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The spectroscopy of vortex bound states can provide valuable information on the structure of the
superconducting order parameter. Quasiparticle wave functions are expected to leak out in the directions of
gap minima or nodes, if they exist, and scanning tunneling spectroscopy (STS) on these low-energy states should
probe the momentum dependence of the gap. Anisotropy can also arise from band-structure effects, however. We
perform a quasiclassical calculation of the density of states of a single vortex in an anisotropic superconductor,
and show that if the gap itself is not highly anisotropic, the Fermi-surface anisotropy can dominate, preventing
direct observation of superconducting gap features. This serves as a cautionary message for the analysis of STS
data on the vortex state on Fe-based superconductors, in particular, LiFeAs, which we treat explicitly.
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Introduction. Four years after the discovery of iron-based1,2

high-temperature superconductors, the structure and symme-
try of the gap function are still being debated. There is
considerable experimental evidence that there is no universal
gap shape,3–5 perhaps in part due to the electronic structure
that combines small electron and hole pockets, leading to an
“intrinsic sensitivity”6 to details. It is likely5 that in most
cases the gap has A1g symmetry, which, however, allows a
continuous deformation from a full gap to that with nodes
on the Fermi-surface (FS) sheets. Bulk experimental probes of
the gap structure include specific heat and thermal conductivity
oscillations in an external magnetic field,7,8 performed on the
Fe(Te,Se) system9 and P-doped 122 family,10 respectively.
In both systems the oscillation pattern was found to be
consistent8,10–12 with an anisotropic gap with minima along
the �-X axis (in the unfolded Brillouin zone), as predicted by
spin fluctuation theories (see, e.g., Ref. 5).

The order parameter structure is also reflected in the
local properties of inhomogeneous superconducting states.
Inhomogeneities may arise due to impurities, and the resulting
quasibound states in nodal superconductors have tails that
“leak out” in the nodal directions,13 providing a signature of the
amplitude modulation of the gap. The interpretation of these
impurity states is complex: Disorder potentials can be of the
order of electron volts, and hence relatively high-energy pro-
cesses control the formation of such states, as well as their con-
tribution to scanning tunneling spectroscopy (STS) images.14

Under an applied magnetic field, inhomogeneous supercon-
ductivity arises due to modulation of the order parameter in
a vortex lattice, and bound states localized around the vortex
cores appear. In this case, relevant energy scales are of the
order of the gap or lower and the bound-state properties are
determined by the shape of the gap and the band features near
the Fermi surface. The decay length of the core states is of
order of ξBCS = vF /π�, where vF is the Fermi velocity and
� is the gap amplitude. Consequently, variation of the gap
with direction k̂ at the FS, �(̂k) �= const, directly influences
the shape of the core states in real space, leading to the “tails”
extending along nodes or minima. Since the decay of these
states is exponential in distance ρ from the center of the vortex

(except along true nodes where it follows power laws), these
tails are very clearly seen in local measurements, and can be
used to probe the gap shape.15 The difficulties in interpretation
exist in cuprates, where the coherence length is short and the
cores may nucleate competing order (see, e.g., Ref. 16), but
in most Fe-based superconductors (FeSC) these complications
are less severe or absent over a wide range of experimentally
tunable parameters.

On the other hand, a complex aspect of these latter systems
arises due to their multiband nature. The directional depen-
dence vF (̂k) also affects the decay length of the core states,
especially when combined with different gap amplitudes on
different Fermi-surface sheets. In FeSC, the Fermi surface
typically consists of two or three hole pockets and two electron
pockets, as represented in the Brillouin zone corresponding to
1-Fe unit cell (see Fig. 1). The size and shape of these pockets
varies considerably from family to family. A natural question
is whether it is the normal-state band structure and the Fermi
surface, or the order parameter shape that determine the salient
features of the vortex core states as seen in experiment, and
whether one can draw reliable conclusions about the directions
of the gap nodes or minima based on the real-space structure
of these states. This is the question we address in the current
Rapid Communication.

The competition between the two effects has been explored
numerically. For example, the sixfold pattern observed in
2H-NbSe2 core states17 can be explained either by assuming a
weak gap anisotropy or by using the angle-dependent density
of states (DOS) around the Fermi surface.18 In pnictides it was
argued both that the vortex core states are controlled by the
order parameter shape19 and that the location of the peak in
the DOS is determined by the proximity to the band edge in
the electron or hole bands.20 To gain qualitative insight into
this issue we consider a simple model with both the order
parameter and band anisotropy characteristic of the Fe-based
superconductors, and find that, in the absence of strong nodes,
the Fermi velocity anisotropy can dominate the real-space
shape of the vortex core states. These states have been observed
in STS experiments,21 albeit without the spatial resolution
necessary to analyze the order parameter structure.
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FIG. 1. (Color online) (a) Fermi surface of stoichiometric LiFeAs
at kz = 0 in the unfolded 1-Fe “effective” Brillouin zone from DFT.
The Fermi velocities for different sheets are indicated by the arrows
pointing to the higher E(k). We label two inner hole pockets α1,α2,
one outer hole pocket γ , and two electron pockets β1,β2. (b) The
Fermi velocity direction θvF

vs the momentum k azimuthal angle θ

for the LiFeAs γ pocket and the circular Fermi surface (shown as
insets).

