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Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the
perspective of time-dependent density functional theory

Leonid M. Sandratskii* and Paweł Buczek
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany

(Received 18 October 2011; revised manuscript received 2 December 2011; published 12 January 2012)

The study of the spin excitations in antiferromagnetic (AFM) and ferromagnetic (FM) phases of FeRh is
reported. We demonstrate that, although the Fe atomic moments are well defined, there is a number of important
phenomena absent in the Heisenberg description: Landau damping of spin waves, large Rh moments induced by
the AFM magnons, and the formation of the optical magnons terminated by Stoner excitations. We relate the
properties of the spin-wave damping to the features of the Stoner continuum and compare the chirality of the
spin excitations in AFM, FM, and paramagnetic systems.
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Antiferromagnets (AFMs) form a rich class of magnetically
ordered systems characterized by the coexistence of nonzero
local magnetization and zero net magnetic moment. In
contemporary physics, the interest in these materials has been
refuelled by experiments on the ultrafast laser-induced mag-
netization reorientation,1 exchange-bias effect,2 and the recent
discovery of the exotic pnictide family of superconductors.3

The latter materials are often characterized by the proximity
of the itinerant AFM and high-temperature superconductivity,
and the understanding of the spin excitations in the parent
AFM compounds is crucial.4

Here, we study the spin-flip excitations in FeRh. There
are important reasons for focusing on this system. It is
antiferromagnetic at low temperatures and experiences the
transition to the ferromagnetic (FM) state at 370 K. This allows
the comparison of the AFM and FM spin excitations in the
same material. Interestingly, the AFM-FM transition in FeRh
can be initiated on the femtosecond time scale by the laser
irradiation.5

The microscopic nature of the phase transformation in
FeRh remains the topic of controversial debates. It is widely
recognized that the crucial role in the stabilization of the FM
phase is played by the properties of the Rh atoms whose
spin moments increase from zero in the ground AFM state
to 1μB in the FM phase. Ju et al.5 suggested that the driving
force of the AFM-FM transition is the appearance of the Rh
moments in the AFM phase resulting from the fluctuations of
the Fe moments. Also Gruner et al.6 considered a model which
takes into account the appearance of a nonzero Rh moment in
the AFM phase. On the other hand, Gu and Antropov7 put
forward a principally different model where the appearance
of the Rh moments in the AFM is not regarded. Recently, we
have shown that the spectrum of spin excitations in FeRh is
more complex than considered previously.8 In particular, we
demonstrated that strong spin polarizability of the Rh atoms
is the consequence of the implicit spin polarization of the Rh
electron states in the AFM ground state.

All previous studies of the magnetic excitations in FeRh
were performed within adiabatic approaches that map the sys-
tem on a model Hamiltonian of interacting atomic moments.5–8

A serious disadvantage of the method is the neglect of
the one-electron Stoner excitations that can lead to such
important effects as damping, and even the disappearance,

of the spin waves. The spin waves and Stoner excitations
are incorporated on an equal footing in the calculations of
the transverse dynamic susceptibility within the framework
of the time-dependent density functional theory (TDDFT).9–11

Such studies for AFM systems are very scarce4,12 because
of the demanding character of the underlying computations.
Recently, we have developed and implemented an efficient
computational scheme for highly accurate calculations of the
transverse magnetic susceptibility of complex magnets on the
basis of linear response (LR) TDDFT.13–15

On the experimental side, there is only one old measurement
of the spin-wave properties of FeRh performed by means of
inelastic neutron scattering for both AFM and FM phases.16

The experiment revealed spin waves that are well defined in
the whole Brillouin zone (BZ), in contrast to the spin-wave
disappearance observed for large wave vectors in elemental
3d ferromagnetic bcc Fe.10,15,17 Additionally, the experimental
error bars for the spin-wave energies are very small, and in
the case of AFM, the presented error bars do not increase
with increasing magnon momentum, contrary to the FM phase
where a certain increase is seen. In both AFM and FM phases
only one spin-wave branch was detected.

