressure dependence of
the five elastic constants of perfect hcp 4He as obtained in our
calculations. The error bars δCij in our results, stemming from
both statistical uncertainties in the energies and corresponding
third-order polynomial fits, typically amount to δCij /Cij ∼
2%. We found that the pressure variation of all nonzero elastic
constants is monotonically increasing and practically linear
within all the studied range. Consequently, we performed fits of
the Cij (P ) = aij + bijP form to our results (see Figs. 3, 4, and
5) and report the value of the resulting aij and bij coefficients in
Table I. It is observed that the most sensitive elastic constant to
pressure changes is C33, whereas C44 is the least (see bij values
in Table I). We checked that our results fulfill the requirements
of mechanical stability in hcp crystals under arbritary pressure,
namely, 0 � Cij , 0 � C11 − C12, 0 � C11 + C33 − 2C13, and
0 � 2C11 + C33 + 2C12 − 4C13.33 Also, we note that the
mechanical stability of the hcp phase is further enhanced with
compression as shown by the monotonic increasing behavior
of all calculated Cij ’s.

Comparison between our DMC calculations, previous
variational Monte Carlo (VMC) results, and experimental data
is also provided in Figs. 3–5. VMC results reported at P ∼
34 bar23 have been obtained by Pessoa et al. using a shadow
wave-function model (SWF).51 This type of trial wave function
correctly accounts for the atomic Bose-Einstein statistics, is
translationally invariant, and so far it has yielded the most
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FIG. 3. Zero-temperature C11 and C12 elastic constants of perfect
hcp 4He as a function of pressure. Previous variational Monte Carlo
(VMC) calculations (Ref. 23) and experimental data (Refs. 2 and 3)
are shown for comparison. The vertical dotted line represents the
zero-temperature freezing pressure of 4He and the straight dashed
lines are linear fits to the DMC results (see text).

accurate variational description of solid helium.52 Arguably,
Pessoa’s VMC predictions are in fairly good agreement
with our DMC results since in general relation |CVMC

ij −
CDMC

ij |/CDMC
ij � 10% is fulfilled with the only exception of

C12 (in that case, however, measurements appear to follow
closely to our results). Recalling that evaluation of Cij ’s
requires the computation of the total energy second derivatives,
it can be said that the satisfactory DMC-VMC agreement found
further corroborates the excellent variational quality of the
SWF model.

Regarding the experimental data taken from Refs. 2 and 3,
we also find good agreement (see Figs. 3–5). The sound-
velocity measurements performed by Crepeau and Greywall
involved high-quality single helium crystals, the basal plane
orientations of which were accurately determined using
x rays. Consequently, our modest discrepancies with Crepeau
and Greywall’s data are very likely to be originated by
remanent crystal defects and thermal excitations (we recall
that the temperature in those experiments was ∼1 K). We note
that our C44 results also reproduce closely recent 4He shear
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FIG. 4. Zero-temperature C13 and C44 elastic constants of perfect
hcp 4He as a function of pressure. Previous variational Monte Carlo
(VMC) calculations (Ref. 23) and experimental data (Refs. 2, 3,
and 5) are shown for comparison. The vertical dotted line represents
the zero-temperature freezing pressure of 4He and the straight dashed
lines are linear fits to the DMC results (see text).

modulus measurements performed by Beamish et al.4,5 (see
Fig. 4). In Sec. III B, we will comment again on the possible
origins of the small discrepancies found with experiments,
however, it can be already claimed that the manifested overall
good agreement between our Cij calculations and 30 � P �
60 bar experiments appears to endorse the reliability of our
computational approach.

Another quantity of interest in the study of crystal elasticity
is the Grüneisen parameter γ̂ . This parameter quantifies
how atomic vibrations in a crystal are affected by changes
in volume and customarily is defined as γ̂ = (V/Cv)βK ,
where Cv stands for the specific heat and β for the thermal
expansion coefficient. However, this definition is not practical
for low-temperature calculations since in general quantities
Cv and β tend to zero similarly near T = 0, thus leading
to large numerical errors. Alternatively, Klein et al.53 de-
rived a Grüneisen parameter expression that is valid in the
zero-temperature limit and that depends on the individual
vibrational frequency modes. Specifically, Klein’s expression
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FIG. 5. (a) Zero-temperature C33 elastic constant of perfect hcp
4He as a function of pressure. A previous variational Monte Carlo
(VMC) calculation (Ref. 23) and experimental data (Refs. 2 and 3)
are shown for comparison. The vertical dotted line represents the
zero-temperature freezing pressure of 4He and the straight dashed
line is a linear fit to the DMC results (see text). (b) Dependence
of the C33 elastic constant on volume. The dashed line represents
a power-law fit to the DMC results from which the value of the
corresponding Grüneisen parameter is obtained (see text).

can be reformulated in terms of the elastic constants as3

γij = −1

2

∂ ln Cij

∂ ln V
− 1

6
. (11)

According to this formula, the volume dependence of each Cij

elastic constant can be fitted to a function of the form

Cij (V ) = A

(
V

V0

)−( 1
3 +2γij )

, (12)

TABLE I. Value of the parameters obtained in the linear fits to
our Cij (P ) results (see text). Typical aij (expressed in units of bar)
and bij (dimensionless) uncertainties amount to 1%.