We focus on the LiFeAs system, which is ideal for STS
measurements due to its nonpolar surfaces. According to
density functional theory (DFT) calculations,22 the Fermi
surface of this material has three hole pockets and two electron
pockets, (see Fig. 1). The outer hole pocket is large and quite
square, according to both DFT results and angle-resolved
photoemission spectroscopy (ARPES)23 and de Haas–van
Alphen (dHvA)24 measurements. Both γ and α2 pockets have
small Fermi velocities and therefore large normal-state DOS.
ARPES has identified superconducting leading edge gaps
of order 1.5–2 meV for the hole pockets, and 3 meV for
the electron pockets.23 The London penetration depth data25

and specific-heat measurements26 ruled out the existence of
gap nodes and were fit to models with two isotropic gaps
with (�1,�2) � (3 meV,1.5 meV) and (2 meV,0.5 meV),
respectively. This suggests moderate gap anisotropy, which
is not easily detected by the bulk measurements, but can
substantially affect the real-space structure of the core
states.

For circular Fermi surfaces the low-energy core bound
states extend furthest in the direction of the smallest gap,
but for realistic bands the Fermi velocity anisotropy plays
a significant role. Since the cross sections of the β1 and β2

electron pockets rotate by a full 180◦ along the kz direction,
and since these gaps are larger, it is unlikely that these sheets
contribute substantially to the spatial anisotropy. We therefore
focus on the possible anisotropy of the gap on the hole Fermi
surfaces. The most likely candidate for the anisotropic gap
that dominates the low-energy vortex bound states is the
γ pocket. The orbital content of this pocket is exclusively
dxy , and it couples only weakly to the primarily dxz and dyz

electron pockets, which provide the main pairing weight in
the conventional spin fluctuation approach.5 It is also nearly
square, with weakly dispersive parallel surfaces oriented along
the [110] direction in the 1-Fe zone, and with significant
variations of the Fermi velocity between the [100] and [110]
directions. Hence we first neglect other FS sheets, and contrast
the results obtained for the γ sheet alone with those for a single
circular FS.

Model. We follow the approach of Ref. 27 that relied
on the quasiclassical method for superconductivity,28–30 used
previously to study vortex cores.31 The energy-integrated
normal and anomalous Green’s functions g(r,θ,iωn) and
f (r,θ,iωn) obey the coupled Eilenberger equations[

2

(
iωn + e

c
vF · A(r)

)
+ ih̄vF · ∇

]
f (r,θ,iωn)

= 2ig(r,θ,iωn)�(r,θ ), (1a)[
2

(
iωn + e

c
vF · A(r)

)
− ih̄vF · ∇

]
f̄ (r,θ,iωn)

= 2ig(r,θ,iωn)�∗(r,θ ), (1b)

together with the normalization condition g2 + f f̄ = 1. Here
A(r) is the vector potential, vF is the Fermi velocity at
the location at the Fermi surface labeled by θ , and ωn =
(2n + 1)πkBT are fermionic Matsubara frequencies. The
Fermi velocity vF (θ ) is along the two-dimensional (2D) unit
vector k̂ for the circular Fermi surface, and is computed
for the γ band in LiFeAs using the Quantum ESPRESSO

package,32 as in Ref. 33. In the low-field regime, we consider
the problem of an isolated vortex and assume a separable
momentum and coordinate dependence of the order parameter
�(ρ,̂k) = �0�(θ ) tanh(ρ/ηrξ0), where �0 is the bulk gap
value in the absence of the field and �(θ ) describes the
gap shape on the Fermi surface, �s = 1, �d = √

2 cos 2θ ,
and �s,ani = (1 − r cos 4θ )/

√
1 + r2/2 with r = 0.3, for the

isotropic s-wave, nodal d-wave, and extended s-wave gaps,
respectively.34,35 The coherence length is ξ0 = h̄vF,rms/�0,
where vF,rms =

