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Calculated phonon spectra of paramagnetic iron at the α-γ phase transition
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We compute lattice dynamical properties of iron at the bcc-fcc phase transition using dynamical mean-field
theory implemented with the frozen-phonon method. Electronic correlations are found to have a strong effect on
the lattice stability of paramagnetic iron in the bcc phase. Our results for the structural phase stability and lattice
dynamical properties of iron are in good agreement with experiment.
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Elemental iron (Fe) is an exceptionally important metal for
modern-day industry. For example, iron is the main ingredient
of steel. Therefore, a detailed understanding of the properties
of iron is essential for many technological applications. The
remarkable macroscopic properties of iron are the result of a
complex interplay between electronic and lattice degrees of
freedom on the microscopic level. As a consequence, iron
exhibits a rich phase diagram with at least four allotropic
forms. At ambient pressure the ground state is ferromagnetic
and has a bcc crystal structure (α phase). Upon heating, iron
becomes paramagnetic at TC ∼ 1043 K while retaining its bcc
structure. Only when the temperature is further increased to
Tstruct ∼ 1185 K does the lattice transform to a fcc structure
(γ phase).1 Under pressure, α iron makes a transition to a
paramagnetic hcp structure (ε phase) at ∼11 GPa. Even today,
and in spite of long-term intensive research, the phase diagram
of iron at high temperatures and pressures, as well as several
key properties, are still poorly understood.

State-of-the-art methods for the calculation of the electronic
structure provide a qualitatively correct description of the equi-
librium crystal structure and the lattice dynamical properties
of the ferromagnetic α phase of iron. Various other properties
of iron can also be understood on the basis of band-structure
calculations.2 However, applications of these techniques to
describe, e.g., the α-γ phase transition in iron, do not lead to
satisfactory results. This is mainly due to the presence of local
moments above TC which are difficult to treat by conventional
band-structure techniques. Namely, these methods predict a
simultaneous transition of the structure and the magnetic state
at the bcc-fcc phase transition while, in fact, the bcc-to-fcc
phase transition occurs only ∼150 K above TC . In addition,
the elastic and dynamical stability of the bcc phase is found
to depend sensitively on the value of the magnetization. For
example, in the absence of a magnetization conventional
methods find bcc iron to be mechanically unstable.3 This can
be overcome by combining band-structure calculations with
the coherent-potential approximation and the disordered local
moment method;4 for an approach based on density functional
theory which is applicable to finite temperatures, see Ref. 5.
Clearly, an overall explanation of the properties of iron requires
a formalism which can take into account the existence of local
moments above TC .

The LDA/GGA + DMFT approach, a combination of the
ab initio local density approximation (LDA) or generalized

gradient approximation (GGA) of the density functional
theory with dynamical mean-field theory (DMFT), allows
one to determine the electronic and structural properties of
materials with correlated electrons in both their paramagnetic
and magnetically ordered states.6,7 Applications of LDA +
DMFT have shown to provide a good quantitative description
of the magnetization and the susceptibility of α iron as a
function of the reduced temperature T/TC .8,9 It was found
that the formation of local moments in the paramagnetic α

phase is governed by the eg electrons, which is accompanied
by non-Fermi-liquid behavior.10 This supports the results
obtained with the s-d model for the α phase of iron.11 The
LDA/GGA + DMFT approach implemented with plane-wave
pseudopotentials12,13 has been recently employed to compute
the equilibrium crystal structure and phase stability of iron at
the α-γ phase transition.14 The bcc-to-fcc phase transition
was found to take place at ∼1.3TC , i.e., well above the
magnetic transition, in agreement with experiment. However,
the lattice dynamical properties of paramagnetic iron at the
α-γ phase transition, a problem posing a great theoretical and
experimental challenge, remained unexplored.

In this Rapid Communication, we determine the structural
phase stability and lattice dynamics of paramagnetic iron at fi-
nite temperatures by employing the LDA/GGA + DMFT com-
putational scheme. The approach is implemented with plane-
wave pseudopotentials, which allows us to compute lattice
transformation effects caused by electronic correlations.12–14

We employ this ab initio computational scheme in combi-
nation with the method of frozen phonons15 to calculate
the temperature-dependent phonon dispersion relations and
phonon spectra of paramagnetic iron at the bcc-fcc phase
transition, a computation which was not possible up to now, to
the best of our knowledge.

