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A cylindrical cloak is designed to control the bending waves propagating in isotropic thin plates. This is
achieved through homogenization of a multiply perforated coating of isotropic homogeneous elastic material,
which greatly simplifies the design of the multilayered cloak we proposed [Phys. Rev. Lett. 103, 024301 (2009)].
We first derive the homogenized biharmonic equation, which involves an anisotropic Young’s modulus and an
isotropic mass density. We then numerically show that a clamped obstacle is cloaked over a finite range of
frequencies for an acoustic source located a couple of wavelengths away from its surrounding cloak. The reduced
backward and forward scattering is confirmed by both the profile of the total field computed along a line passing
through the source and the center of the cloak (near field confirmation), and the computation of the scattered far
field.
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Introduction. Transformation-based solutions to the con-
ductivity and Maxwell’s equations in curvilinear coordinate
systems, recently reported by Greenleaf et al.,1 Pendry et al.,2

and Leonhardt,3 have paved the way toward a better control
of acoustic and electromagnetic waves around arbitrarily
sized and shaped solids. The experimental validation of these
theoretical considerations was given by Schurig et al.,4 who
used a cylindrical cloak consisting of concentric arrays of
split ring resonators. This cloak makes a copper cylinder
invisible to an incident plane wave at 8.5 GHz, as pre-
dicted by the numerical simulations. This experiment has
since then fueled the interest in the field of transformation
optics.

However, Milton et al.5 have shown that the elasticity
equations are not invariant under coordinate transformations
and consequently, that if cloaking exists for such classes of
waves, it would be of a different nature than its acoustic and
electromagnetic counterparts.

A systematic investigation of acoustic cloaking started with
Cummer and Schurig,6 who analyzed the two-dimensional
cloaking for pressure waves in a transversely anisotropic fluid
by exploiting the analogy with TE electromagnetic waves.
Chen and Chan7 and Cummer et al.8 further noticed that a
three-dimensional (3D) acoustic cloaking for pressure waves
in a fluid can be envisaged since the wave equation retains its
form under geometric changes.

But when one moves to the area of coupled pressure and
shear elastic waves, the isomorphism between the (tensor)
governing equations and the wave equation is lost and
computations become more involved. Norris investigated some
general types of acoustic cloaks with finite mass consisting of
so-called pentamode materials, which display an anisotropic
stiffness.9 Brun et al. studied a cylindrical cloak for in-plane
elastic waves, which is described by a rank-4 (nonsymmetric)
elasticity tensor with 24 entries and an isotropic density.10

Whereas the former structured metamaterial might already
represent a technological challenge for mechanical engineers,
the latter proposal imposes even more severe constraints

on the material parameters. Moreover, the required material
properties for a three-dimensional elastic cloak remain elusive
thus far, as these would involve a rank-4 elasticity tensor with
up to 34 spatially varying nonvanishing entries. However, in
the special case of thin-elastic plates, it has been shown11 that
the elasticity tensor can be represented in a cylindrical basis by
a diagonal matrix with two (spatially varying) nonvanishing
entries. One can easily mimic such tensors by structuring
the plate with concentric layers of isotropic homogeneous
material, e.g., polymers, and this leads to ultrabroadband
cloaking.12 It seems therefore quite natural to start designing
such a cloak for flexural waves before investigating the control
of in-plane elastic waves also involved in seismic events.
This route has been experimentally validated this year for
frequencies in the range 200–400 Hz by Stenger, Wilhelm,
and Wegener13 for a cloak consisting of 20 concentric rings
of 16 different metamaterials, each being a tailored composite
of polyvinylchlorid and polydimethylsiloxan, following our
theoretical proposal.12

We note that such an avenue toward broadband cloaking
was opened by Torrent and Sanchez-Dehesa14 and Cheng
et al.15 in the context of acoustic waves for concentric
multilayered cloaks behaving as anisotropic fluids in the
homogenization limit. Using a similar approach, Farhat
et al.16 demonstrated cloaking of surface liquid waves for a
microstructured metallic cloak via effective anisotropic shear
viscosity, while Chen et al.17 achieved rotating effects via
effective anisotropic depth, both models being experimentally
validated at Hertz frequencies. It is the latter work which
we would like to extend to flexural waves in this Rapid
Communication, thanks to the similarities between surface
liquid waves and surface elastic waves.

Description of the proposed method of elastic cloaking.
In this Rapid Communication, we show that a heterogeneous
orthotropic cloak can be designed via a radially symmetric
multilayered cloak with a constant isotropic Young’s modulus
E and mass density ρ to make an object surrounded by such
a coat neutral for flexural waves in thin elastic plates. This is
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FIG. 1. (Color online) Geometry of the structured cloak. (a) 3D
view: The thickness h of the plate of density ρ0 and flexural rigidity
D0 is assumed to be small compared to the incident wavelength
λ = 2π/ω = 2π

√
ρ0h/(β2

0

√
D0) of the flexural wave, where β0 is

the reduced wave frequency. The typical cross-sectional size of
perforations is also small compared to λ. The large cylinder in the
center of the structure represents the invisibility region and could
consist either of air (in which case one sets clamped or stress-free
boundary conditions on its boundary) or the same material as the
plate (in which case one sets transmission boundary conditions on
its boundary). (b) View from above: The inner and outer (virtual)
boundaries ∂�− and ∂�+ of the cloak � are represented by red
dotted curves. The cloak is evenly divided (in a polar coordinate axis)
in curved sectors Y ∗, which are basic cells Y with an air hole S (a
perforation of the thin plate).

achieved thanks to periodic perforations (air holes) in the plate
(see Fig. 1).