√
〈|vF (̂k)|2〉FS, and the angle brackets 〈· · ·〉FS

denote the normalized average over the Fermi surface,

〈· · ·〉FS = 1

N

∮
FS

dk‖
|vF (̂k)| · · · =

∫ 2π

0

dθ

2π
ρ̃(θ ) · · · , (2)

where N ≡ ∮
FS

dk‖
|vF (̂k)| and ρ̃(θ ) is the angle-dependent density

of states. The factor ηr accounts for the shrinking of core
size at low temperature (Kramer-Pesch effect36,37), and we set
ηr = 0.1 corresponding to T ∼ 0.1Tc. In a fully self-consistent
calculation the gap anisotropy in momentum space will induce
weak core anisotropy in real space,38 which we ignore here
since the effect is small even for nodal systems.38

We solve Eq. (1) using the Riccati parametrization39 and in-
tegrating along classical trajectories r(x) = r0 + xv̂F to obtain
the functions g and f at Matsubara frequencies. The local DOS
(LDOS) is found after analytic continuation from the retarded
propagators N (r,ω) = N0〈Re gR(kF ,r,ω + iδ)〉FS. At each
point r = (ρ,φ) the LDOS is obtained by summation over the
quasiclassical trajectories passing through r. Each trajectory
follows the direction of the Fermi velocity at a given point on
the FS, v̂F (̂k), and samples the gap �(r(x),̂k). The trajectories
that sample regions of small order parameter contribute to the
low-energy LDOS. This occurs if the trajectory either passes in
the vicinity of the core where the order parameter is suppressed
in real space, �(ρ) � �0 (small impact parameter, dominant
for isotropic gaps), or is along the direction where the gap has
a node or a deep minimum in momentum space, �(̂k) � �0

(dominant for nodal superconductivity).
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The influence of the FS shape is then clear: The number
of trajectories with a given impact parameter depends on the
band structure. Denote the angle between v̂F and kx axis as θvF

.
For a circular FS, θvF

= θ , and quasiclassical trajectories in
different directions θvF

are equally weighted in FS averaging.
In contrast, for anisotropic cases, such as the square γ sheet in
LiFeAs, large parts of the FS have the vF along the diagonals
[see Fig. 1(b)], and therefore the average over the trajectories
is heavily weighted toward that direction as well.

For an isotropic gap �(̂k) = const, the largest contribution
to the low-energy LDOS at r = (ρ,φ) comes from the
trajectories passing through the core, θvF

= φorφ + π . For
a cylindrical FS parameterized by angle θ this corresponds
to two points since θvF

= θ . On an anisotropic FS, such as
the γ pocket in LiFeAs, many different momentum angles
θ correspond to θvF

≈ ±π
4 , and quasiparticles from a large

portion of the FS travel along these directions. For real-space
direction φ = π

4 , all these trajectories sample the core region
and contribute to the low-energy LDOS. For φ away from these
directions these trajectories have a nonzero impact parameter
and therefore small weight at low energies. For the extended
s-wave gap model with r > 0 in the form factor �s,ani, this
implies that the regions of large gap will be emphasized due
to preferential directions of vF , and therefore the FS effects
compete with the gap shape in determining the spatial profile
of the vortex core states. Simply assuming that the direction
of the smallest gap in k space yields the orientation of the tails
of the bound-state wave function need not be correct, and may
be wrong with a strongly anisotropic Fermi surface.40

Results. Figure 2 shows the zero energy density of states
(ZDOS) of a circular Fermi surface [Figs. 2(a)–2(c)] and
LiFeAs γ pocket [Figs. 2(d)–2(f)]. Comparing Figs. 2(a) and
2(d) for the isotropic gap, we see that the rotation symmetry
of ZDOS in Fig. 2(a) is broken due to the anisotropy of γ

pocket and Fermi velocity; at the same time the ZDOS still
preserves the crystal fourfold symmetry. In the d-wave case,
Fig. 2(b), for a circular Fermi surface, we recover well-known
results for the ZDOS, including the double tails along the nodal
directions forced by the vanishing of the bound-state wave
function exactly along the 45◦ directions in the quasiclassical
theory.31 While this feature remains, it becomes essentially
invisible in the case of the square Fermi surface shown in
Fig. 2(e), as the Fermi surfaces concentrate the quasiparticle
trajectories even more in the nodal directions. Our primary
results are now contained in Figs. 2(c) and 2(f). The extended-s
state �s,ani has been chosen deliberately to have gap minima
along the 0◦ directions (along the Fe-Fe bond in the FeSC
case). This is clearly visible in the case of an isotropic pocket,
Fig. 2(c), as the tails, while not as well defined as in the true
nodal case, extend clearly along these directions in real space.
These directions rotate by 45◦, however, when the same gap
exists on the square LiFeAs γ pocket, as in Fig. 2(f). In fact, the
ZDOS in Fig. 2(f) strongly resembles the structure observed
by Hanaguri et al. in recent STS measurements on LiFeAs.41