The calculation of the dynamic spin susceptibility within
LR-TDDFT involves two steps.9,14,15 Using the ground-state
Kohn-Sham electronic structure as the input, the noninteract-
ing magnetic response χ±

KS(q,ω) is found. This susceptibility
does not give the physical magnetic response of the system,
since the induced magnetization, leading to the additional
exchange-correlation magnetic field, is not taken into account.
Since the induced magnetization contributes to the effective
field and is, at the same time, induced by this field, the problem
must be solved self-consistently. The physical susceptibility
χ±(q,ω) is found from the Dyson equation

χ± = (I − χ±
KSKxc)

−1
χ±

KS, (1)

where Kxc is exchange-correlation kernel that has the meaning
of a generalized Stoner parameter transforming the magnetiza-
tion into an exchange-correlation magnetic field. The choice of
Kxc is based on the adiabatic local spin-density approximation
with the Perdew-Wang parametrization.18 The Brillouin zone
integrations are performed using an adaptive energy-dependent
k mesh that guarantees reaching the desired accuracy of
three significant digits in χKS. A detailed description of
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our calculational machinery based on the Korringa-Kohn-
Rostoker Green’s function method is given in Ref. 15 and
in the Supplemental Material.19

The imaginary part of the transverse susceptibility gives
the intensity of spin-flip excitations with a given energy ω and
crystal momentum q. The information on the single-electron
spin-flip spectrum, i.e., Stoner excitations, is contained in
the Kohn-Sham response χ±

KS. The spin waves form at fre-
quencies corresponding to the vanishing eigenvalues of the
matrix I − χ±

KSKxc.15 If the spin-wave frequency appears
outside the Stoner continuum, it features an infinite lifetime.
On the contrary, the magnons with energies within the
continuum decay due to the hybridization with single-particle
excitations. This attenuation mechanism, Landau damping,
dominates in metals. Inside the continuum, depending on its
intensity, the physical picture of magnons varies between well-
defined quasiparticles (with a lifetime much longer than their
inverse energy) and spin-wave disappearance. We analyze the
susceptibility by evaluating the loss matrix [χ± − (χ±)†]/(2i).
Its eigenvalues describe the intensity of spin-flip excitations,
while the corresponding eigenvectors give the shape of natural
modes of the system, i.e., spin waves.15

This consideration is of a very general nature15 and is valid
for both AFM and FM and even for paramagnets featuring
long-living collective spin excitations (paramagnons). There
are, however, important qualitative differences in the structure
of the Stoner continuum in AFM, FM, and paramagnetic
(PM) metals. They are illustrated schematically in Fig. 1 for
a simple case of two bands corresponding to two opposite
spin projections. The characteristic feature of the FM is the
absence of the Stoner transitions in the low-ω, low-q region.
This is a consequence of the exchange splitting of the spin-up
and spin-down bands. Magnons with small momenta are not
Landau damped. On the other hand, in a metallic AFM, the
Stoner continuum starts at q = 0 and ω = 0, which follows
from the spin degeneracy of the electron states. The AFM
structure leads to the decrease of the BZ volume compared to
the FM and PM cases and the formation of the second electron
band. The transitions between states of the first and second
bands form a second area of the high-energy Stoner continuum.
Also in the PM crystal the states are spin degenerate, resulting
in the low-energy Stoner transitions. There is, however, an
important difference in the character of spin degeneracy in the
AFM and PM crystals. In the AFM, the spin degeneracy is

FIG. 1. (Color online) Schematics of band structures and Stoner
continua in FM, AFM, and paramagnetic material.

the consequence of the presence of two equivalent magnetic
sublattices, and the wave functions of the degenerated states
are shifted in the space with respect to each other. On the other
hand, in the PM crystal the wave functions of the degenerate
states are identical. Because of a larger overlap of the initial and
final states, the intensity of the Stoner transitions in the low-q,
low-ω region tends to be stronger in the PM crystal. For real
multiple-band systems the structure of the Stoner continuum
is more complex, but the qualitative features depicted in Fig. 1
remain adequate.