Homogenization of a multiply perforated thin plate. The
equations for bending of plates are well known and can be
found in many textbooks, such as those of Timoshenko or
Graff.18,19 The wavelength λ is supposed to be large enough
compared to the thickness of the plate h and small compared
to its in-plane dimension L, i.e., h � λ � L. In this case we
can adopt the hypothesis of the theory of von Karman.18,19

When the bending wave penetrates the structured cloak
�, whose geometry is shown in Fig. 1(b), it undergoes fast
periodic oscillations. To filter these oscillations, we consider an
asymptotic expansion of the associated vertical displacement
Uη solution of (1) in terms of a macroscopic (or slow) variable
x = (r,θ ) (in polar coordinates—see Fig. 1) and a microscopic
(or fast) variable xη = ( r

η
,θ ), where η is a small positive real

parameter.
With all the above assumptions, the out-of-plane displace-

ment uη = [0,0,Uη(r,θ )] in the x3 direction (along the vertical
axis) is the solution of

ρ−1
η ∇ · [

ζ−1
η ∇(

ρ−1
η ∇ · [

ζ−1
η ∇Uη

])] − β4
0Uη = 0, (1)

inside the heterogeneous isotropic cloak �, where

ζη = E−1/2

(
r

η

)
and ρη = ρ1/2

(
r

η

)
.

Here ζ−1
η = 0 and ρη = 0 inside freely vibrating inclusions

(plate perforations) and 1 elsewhere. Furthermore, β4
0 =

ω2 ρ0h/D0, where D0 is the flexural rigidity of the plate, ρ0

its density, and h its thickness.
Using multiscale techniques described in Ref. 20, we find

that the homogenized system takes the form

∇ · ([ξhom]−1∇(∇ · [[ξhom]−1∇Uhom])) − β4
hom Uhom = 0, (2)

which is the homogenized biharmonic equation with βhom =
area(Y∗)1/2β0 and the rank-2 tensor [ξhom] (an anisotropic
Young’s modulus) given by

[ξhom] = 1

area(Y∗)

(
area(Y∗) − ψrr ψrθ

ψθr area(Y∗) − ψθθ

)
.

(3)

Here Y ∗ denotes the region surrounding a freely vibrating
inclusion in an elementary cell of the periodic array, and ψij

represent corrective terms defined by

∀i, j ∈ {r,θ}, ψij = −
∫

∂S

�injds, (4)

where n is the unit outward normal to the boundary ∂S of the
inclusion.

Furthermore, �j, j ∈ {r,θ}, are periodic potentials which
are unique solutions (up to an additive constant) of the
following two biharmonic equations (Kj ):

(Kj ) : ∇4�j = 0 in Y ∗, (5)

which are supplied with the effective boundary condition
∂�j

∂n
= ∂2�j

∂n2 = ∂3�j

∂n3 = −n · ej on the boundary ∂S of the
inclusion. Here, er and eθ denote the vectors of the basis in
polar coordinates (r,θ ).

Solving (5) numerically with finite elements, computing the
line integral (4), and inserting the resulting corrective terms in
(3), we obtain

[ξhom] = 1

area(Y∗)

(
area(Y∗) + 0.7 0

0 area + 7.2

)
, (6)

which shows that the effective coating is strongly anisotropic
along the azimuthal θ direction and it further varies along the
radial r direction.

It is interesting to note that the expression of the anisotropic
Young’s modulus (6) has the same structure as for the case of
the structured cloak we introduced in the context of linear
water waves.16 However, we stress that the annex problem (5)
is a biharmonic equation, while it was a harmonic equation
in Ref. 16. As the proverb says, the same cause produces the
same effect: The artificial anisotropy is again responsible for
the cloaking effect.

Two-step homogenization approach to elastic cloaking. We
now note that the coordinate transformation r ′ = R1 + r R2−R1

R2
(Refs. 1 and 2) can compress the region r < R2 into the ring
R1 < r < R2, provided that the thin plate is described by the
following material parameters:11

Er =
(

r − R1

r

)2

, Eθ =
(

r

r − R1

)2

,

(7)

ρ =
(

R2

R2 − R1

)4 (
r − R1

r

)2

,

where R1 and R2 are the interior and the exterior radii of the
elastic coat of thickness h. This ideal cloak is therefore not
only anisotropic, but also spatially varying along the radius r .