We first compute the electronic structure of iron within
the nonmagnetic GGA by employing the plane-wave pseu-
dopotential approach16 and determine the equilibrium lattice
constant a for the bcc and fcc structures. Overall, our results
agree well with previous band-structure calculations,2 e.g., we
find a = 2.757 Å for the bcc phase and a = 3.449 Å for the
fcc phase of iron. It should be noted that these values are
considerably smaller than those observed in the experiment.1

Using the equilibrium lattice constants calculated above, we
compute lattice dynamical properties of iron by using the first-
principles linear response method.16 In Fig. 1 (top) we show the
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FIG. 1. (Color online) Phonon dispersion curves and correspond-
ing phonon density of states of paramagnetic bcc Fe as calculated
within the nonmagnetic GGA (top) and DMFT (bottom). The DMFT
result is further interpolated using a Born–von Kármán model with
interactions expanded up to the fifth nearest-neighbor shell. The
results are compared with neutron inelastic scattering measurements
at 1173 K (Ref. 17).

results for the phonon dispersion curves and the corresponding
phonon density of states of bcc Fe. The nonmagnetic GGA
finds the bcc lattice to be dynamically unstable with negative
elastic constants C11 and C ′ (see Table I), in accordance with
previous calculations.3 By contrast, the same method finds the
fcc lattice structure (with a = 3.449 Å) to be mechanically
stable (see Fig. 2) and the calculated phonon frequencies to
deviate significantly from the experimental data. Indeed, the
nonmagnetic GGA finds a strong softening of the longitudinal
[00ξ ] mode at the X point by ∼30%. Furthermore, all
calculated elastic constants are two to three times larger than
in the experiment (see Table I). Overall, calculations within
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FIG. 2. (Color online) Phonon dispersion curves and correspond-
ing phonon density of states of paramagnetic fcc Fe as calculated
within the nonmagnetic GGA (top) and DMFT (bottom). The DMFT
result is further interpolated using a Born–von Kármán model with
interactions expanded up to the fifth nearest-neighbor shell. The
results are compared with neutron inelastic scattering measurements
at 1428 K (Ref. 19).

the nonmagnetic GGA find lattice dynamical properties which
are in disagreement with experiment. Apparently, conventional
band-structure techniques cannot explain the experimentally
observed structural phase stability of paramagnetic iron at the
bcc-fcc phase transition, since they do not describe electronic
correlations adequately.

To include the effect of electronic correlations, we com-
pute an effective low-energy Hamiltonian for the partially
filled Fe sd orbitals.13,20 We employ results of band-
structure calculations for iron performed with the nonmagnetic
GGA to construct a basis of atomic-centered symmetry-
constrained Wannier functions for the Fe sd orbitals.13,20 The

TABLE I. Comparison between calculated and experimental elastic constants (in 1012 dyn/cm2) of iron. The calculated equilibrium and
experimental lattice constants are presented in the last column.

Method Phase T/TC C11 C44 C12 C ′ a (Å)

Nonmagnetic GGA bcc −0.15 1.19 4.92 −1.87 2.757
DMFT bcc 1.2 2.30 1.27 1.57 0.36 2.883
Expt. (Refs. 1 and 18) bcc 1.1 1.92 1.24 1.71 0.10 2.897

Nonmagnetic GGA fcc 3.21 1.97 1.74 0.73 3.449
DMFT fcc 1.4 2.10 1.38 1.61 0.25 3.605
Expt. (Refs. 1 and 19) fcc 1.4 1.54 0.77 1.22 0.16 3.662
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corresponding first-principles multiband Hubbard Hamilto-
nian has the form

Ĥ = ĤGGA + 1

2

∑

imm′,σσ ′
Uσσ ′

mm′ n̂imσ n̂im′σ ′ − ĤDC, (1)

where n̂imσ = ĉ
†
imσ ĉimσ , and ĉ

†
imσ (ĉimσ ) creates (destroys) an

electron with spin σ in a Wannier orbital m at site i. Here
ĤGGA is the effective low-energy Hamiltonian in the basis
of Fe sd Wannier orbitals, and ĤDC is a double-counting
correction which accounts for the electronic correlations
already described by the GGA.21 We use U = 1.8 eV and
J = 0.9 eV in our calculations as obtained by previous
theoretical and experimental estimations.22 To solve the many-
body Hamiltonian (1) we employ the DMFT together with
quantum Monte Carlo (QMC) simulations with the Hirsch-Fye
algorithm.23

We now compute the lattice dynamics of paramagnetic
iron using the GGA + DMFT approach6,7 in combination
with the method of frozen phonons.15 The phonon frequencies
are calculated by introducing a small set of displacements in
the corresponding supercells of the equilibrium lattice which
results in a total energy difference with respect to the undis-
torted structure. To this end we first perform a direct structural
optimization and compute the equilibrium lattice constant of
iron. We focus on the lattice dynamical properties of iron
near the bcc-to-fcc phase transition. Namely, we perform our
calculations at temperatures T = 1.2TC and 1.4TC , which are
below and above the temperature Tstruct ∼ 1.3TC where the
structural phase transition occurs.14 We calculate the total
energy of the paramagnetic bcc and fcc structures as functions
of the volume and thereby determine the equilibrium lattice
constants for the temperatures mentioned above (see Table I).
Our results for the equilibrium lattice constants, which now
include the effect of electronic correlations, agree well with
experiment: For the bcc phase we find a = 2.883 Å, which is
only <1 % smaller than the experimental value,1 and for the
fcc phase a = 3.605 Å, which is only <2 % smaller than in
experiment.1 In the following we calculate the lattice dynamics
of paramagnetic bcc and fcc iron, respectively.

