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Microscopic characterization of overpressurized superfluid 4He
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We have studied static and dynamical properties of superfluid 4He at T = 0 K in the pressure range from −6
up to 87 atm well above freezing into the metastable region. Zero temperature properties have been obtained
with the exact shadow path integral ground state (SPIGS) method. Information about dynamic structure factors
at different pressures have been obtained from imaginary time correlation functions via the genetic inversion via
falsification of theories (GIFT) method. In the full pressure range sharp roton excitations are always present in
the spectral functions. The roton energy decreases at higher pressures in good agreement with experimental data
also in the metastable region. The roton energies have essentially a linear trend with pressure, going from about
7.4 K near freezing to about 4.3 K at about 87 atm. The pressure at which the linear trend would extrapolate to a
zero roton energy turns out to be about 170 atm. At T = 0 K, no sign of metastable glass phase has been found;
the disordered systems studied at pressures above about 87 atm readily start homogeneous nucleation processes.
Our results in the metastable phase for the condensate fractions and roton gaps differ remarkably from previous
ones obtained via a diffusion Monte Carlo study.
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I. INTRODUCTION

First-order phase transitions are characterized by disconti-
nuities in some physical properties of many-body systems: the
free-energy landscape offers the conditions of the spontaneous
emergence of a new phase. Typically, a free-energy barrier
has to be overcome to realize the nucleation of the new
phase, giving rise to interesting metastability phenomena. In
this work we focus on the 4He superfluid-solid transition.
Such a transition is particularly interesting in connection with
the hot topic of supersolidity, where metastable states have
been invoked as a possible explanation for the intriguing
experimental findings.1

Several theoretical studies have suggested that excitations
modes are closely related to intrinsic instability of the liquid
phase.2,3 In a theory of the superfluid-solid transition4 of
4He it was recognized that the superfluid phase becomes
intrinsically unstable against a density fluctuation at a wave
vector corresponding to the roton excitation. It is thus very
interesting to investigate the fate at high density of the
phonon-roton spectrum. Experimental studies have recently
shown that it is indeed possible to pressurize liquid 4He well
above the freezing point, both in bulk systems via acoustic
techniques5–7 and, in a more restricted range, in porous
media where neutron scattering experiments have been carried
out.8

In literature there are few ab initio quantum Monte Carlo
(QMC) studies of overpressurized liquid 4He.9–11 Two of these
were devoted to compute mainly off-diagonal properties with
path integral QMC methods at zero9 and finite11 temperature.
Only in were Ref. 10 excited state properties computed;
such a study used the released node diffusion Monte Carlo
(RN-DMC) technique. The excited state results were affected
by quite large statistical uncertainties, somehow obscuring
the interpretation; the roton gap did not seem to extrapolate
to zero and this could influence the physical picture of the
homogeneous nucleation in this system.

The simulation of metastable phases is a delicate issue
since in general simulation methods, when convergence is
achieved, sample configurations of the equilibrium state and
the metastable state represents only a transient. But this is true
also for metastable phases in nature: the key point is whether
a transient in Monte Carlo dynamics could provide a realistic
description of what actually happens in the physical system.
Only a comparison with experiments can tell us whether the
imaginary time dynamics of a particular method is capturing
the actual physical behavior of the metastable system. We
argue that the best one can do is to let only the Hamiltonian
operator play a role, without any constraint forcing a particular
phase. Path integral calculations, at finite and zero temperature,
are thus very suitable for our aim since only e−sĤ governs the
imaginary time propagation, Ĥ representing the Hamiltonian
operator of the system.

II. METHODOLOGY

In this work we address an ab initio QMC study of the
excitation spectrum of liquid 4He under pressure at T = 0 K
using the exact shadow path integral ground state method
(SPIGS).12–14 The SPIGS method is a path integral ground
state (PIGS) method15 that projects a shadow wave function16

ψsh. We have checked that another choice of the starting wave
function, a Jastrow wave function, leads to the same results
within statistical errors up to the highest considered densities
in the overpressurized region. So, as we will discuss below,
the metastable phase with SPIGS arises simply from the initial
conditions, similar to what happens in a real metastable phase.
With SPIGS the only approximations regard the short time
propagator 〈R|e− s

M
Ĥ |R ′〉 with M � 1, and the fixed total

projection time s, but it is possible to reduce the systematic
errors under the statistical noise level. We have used both the
pair-product17 and the pair-Suzuki14 approximations for the
propagator; in the first case the imaginary time step was chosen
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FIG. 1. (Circles) Static structure factor S(q) and (triangles)
strength of the single quasiparticle peak Z(q) for different densities
above freezing. Statistical uncertainties are below the symbol size.