Now, we turn to the discussion of the results of calculations.
The obtained dispersion and damping of the spin waves
of AFM FeRh are in good agreement with experiment—cf.
Fig. 2(a). The damping is not only very small over the whole
BZ, but it also clearly decreases with increasing momentum
for magnons with energy above 80 mev. In Fig. 2(a) we do
not show the values of full width at half maximum (FWHM)
for the wave vectors close to �, since a reliable numerical
estimation in this region is difficult.20 Instead, we make some
qualitative remarks. The velocity of the electronic states at the
Fermi level exceeds, by an order of magnitude, the magnon
velocity given by the slope of the magnon dispersion at the
� point. This means that already for small momenta the
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FIG. 2. (Color online) Dispersion relation of spin waves in the
(a) AFM and (b) FM phases of FeRh. The dots (•) represent energy
of the magnon peak maximum, while the error bars stand for the
full width at half maximum (FWHM) of the peak. Diamonds (�)
denote the experimental spin-wave energies (Ref. 16). (c) Example of
spin-flip spectral density in FM FeRh for point � in the energy range
of optical magnons. (d) Dispersion and FWHM of the high-energy
excitation branch in FM FeRh.
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FIG. 3. (Color online) Stoner continuum of AFM FeRh for small
momenta. By selecting the q + QAF Fourier component of the KS
susceptibility QAF = (1,1,1)2π/aRh, we focus on the transitions
between spin-degenerate bands. The spin-wave energies are marked
with .

magnons form inside the Stoner continuum, and therefore for
any q �= 0 their damping is nonzero. The analysis of the Kohn-
Sham susceptibility (Fig. 3) shows that for small q the spectral
density of the Stoner continuum has a shape of a narrow
peak with its width vanishing in the q → 0 limit. This is a
consequence of the decrease of energy differences between
electron states involved in the transitions at small momenta. On
the other hand, for increasing q the width of the peak increases
and the position of the peak moves to larger frequencies. Since
the energy width of the peak of the enhanced susceptibility
determining the position and lifetime of the spin wave cannot
be larger than the energy area of the nonzero Stoner continuum,
the damping tends to zero in the q → 0 limit. Therefore, the
spin-wave branch begins at q = 0 with infinitely long-living
magnons of vanishing energy. For q > 0 the spin-wave peaks
acquire nonzero width. On the basis of Fig. 3 we can conclude
that the damping in the q interval from 0 to 0.1 first increases
and then decreases again because of the strongly decreasing
spectral weight of the Stoner transitions at the spin-wave
energy.

As mentioned above, the spin moments of the Rh atoms
play a very important role in the magnetism of FeRh.
The calculation of the dynamic spin susceptibility allows
to investigate the spin polarization of the Rh atoms by the
AFM magnons. The analysis of the loss matrix shows that
indeed such a polarization takes place. To understand this
effect, it is essential to recall that an AFM magnon breaks
the equivalence of the two magnetic sublattices.21 In order
for the spins on both sublattices to precess coherently, the
moments of one of the sublattices must deviate stronger
from the ground-state direction than the moments of the
other. The ratio of the deviation angles of the two sublattices
is q dependent. This is demonstrated in Fig. 4, where we
show the transverse magnetization induced on the second Fe

δm
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q = (ξ, ξ, ξ)2π/a

FIG. 4. (Color online) Transverse magnetization induced on the
second Fe lattice and Rh site, assuming the deviation of the first Fe
lattice is normalized to one.

sublattice and Rh site, assuming the deviation of the first Fe
sublattice is normalized to one. For q → 0 the ratio tends to
1, which is a necessary condition for the fulfillment of the
Goldstone theorem. On the other hand, at the BZ boundary
the spins of the atoms of only one sublattice deviate from the
ground-state direction. The equivalence of the sublattices is
restored by the presence of two degenerate spin-wave branches
corresponding to similar excitations with respect to different
sublattices.