C11 C12 C13 C33 C44

aij 314.26 57.45 23.59 349.22 92.19
bij 9.05 5.44 3.97 10.49 1.83
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from which one can readily extract the value of the corre-
sponding γij parameter. We proceeded in this way using the
Cij results obtained in our 0 � P � 110 bar simulations (see
Fig. 5) and got γ11 = 2.34(5), γ12 = 3.69(5), γ13 = 4.23(5),
γ33 = 2.70(5), and γ44 = 1.91(5), where the numerical un-
certainties are expressed within parentheses. The averaged
Grüneisen parameter γ̂ = 1

5

∑
γij corresponding to our results

is 2.67(5), where the summation runs over indexes 11, 12,
33, 44, and 66 (γ66 = 2.70 as obtained from C66) since
the respective elastic constants are the quantities that are
directly measured in sound-velocity experiments.3 Our γ̂ value
compares very well with Greywall’s experimental result of 2.7.
We must note, however, that in our calculations the differences
|γij − γ̂ | are in general nonzero. It is worth comparing
the value of the zero-temperature Grüneisen parameter of
solid 4He to that of other rare-gas species. We know from
Ref. 54 that γ̂ is 2.5 in Ne, 2.7 in Ar, 2.7 in Kr, and
2.5 in Xe. Consequently, the elastic constants of all five
noble gases will vary very similarly upon a same change of
volume. The same conclusion, however, does not apply to
pressure since the corresponding bulk moduli are appreciably
different.

In order to quantify the importance of quantum effects in
our study, we computed the contribution of the potential and ki-
netic energies to the shear modulus (Cp

44 and Ck
44, respectively).

For this, we carried out simulations at density ρ = 0.480σ−2 in
which the exact value of the second derivative of the potential
energy Ep with respect to strain was calculated using the pure
estimator technique.42 The kinetic energy contribution to the
shear modulus Ck

44 was subsequently obtained by subtracting
the quantity C

p

44 = 1
V0

( ∂2Ep

∂ε2 )V =V0 to C44. (We checked that the

strain dependence of Ek could also be accurately fitted to a
third-order polynomial function.) In fact, the zero-temperature
Ck

44 value of a classical crystal exactly amounts to zero since
the atoms there remain totally frozen in the perfect lattice
positions (that is, C

p

44 = C44). Even in the case of considering
quasiharmonic zero-point motion corrections to C44, Ck

44 is
not expected to depart significantly from zero. In contrast,
we found that in perfect hcp 4He, C

p

44/C44 amounts to 68%,
or conversely, Ck

44/C44 = 32%. This last result evidences
the quantum nature of helium’s elasticity and demonstrates
the inability of classical and quasiharmonic approaches to
reproduce it.

B. Sound velocities

Sound velocities in solids, either longitudinal or transverse,
depend on the direction of propagation. In crystals with hexag-
onal symmetry, two main propagation modes are identified,
one along the c axis (defined by vector a3 in Sec. II A) and
the other contained within the basal plane (defined by vectors
a1 and a2 in Sec. II A). The relationships between the elastic
constants and sound velocities in hcp crystals are55,56

vL = (C33/ρ)1/2,

vT 1 = (C44/ρ)1/2, (13)

vT 2 = (C44/ρ)1/2
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FIG. 6. Pressure dependence of the longitudinal (L) and transvere
(T ) sound velocities of hcp 4He along its corresponding c axis and
basal plane. vD represents the averaged Debye velocity (see text).
Basal sound-velocity data from Refs. 3 (	), 2 (�), and 1 (�) are
shown for comparison. The vertical dotted line represents the zero-
temperature freezing pressure of 4He.

along the c axis, and

vL = (C11/ρ)1/2,

vT 1 = (C66/ρ)1/2, (14)

vT 2 = (C44/ρ)1/2

within the basal plane.
In Fig. 6, we plot the pressure dependence of the transverse

and longitudinal sound velocities of hcp 4He as obtained from
our Cij results reported in Sec. III A. The error bars in our
results, not shown in the figure, are δvL,T /vL,T ∼ 1%. It is
observed that at compressions far beyond freezing, all sound
velocities increase almost linearly with pressure. In contrast,
the longitudinal c axis and basal components appear to follow
a certain power law within the low-pressure interval 0 � P �
25 bars (metastable regime). Certainly, the nature of the sound
propagation modes in metastable solid 4He, either at positive
or negative pressures, is poorly understood at present in spite
of its fundamental physical interest.57 It is our aim to report
in detail on this topic in the future, so we leave discussions on
this matter out of this work.