Paramagnetic bcc iron. At T ∼ 1.2TC we find the bcc phase
to be energetically favorable, i.e., thermodynamically stable,
with a difference in the total energy between the bcc and fcc
phases of �E ≡ Efcc − Ebcc ∼ 25 meV/at. In Fig. 1 (bottom)
we present our results for the phonon dispersion relations and
phonon spectra. We note that these calculations are performed
for the equilibrium volume (with a = 2.883 Å) computed at
this particular temperature. To evaluate the phonon frequencies
at the arbitrary wave vector of the Brillouin zone we performed
lattice dynamical calculations on the basis of a Born–von
Kármán model with interactions expanded up to the fifth
nearest-neighbor shell. The calculated phonon dispersions of
the bcc phase of iron show the typical behavior of a bcc
metal with an effective Debye temperature �D ∼ 458 K.
The phonon frequencies are overall positive, which implies
mechanical stability of the bcc lattice structure at T ∼ 1.2TC ,
i.e., well above the Curie temperature. This result is quite
different from that obtained with the nonmagnetic GGA, which
finds the bcc lattice to be dynamically unstable (even for
the equilibrium lattice constant a = 2.883 Å, which almost

coincides with experiment). Therefore, this approximation
cannot explain the bcc-to-fcc phase transition in paramagnetic
iron. Most importantly, our results clearly demonstrate the
crucial importance of electronic correlations to explain both
the thermodynamic and the lattice dynamical stability of the
paramagnetic bcc phase of iron.

Overall, the structural phase stability, equilibrium lattice
constant, and phonon frequencies of bcc iron obtained by
GGA + DMFT are in remarkably good agreement with
the experimental data which were taken at nearly the same
reduced temperature T/TC .1,17 Nevertheless, we notice a
weak anomaly in the transverse T1 acoustic mode along
the [ξξ0] direction, indicating that at T ∼ 1.2TC the bcc
phase may be close to an instability. This result can be
ascribed to a dynamical precursor effect of the bcc-to-fcc
phase transition. We note that a similar behavior of the T1

[ξξ0] phonon mode was found to occur in the δ iron at
high temperatures.24 It appears that the temperature-driven
bcc-to-fcc phase transition in paramagnetic iron differs from
the pressure-driven bcc-to-hcp phase transition, where neutron
studies found no dynamical precursor effects.25

In addition, by using our result for the phonon dispersions,
we compute elastic properties of paramagnetic iron. The elastic
constants C11, C12, and C44 (due to the cubic symmetry there
are only three independent parameters) are obtained from the
estimates of the corresponding sound velocities along the [ξ00]
and [ξξ0] directions. Our results for the elastic constants are
summarized in Table I, where they are compared with results
from nonmagnetic GGA and experimental data. The elastic
constants obtained by GGA + DMFT are seen to agree well
with the available experiments.

Paramagnetic fcc iron. Next we calculate the lattice
dynamical properties of the paramagnetic fcc phase of iron.
Our calculations of the structural phase stability find that upon
heating the fcc phase is energetically favorable for T > Tstruct.
The total energy difference between the bcc and fcc phase is
�E ∼ −20 meV/at at T ∼ 1.4TC . To prove the mechanical
stability of the fcc phase at this temperature we now compute
the lattice dynamics of the fcc phase of iron. Our results for
the phonon dispersion relations and phonon spectra, which
were obtained for the equilibrium lattice constant a = 3.605 Å,
are shown in Fig. 2 (bottom). The effective Debye temperature
at T ∼ 1.4TC is found to be �D ∼ 349 K. The phonon
frequencies are overall positive, implying mechanical stability
of the fcc lattice structure at T ∼ 1.4TC . This qualitatively
agrees with the results of nonmagnetic GGA calculations
which (for the GGA equilibrium volume) predict the fcc
lattice structure to be mechanically stable. However, the GGA
energy for fcc iron is higher than that for the close-packed
hcp structure. By contrast, the GGA + DMFT calculations
find the simultaneous thermodynamic and lattice dynamical
stability of the paramagnetic fcc phase of iron at T ∼ 1.4TC ,
in accordance with experiment. Our results for the structural
phase stability, equilibrium lattice constant, and phonon
frequencies agree remarkably well with the available exper-
imental data taken at nearly the same reduced temperature
T ∼ 1.4TC .1,19 It is important to note that the application of
the nonmagnetic GGA to fcc iron finds phonon frequencies
which differ considerably from experiment. These findings
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clearly demonstrate the importance of electronic correlations
for the lattice dynamical properties of fcc iron.

In conclusion, we employed the GGA + DMFT computa-
tional scheme to determine the equilibrium crystal structure
and lattice dynamics of iron at the bcc-fcc phase transition.
The calculated structural phase stability and lattice dynamical
properties of iron near the bcc-to-fcc phase transition are in
overall good quantitative agreement with experiment. Most
importantly, our calculations explain both the thermodynamic
and the lattice dynamical stability of the paramagnetic bcc

phase of iron below the bcc-fcc structural phase transition. In
particular, electronic correlations are found to be crucial for
an explanation of the equilibrium crystal structure and lattice
dynamics of iron.
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