The results in Fig. 2 strongly challenge the common
interpretation of STS images of vortices, which assign gap
minima to the directions of the extended intensity in real
space. This is probably reasonable in the case of true nodes,
as indicated by the d-wave examples shown, but fails if these
minima are not sufficiently deep due to the competition with

FIG. 2. (Color online) Normalized ZDOS in a 2.5ξ0 × 2.5ξ0

region around the center of the single vortex for different gap
models with a circular Fermi surface (a)–(c) and LiFeAs γ pocket
(d)–(f): (a), (d) An isotropic s-wave gap �0; (b), (e) a nodal
d-wave gap �0

√
2 cos 2θ ; (c), (f) extended s-wave gap �0(1 −

r cos 4θ )/
√

1 + r2/2, r = 0.3. The gap bulk value is taken to be
�0 = 1.76Tc. The inset on each panel represents a cartoon of the
corresponding gap along the Fermi surface. White contour lines
shown correspond to 0.025N0.

the Fermi-surface effects. Now that the basic structure of this
competition in the case of the ZDOS has been understood, it is
interesting to ask what may happen in the case of finite energies
ω �= 0. Figure 3 shows the calculated LDOS N (r,ω) as a
function of energy at the vortex core center [Figs. 3(a)–3(c)]
and one coherence length away from the center in the 0◦
direction [Figs. 3(d)–3(f)] and 45◦ direction [Figs. 3(g)–3(i)].
The spectrum is quite insensitive to the Fermi-surface shape at
the vortex core center where the results for the circular FS and
LiFeAs γ pocket are almost the same. Away from the vortex
center the direction-dependent LDOS N (r,ω = 0) reflects the
competition between gap and Fermi-surface anisotropy. The
higher (lower) LDOS of the LiFeAs γ pocket (circular FS) at
zero energy in Fig. 3(i) than that in Fig. 3(f) is equivalent to our
result shown in Fig. 2. The quasiclassical theory incorporates
the FS properties solely via vF , and thus does not account
for the possible changes in the shape of the constant energy
surfaces for STS biases away from zero. Provided the band
shape varies very slowly on the scale of Tc, this neglect should
not significantly affect the shape of vortex bound states at
nonzero energy, however. On the other hand, even within
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FIG. 3. (Color online) Normalized LDOS N (r,ω)/N0 ≡
N̄ (ρ,φ,ω) vs energy for different gap models with a circular
Fermi surface (red/light gray symbols) and LiFeAs γ pocket
(blue/dark gray line): (a), (d), (g) Isotropic s-wave gap �0; (b), (e),
(h) nodal d-wave gap �0

√
2 cos 2θ ; (c), (f), (i) extended s-wave gap

�0(1 − r cos 4θ )/
√

1 + r2/2, r = 0.3. The gap bulk value is taken
to be �0 = 1.76Tc. r = (ρ,φ) = (0,φ) for (a)–(c), (ξ,0◦) for (d)–(f),
and (ξ,45◦) for (g)–(i).

the current model, a more important effect may be included.
In our analysis of LiFeAs, we have until now neglected all
Fermi-surface pockets except the outer (γ ) hole pocket, due to
its square shape and because it seems likely to have the smallest
gap. When the bias is increased, higher-energy quasiparticle
states, including those associated with larger gaps, will be
probed. Within spin fluctuation theory,5 both the high density

of states α2 pocket, and the electron pockets, tend to have
gap minima along the 0◦ directions. Thus as higher energies
are probed, it is possible that rotations of the bound-state
shape may take place as the balance between the gap structure
and Fermi-surface anisotropy is altered. Unfortunately, even
qualitative statements depend on the details of the sizes of
gaps and gap anisotropies on each sheet, as well as on the
various Fermi velocities for each band. The LiFeAs system is
quite clean, however, and if the current controversy between
ARPES23 and dHvA24 regarding the Fermi surface can be
resolved, spectroscopies of bound states on this system should
provide enough information to determine a fairly detailed
structure of the gap.

Conclusions. We have used quasiclassical methods to
calculate the vortex bound states within a single vortex
approximation, and highlighted the competition between gap
and Fermi-surface anisotropy in the determination of the shape
of STS images of vortex bound states. If the Fermi-surface
anisotropy is large enough, we have shown that the tails of
vortex bound states at low energy need not correspond to the
smallest gaps in the system, if those gaps are not true nodes.
The ZDOS shape measured by STS in experiments on the
LiFeAs system with very clean surfaces is well reproduced
by numerical calculation. Within our model, we attribute the
tail-like spectrum to the effect of the nonuniform distribution
of the Fermi velocity direction on the Fermi surface of the
LiFeAs γ hole pocket. Further measurements of the energy
dependence of the bound-state shape may further help identify
the gap anisotropy.
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