Experimental longitudinal and transverse basal sound ve-
locities are shown for comparison in Fig. 6. The agreement
between those measurements and our results is generally good
(in fact, within the same relative margin as reported in the
previous section for the elastic constants). Specifically, our
predicted sound velocities are systematically a bit larger than
those values reported by Wanner,1 Crepeau,2 and Greywall.3

Such a systematic overestimation is consistent with our
previous suggestion that certain thermal effects, not included
in our simulations, could be affecting the experiments. As
a matter of fact, the more a material is softened by effect
of temperature, the slower the sound waves propagate across
it. Aside from thermal effects, residual defects in the crystal
samples such as dislocations could be also contributing to the
observed discrepancies. Seemingly, systematic experimental
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FIG. 7. T = 0 Debye temperature of hcp 4He as a function of
pressure (solid line). Experimental results from Refs. 58 and 59
are shown for comparison. The vertical dotted line represents the
zero-temperature freezing pressure of 4He, and the thickness of the
line corresponds to the uncertainty associated to our calculations
(δ�D/�D ∼ 1%).

uncertainties should not be discarded either. For instance,
Balibar and collaborators10 have recently detected a possible
source of error in experiments involving dilution refrigerators,
which could be biasing estimation of the sound velocities in
high-quality single crystals by as much as 20%. New and
refined low-T sound-velocity measurements in high-quality
4He monocrystals are very much desirable for improving our
present understanding of this system.

In order to provide an additional, and probably more
meaningful, comparison between our zero-temperature results
and experiments, we calculated the T = 0 Debye temperature
of 4He �D . The zero-temperature �D of a crystal can be
easily extrapolated from lattice heat-capacity measurements
performed at low temperatures. Fortunately, results for this
quantity have already been reported for helium in a wide
range of pressures.58,59 The definition of the T = 0 Debye
temperature is

�D = 2πh̄

kB

(
3

4πV

) 1
3

vD, (15)

where V is the volume per atom and vD the Debye velocity.
This velocity is given by

1

v3
D

= 1

3

(
1

v3
L

+ 2
1

v3
T

)
, (16)

where the average velocities vL and vT are defined by

1

v3
L,T

=
〈

1

v3
L,T

〉
, (17)

and the 〈· · · 〉 brackets denote angular averages of the lon-
gitudinal and transverse velocities. In our case, we have
approximated the angular averages in Eq. (17) by

1

v3
L

≈ 1

2

(
1

v3
L,b

)
+ 1

2

(
1

v3
L,c

)
(18)

and

1

v3
T

≈ 1

3

(
1

v3
T 1,b

)
+ 1

3

(
1

v3
T 2,b

)
+ 1

3

(
1

v3
T ,c

)
, (19)

where index b stands for the basal plane and index c for the
c-axis direction.60

In Fig. 7, we plot our results for the zero-temperature �D

of hcp 4He and experimental data taken from Refs. 58 and
59. In fact, very good agreement between the measurements
of Gardner and Ahlers and our calculations is observed.
This last result seems to confirm our previous suggestion
that thermal effects might be affecting the agreement be-
tween our elastic constants’ and sound velocities’ results
and experiments. Finally, we note that the pressure variation
of �D is very similar to that observed in the longitudinal
sound-velocity components of helium, namely, almost lin-
ear at high compressions and of power-law type at lower
densities.

IV. SUMMARY AND PERSPECTIVES

We have developed a fully quantum computational strategy
to accurately calculate the zero-temperature elastic properties
of perfect hcp 4He under pressure, in particular, a complete
set of the elastic constants, sound velocities, Grüneisen
parameters, and the Debye temperature. Our diffusion Monte
Carlo results agree with low-T sound-velocity measurements
and variational first-principles calculations by other authors,
and spans over a much wider pressure range than previously
considered. It is found that all nonzero elastic constants of
helium vary linearly with pressure within the interval 0 �
P � 110 bar, and we have provided accurate parametrization
of each of them. The Grüneisen parameters, sound velocities,
and T = 0 Debye temperature of solid helium have been also
determined and compared to available experimental data. The
computational method introduced in this work is completely
general and can be used to study the elasticity of hcp quantum
solids other than helium-4 (e.g., H2).

It is our aim to analyze in future work the elastic behavior of
4He at negative pressures using the computational technique
described here. In doing this, we expect to be able to
determine its spinodal density limit (that is, the density
at which the elastic constants vanish) rigorously, and also
characterize the pressure dependence of the transverse and
basal sound velocities close to it. Also, we are interested in
applying our formalism to study the ground state of defective
hcp 4He (for instance, by introducing vacancies), where the
supersolid state of matter clearly manifests. In doing this, we
expect to gather quantitative knowledge on the relationship
(if any) between elasticity and supersolidity from a purely
microscopic approach and so to help to understand the origins
of recent shear modulus observations. Work in these directions
is already in progress.
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28M. J. Gillan, D. Alfè, J. P. Brodholt, L. Vocadlo, and G. D. Price,

Rep. Prog. Phys. 69, 2365 (2006).
29S. Baroni, S. de Gironcoli, A. del Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).
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