To mimic these ideal parameters, we proceed in two steps,
as follows:15 We first approximate the cloak obtained by
geometric transformation by a multilayered cloak with M
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FIG. 2. (Color online) Real part of the displacement field U ′

distribution in the vicinity of the E-shaped clamped obstacle on
its own (a), (d), when it is surrounded by a cloak with 100
perforations (b), (e) and when it is surrounded by a cloak with
200 perforations (c), (f). The source is located at point (0.5,0.5)
and its wavelength is λ0 = 2π/β0 = 2π/15 = 0.42 in (a)–(c) and
λ0 = 2π/β0 = 2π/17.5 = 0.36 in (d)–(f). The inner and outer radii
of the cloak are R1 = 0.2 and R2 = 0.39 and it consists of six rows
of sectors (perforations) in (b) and (d) while the inner and outer radii
of the cloak are R1 = 0.2 and R2 = 0.4 and it consists of 11 rows
of sectors (perforations) in (c) and (f). We note that the scattering is
minimized in (c) and (f), i.e., for the cloak with 200 sectors.

anisotropic homogeneous concentric layers. We then approxi-
mate each layer i, i = 1, . . . ,M by N thin isotropic perforated
layers through the homogenization process described above.
This means the overall number NM of isotropic layers can be
fairly large.

Numerical simulation of elastic cloaking. We now turn to
the numerical analysis of the field radiated by a point source
vibrating harmonically in the x3 direction and generating
a harmonic vibration on the plate. Note that all the lengths
are in arbitrary units (e.g., mm). This point source is located
at the point (0.5,0.5) in the vicinity of a clamped obstacle
shaped as the letter E on its own and when it is surrounded
by a perforated cloak within the annular region of radii
R1 = 0.2 and R2 = 0.39 when it is made of six rows with 100
perforations [see Figs. 2(b) and 2(e)], and radii R1 = 0.2 and
R2 = 0.4 when it is made of six rows with 200 perforations [see
Figs. 2(c) and 2(f)]. Every cloak is centered about the origin.
Its elastic parameters are characterized by a spatially varying
scalar density ρ and a spatially varying rank-2 tensor [E] given
by (7). Physically speaking, the panels in Fig. 2 represent
the real part of the vertical displacement U ′ in the presence
of the point source that is nothing but the bending waves at
the instant t = 0. As predicted by homogenization theory, the
vertical displacement outside the cloak is nearly identical to
the one we obtain when the plate is homogeneous (without
any obstacle and cloak), except for a phase shift associated
with the longer trajectory of the flexural wave (which is
detoured around the cloak instead of traveling right through
it). Moreover, when we increase the number of perforations,
cloaking is all the more effective. Importantly, cloaking works
over a finite range of frequencies (from β = 15 to 22.5), unlike
for the case of invisibility cloaks with resonant elements. We

FIG. 3. (Color online) Far-field computations of the scattered
flexural wave for a bare obstacle (red dashed curve), for a cloak with
100 perforations (blue dashed-dotted curve) and for a cloak with 200
perforations (green solid curve). This demonstrates that the larger is
the number of small perforations, the more reduced is the scattering.

note that our earlier proposal of an antiearthquake cloak12

is very different from the current design: The former design
relies upon concentric layers of various polymers, whereas
the current design only requires perforations within the thin
plate and is therefore far easier to implement, even if the
recent experiment of Wegener’s group13 demonstrates that the
former design is within technological reach.

FIG. 4. (Color online) Profile of the total flexural field computed
along a line passing through the source and the center of the cloak
for a homogeneous plate (green solid curve), for a bare obstacle (red
dashed curve), for a cloak with 100 perforations (blue dashed-dotted
curve), and for a cloak with 200 perforations (black dotted curve).
The amplitude of forward waves in nearly the same for the bare plate
(green) and the cloaked obstacle (blue and black). However, there is a
phase shift in the forward scattering between the green and blue and
black curves, due to the longer path taken by flexural waves detoured
around the cloaked obstacle.
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Finally, Figs. 3 and 4 further confirm the much reduced
scattering when the obstacle is cloaked. Importantly, the source
is located in the vicinity of the cloak, whereas cloaking for the
former multilayered cloak design has been demonstrated for a
plane wave.

Concluding remarks. In conclusion, we have proposed a
route toward elastic cloaking in thin plates. We first reviewed
the relevant results published thus far on electromagnetic
and acoustic cloaking. We further studied theoretically and
numerically the extension of electromagnetic and acoustic
cloaking mechanisms to the domain of flexural waves prop-
agating in thin infinite elastic plates. We have proposed a
design of a broadband multiperforated cloak consisting of
a large number of thin homogeneous isotropic layers with
periodic perforations shaped as sectors. For this, we derived
the homogenized biharmonic equation using a multiscale

asymptotic approach. We found that the homogenized elastic
parameters are described by a rank-2 tensor (a generalized
Young’s modulus) and a scalar density, both of which are
functions of the radius. We then performed numerical com-
putations based on the finite-element method which proved
that a rigid obstacle surrounded by a coating consisting
of 100 and 200 periodic perforations is neutral (vanishing
backward and forward scattering) for the bending waves
generated by a point source located in its vicinity. We thus
believe such a microstructured plate may have some potential
applications in isolating structures from vibrations of metallic
(or nonmetallic) plates in aeronautic, ship, and car industries.
An experimental validation is underway in Marseille.
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