to be s/M = 1/160 K−1, while for the second approximation
we used s/M = 1/320 K−1. Typical total projection time
was of the order of 0.5 K−1. Finally, the excitation spectrum
can be in principle extracted from imaginary time correlation
functions without relying on any approximation paying the
fee of facing an ill-posed inverse problem. We have recently
developed a technique to face such problems, the genetic
inversion via falsification of theories (GIFT) strategy.18 When
applied to stable liquid 4He at T = 0 K, GIFT has been shown
to be very accurate, recovering spectral functions with sharp
quasiparticle excitations displaying also the multiphonon
branch. As a pair interaction potential among 4He atoms we
used two different parametrizations of the Aziz potential;19,20

for comparison with the RN-DMC results we show here mainly
the results obtained with the potential in Ref. 19.

III. RESULTS

The metastable phase turned out to be accessible for
pressures up to Pmax � 87 atm, that is, for densities up to
0.031 Å−3; at higher densities the system starts homogeneous
nucleation processes within few thousand Monte Carlo (MC)
steps. Nevertheless, below and at 87 atm we have been able to
evaluate the excitation spectrum and the condensate fraction,
for which recent accurate measurements near the freezing point
are available.21 We proceeded in the following way: for each
studied density, we equilibrated a liquid-like configuration,
suitably rescaled in density; after equilibration, the disordered
phase was found persistent, with no sign of crystallization as
inferred from the static structure factor S(�q) ∝ 〈ψ0|ρ̂�q ρ̂−�q |ψ0〉
(see Fig. 1), ρ̂�q being the Fourier component of the local
density operator, allowing us to perform measurements on
the metastable phase. Only for the highest density reported,
ρ = 0.0310 Å−3, after runs of many hundreds of thousand of
MC steps, signs of partial crystallization have been detected in
S(�q): out of many MC histories a few of the replicas display
a growing Bragg peak during the MC evolution. We have
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FIG. 2. (Color online) (a) q̄4-q̄6 values obtained for 4He in liquid
at ρ = 0.0218 Å−3 and in solid at ρ = 0.029 Å−3 for three different
perfect crystals. (b) q̄4-q̄6 values obtained for the final configuration
of 4He systems simulated at different densities above melting starting
from a disordered configuration.

also obtained the same conclusions by monitoring the so
called averaged local bond parameter in the q̄4-q̄6 plane.22

In Fig. 2(a) we show the typical signals obtained by analyzing
a configuration explored by simulating 4He hcp, fcc, and bcc
perfect crystals compared with a typical liquid result. The
important point is that, starting from disordered configurations
to simulate the metastable phase, we always found liquid like
spots up to ρ = 0.031 Å−3 [circles in Fig. 2(b)]; after very
long runs at ρ = 0.031 Å−3 the system can be found in a
(defected) solid-like configuration [squares in Fig. 2(b)]; at
higher densities the systems readily starts a nucleation process
[stars and diamonds in Fig. 2(b)].

All the results shown here have been obtained with systems
of N = 256 4He atoms in periodic boundary conditions.
Our results for the energy per particle and the pressure are
reported in Table I. The pressure has been computed directly
during the simulation via a virial estimator.23 Pvir is in good
agreement with the pressures inferred via a polynomial fit of
the equation of state:

E(ρ) = E0 + a(ρ/ρ0 − 1)2 + b(ρ/ρ0 − 1)3 (1)
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TABLE I. Energy per particle E/N and pressure computed with the virial estimator Pvir; the estimated condensate fraction n0 and the
parameters of the parabolic fit to the spectrum in the roton region �R , qR , and μR are also shown.

ρ (Å−3) E/N (K) Pvir (atm) n0 �R (K) qR (Å−1) μR/m4

0.0200 −7.236(5) −6.1(1) 0.117(6) 9.26(10) 1.844(13) 0.195(42)
0.0210 −7.325(4) −3.7(1) 0.086(6) 9.03(8) 1.893(7) 0.140(16)
0.0218 −7.344(5) −1.3(1) 0.069(4) 8.78(8) 1.908(6) 0.124(13)
0.0240 −7.241(4) 9.04(5) 0.043(4) 8.29(11) 1.978(7) 0.105(12)
0.0250 −7.093(5) 15.5(1) 0.036(4) 7.87(13) 2.026(9) 0.128(20)
0.0260 −6.875(7) 23.6(1) 0.025(2) 7.52(9) 2.048(6) 0.118(12)
0.0274 −6.447(7) 37.2(1) 0.017(2) 6.83(14) 2.089(8) 0.104(14)
0.0290 −5.768(4) 56.2(2) 0.010(2) 5.79(13) 2.139(7) 0.087(9)
0.0300 −5.227(5) 70.4(2) 0.0054(9) 5.13(10) 2.182(6) 0.090(7)
0.0310 −4.611(5) 86.7(1) 0.0036(9) 4.30(22) 2.206(13) 0.092(16)