In the AFM spin waves the compensation of the Fe
exchange fields at the Rh sites is disturbed. This leads to
the appearance of nonzero atomic moments at the Rh sites.
The value of the moments induced by the spin wave is also
q dependent—cf. Fig. 4. It is zero for q → 0, but assumes
sizable values of 18% of the transverse Fe moments for larger
momenta.22

For the FM (Fig. 2) we have very good agreement
with experiment in the low-q region, whereas closer to the
zone boundary the deviation between theory and experiment
becomes bigger. The damping has a clear tendency to increase
with increasing momentum. A sizable damping is obtained for
only rather large magnon wave vectors. This correlates with
the property of the electronic structure of the FM FeRh that
has a very small number of Fe spin-up states in the nearest
vicinity of the Fermi level.8

Since in FM the Rh atoms have a large moment of 1μB,
it is natural within the Heisenberg model to consider them
as Heisenberg variables that lead to two spin-wave modes:
acoustic and optical.7 At higher frequencies we found sharp
features in the enhanced spectral density—cf. Fig. 2(d). The
analysis of the eigenvectors of the loss matrix shows that the
polar angle of the Rh magnetization deviation increases by
180◦ with respect to the direction of the Rh moment in the
acoustic magnon. This is a characteristic feature of an optical
magnon. The spectral feature, however, is characterized by
a strong damping and appears at the energy position of the
abruptly increasing Stoner continuum, below the expected
energy of the optical magnon. The resulting peak can be
interpreted neither as spin-wave nor as single-particle Stoner
excitations, having a complex mixed character. The position
and width of the resonance as a function of wave vector is
presented in Fig. 2. In principle, these resonances should
be observable in the inelastic neutron scattering experiment
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FIG. 5. (Color online) Chirality of spin waves in different
magnetic phases. Arrows denote the direction of magnetization
precession.

for sufficiently large neutron energies and momenta.24 The
peaks, however, carry much smaller spectral weight than the
corresponding acoustic resonances, and their experimental
observation is a challenge.

For comparison, we performed calculations for paramag-
netic Rh. As expected, the Stoner continuum starts in this case
from the zero energy (not shown), similar to the case of AFM.
It is, however, much more intense, in particular, because of the
the stronger overlap of the wave functions of the states involved
in the transitions. The enhanced susceptibility repeats the main
features of the KS one. The enhancement in this material is not
sufficiently strong to form a band of well-defined paramagnon
excitations. Since in paramagnetic metals the spin density
vanishes, the symmetry with respect to the spin rotation is

not spontaneously broken and the Goldstone mode does not
form. In contrast to the spin waves in the AFM, the collective
excitations in the PM are of longitudinal character and are
connected with the formation of the nonzero magnetization
instead of its rotation.

The comparison of the spectral densities of the spin-flip
excitations for a given q value in the cases of FM, AFM, and
PM reveals interesting similarities and differences between
them (Fig. 5). In the FM, there is an asymmetry with respect to
the change of the sign of the frequency: The spin wave can be
excited only at positive frequencies, which is a consequence
of the broken time-reversal symmetry of the FM ground state.
In contrast, in the AFM the spectral density is symmetric
with respect to the change of the sign of the frequency.
These are two magnon branches that can be transformed
into each other by the symmetry operation consisting of the
product of the time reversal and space translation transforming
one sublattice into other. The paramagnet is invariant with
respect to the time reversal that leads to the chirality property
of the transverse magnetization that is similar to the case
of AFM.

To summarize, we show that, although the Fe atomic
moments are well defined in FeRh, there are a number of
important phenomena that are missed by the Heisenberg
model: Landau damping of spin waves, large Rh moments
induced by the AFM magnons, and the termination of the
formation of the optical magnons by Stoner excitations. AFM,
FM, and PM systems differ strongly with respect to the
chirality of their collective spin-flip excitations. We hope
this theoretical work will stimulate new experiments on the
spin-flip excitations in FeRh.
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