with E0 = −7.352(2) K, a = 13.74(26) K, b = 7.44(47) K,
and ρ0 = 0.02207(2) Å−3. The energy turns out to be below
experimental data suggesting, as is well known, that the
interaction in Ref. 19 needs the inclusion of three-body con-
tributions in Ĥ to compare with experiments, contrary to the
effective two-body potential in Ref. 20. Our results for the total
energy per particle differ from those obtained with DMC10,24

by many standard deviations at all considered densities. This
is really unexpected in comparing two exact QMC methods.
We have checked our results with three independent PIGS
codes always obtaining compatible energies to those reported
in Table I. We have also compared the energy of the system
at equilibrium density with a DMC calculation (S. Moroni,
private communications) which confirms our ground state re-
sult. We note this problem only with the energy results obtained
in Refs. 10 and 24 with the interaction in Ref. 19 and the origin
of such disagreement is still unknown; on the contrary, substan-
tial agreement between our results and those in Ref. 24 or other
DMC calculations25 is present when the older interaction20 is
considered. Moreover, this difference grows significantly in the
metastable region giving rise to big differences in the estimated
equations of state; for example, at ρ = 0.031 Å−3 the DMC
equation of state gives a pressure of about 25 atm above our
result. The equation of state obtained from the older potential20

[with fit parameters E0 = −7.162(3) K, a = 14.57(47) K, b =
5.01(68) K, and ρ0 = 0.02193(4) Å−3] turns out to be in better
agreement with experimental data (see Refs. 26 and 27) con-
trary to what was found in Refs. 24 and 10 (see Fig. 3). The
discrepancies of our pressures with respect to experimental
data are of the order of 1 atm when using the newer potential19

while it is reduced to about 0.3 atm with the older potential.20

Remarkably extrapolated SPIGS results for pressure are in rea-
sonable agreement with experimental data extrapolated in the
overpressurized region,27 up to densities of about 0.035 Å−3.

In Table I we report also results for the condensate fraction
n0 obtained with a worm-like algorithm28 implemented with
SPIGS; this gives access also to the off-diagonal properties
during a single simulation run at a fixed number of particles.
Our results for the condensate fraction n0 are in agreement
with previous zero temperature reptation MC results9 in the
density range [0.0219–0.0293] Å−3 and with finite temperature
results11 at ρ = 0.0292 Å−3. In Fig. 4 our results for n0

are compared with the DMC ones10; large discrepancies are
present between the two results; we recall however that DMC

calculations of n0 do not rely on pure estimators and thus do
not represent exact calculations of n0. A recent path integral
ground state calculation of n0 is compatible with the results we
found29 in the density range considered here. No experimental
data for n0 are available yet in the metastable region. Recent
measurements21 of n0 at high pressure in the stable region
are in good agreement with our results (see Fig. 4). The
dependence of n0 with pressure can be fitted accurately with
the empirical formula in the caption of Fig. 4, which allow us
to estimate a pressure where n0 would go to zero: p0 = 163 ±
9 atm.

The calculation of the excitation spectrum started from the
evaluation of the intermediate scattering function F (q,τ ) ∝
〈ψ0|eτĤ ρ̂�qe−τĤ ρ̂−�q |ψ0〉, to be used as input of the GIFT
method; the details of the method are given in Ref. 18.
In Fig. 5 we report the obtained S(q,ω) in the maxon
region for several densities. It is evident that, in agreement
with experiments, a well-defined maxon peak disappears at
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FIG. 3. Pressures in the liquid phase for the range of densities
presently studied: (solid line) P (ρ) as obtained from the equation of
state with the interaction in Ref. 20; (dashed line) P (ρ) as obtained
from the equation of state with the interaction in Ref. 19; (dotted line)
fit to experimental data (Ref. 27).
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1+ap
(1 −

p/p0)2 with parameters: n0 = 0.0647(13), p0 = 163(9) atm, and a =
0.035(4) atm−1.

densities above freezing as observed in a recent neutron
scattering experiment,8 probably because its energy is higher
than twice the roton one. At all densities S(q,ω) for a range
of q around 2 Å−1 has a sharp peak and an additional broad
peak at larger energies. The energy of the sharp peak has a
minimum as function of q, that is, we find roton excitations at
all densities, also in the metastable region. The roton excitation
remains well defined in a wave vectors range compatible to
that observed experimentally, above about 1.5 Å−1 and below
3 Å−1. Above about 3 Å−1 the single-particle excitation peak

0.001

0.01

0.1

0 10 20 30 40 50 60 70
ω  (K)

0.001

0.01

0.1

0 10 20 30 40 50 60 70
ω  (K)

S(q,ω)  (K
-1

)

ρ=0.0218 A
o -3 ρ=0.0260 A

o -3

ρ=0.0274 A
o -3 ρ=0.0310 A

o -3

q=1.1 A
o -1

q=1.17 A
o -1

q=1.19 A
o -1

q=1.08 A
o -1
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S(q,ω) in the maxon region for different densities. Notice the
logarithmic scale.
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FIG. 6. (Color online) Excitation energies E(q) as a function of
the wave vector q in the roton region of the spectrum for different
densities (see the legend). Solid lines represent a parabolic fit to the
data with the standard formula: E(q) = �R + h̄2(q − qR)2/2μR; the
estimated parameters �R , qR , and μR are shown in Table I.

disappears from S(q,ω) leaving a broad contribution at all
considered densities. In Fig. 6 the excitation spectrum E(q)
in a neighborhood of the roton minimum is shown for several
densities (i.e., pressures); the statistical uncertainty has been
assumed to be equal to the peak width.

The Landau parameters shown in Table I are obtained by a
fit as explained in the caption of Fig. 6. The roton energy
decreases at higher pressures and our results are in good
agreement with experimental data that have been obtained up
to a pressure of 40 bars by studying 4He in Vycor.8 Our results
for the roton gap �R as a function of pressure are shown in
Fig. 4 and compared with the experimental data and the old
RN-DMC estimation. �R has a linear trend with pressure (see
Fig. 4); this is true also for �R computed with the interaction
potential of Ref. 20, in this case �R goes from 7.41(3) K
[with qR = 2.04(1) Å−1] near freezing to 4.23(12) K [with
qR = 2.19(1) Å−1] at about 89 atm. The pressure at which the
linear trend would extrapolate to a zero roton energy computed
with the potential in Refs. 19 and 20 turns out to be about
170 (168) atm, in agreement with the pressure extrapolated
for a zero condensate fraction. This behavior is remarkably
different from what was found from DMC calculations,10

where a nonlinear trend has been observed; RN-DMC results
gave a roton gap still greater than 2 K at a pressure of about
225 atm. Moreover, with our approach the roton energy can be
extracted with quite higher accuracy.

A path integral simulation at finite temperature has
given evidence for the existence of what has been called
a superglass state.11 We find no sign of such (super)glass
phase in our simulations at T = 0 K and this could have
consequence on the interpretation of the experiments related
to the possible existence of a 4He supersolid phase. Above
ρ = 0.031 Å−3 our system readily starts a homogeneous
nucleation process; at lower densities the system was found
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to be a homogeneous and isotropic liquid with well defined
roton excitations. We have tried to prevent nucleation in
a number of ways, by modifying how configurations are
sampled, or by changing the aspect ratio of the simulation
box, or by changing the total imaginary projection time. In
no case have we been able to avoid crystallization at ρ above
0.031 Å−3.

The GIFT methodology also allows us to extract the single-
quasiparticle strength Z(q) from the estimated S(q,ω); in the
roton region the peak is well defined, making an estimation of
Z(q) rather accurate. As far as we know, no data about Z(q)
exist for metastable phases in current literature; we plot our
results in Fig. 1 . The relative strength of this peak, that is,
f (q) = Z(q)/S(q), evaluated at the roton wave vector turns
out to be remarkably constant, around 75% at all densities of
our computation.

IV. CONCLUSIONS

In conclusion, we have performed a microscopic study of
the properties of overpressurized superfluid 4He. In particular

we have addressed the topic of the fate of the phonon-roton
spectrum of the metastable system at zero temperature. We
found remarkable agreement with experiments in the small
range of metastable states experimentally explored up to
now: the maxon peak disappears above freezing while the
roton remains well defined up to the highest pressures. Roton
energies have a linear trend with pressure and �R extrapolates
to zero at about 170 atm. This is in remarkable discrepancy
with the results a previous QMC calculation.10 No sign of a
superglass11 phase was observed; for pressures up to 87 atm the
system behaves as a high density superfluid liquid, at higher
pressures the system readily starts an homogeneous nucleation
process.
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