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Anomalous Hall effect in superconductors with spin-orbit interaction
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We calculate the anomalous Hall conductance of superconductors with spin-orbit (SO) interaction and with
either uniform or local magnetization. In the first case, we consider a uniform ferromagnetic ordering in
a spin-triplet superconductor, whereas, in the second case, we consider a conventional s-wave spin-singlet
superconductor with a magnetic impurity (or a diluted set of magnetic impurities). In the latter case, we show
that the anomalous Hall conductance can be used to track the quantum-phase transition that occurs when the spin
coupling between the impurity and the electronic spin density exceeds a certain critical value. In both cases, we
find that, for large SO coupling, the superconductivity is destroyed and the Hall conductance oscillates strongly.
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I. INTRODUCTION

The anomalous Hall effect (AHE) has been observed in
metallic ferromagnets as a Hall current generated by an electric
field in the absence of an external magnetic field.1,2 Since then,
several physical mechanisms of the AHE have been proposed,
related to the side jump and skew scattering from impurities,3–5

inhomogeneous internal magnetization,6,7 internal spin-orbit
(SO) interaction,8 and topology of electron-energy bands.9,10

Recently, the theory of AHE has attracted much attention3,11–13

because it reveals some very unusual properties of solids, such
as the existence of monopoles in the momentum space or the
generation of topological gauge fields.

One of the most intriguing models of the AHE is the one
based on an intrinsic mechanism9,10 related to the nontrivial
topology of electron-energy bands. In the frame of this
mechanism, the main contribution to the AHE is due to electron
states well below the Fermi energy.14 The simplest model
in which this mechanism of the AHE can be realized is the
model of a magnetized two-dimensional (2D) electron gas
with Rashba SO interaction.15 Unfortunately, it turns out that,
if the system is in the metallic state, i.e., if there is no gap at the
Fermi surface, then the contribution of electron states at the
Fermi surface totally can compensate the other contributions
so that the resulting off-diagonal conductivity is zero.16 In the
opposite case, when the chemical potential lies in the gap, the
anomalous Hall conductivity σxy is nonzero and is quantized
in units of e2/h. The theory of quantized AHE is quite similar
to the theory of integer quantum Hall effect, where the gap is
due to the Landau quantization in a strong magnetic field.17,18

In this paper, we consider a 2D electron gas with nonzero
magnetization and Rashba SO interaction. Such a model
was used earlier for a description of an intrinsic AHE.16

However, we calculate the AHE in the case when the electron
system additionally is superconducting. The superconduc-
tivity produces a gap at the Fermi level, suppressing the
contribution to the AHE from the Fermi surface. Thus, one
can expect that only the filled electronic states below the
gap contribute to the AHE. The possibility of the AHE in
superconductors has already been considered in the case of

ferromagnet-superconductor double-tunnel junctions19 where
side jump and/or skew scattering from impurities have been
assumed as possible physical mechanisms responsible for the
effect. This is, however, essentially different from our model
where we consider the intrinsic mechanism of the AHE. Since,
in a superconductor, the charge is not conserved due to the
particle-hole mixture, we do not expect any quantization of
the anomalous Hall conductance. This already was shown for
the usual Hall conductance in conventional superconductors in
very high-magnetic fields where the Landau-level description
is appropriate.20

Various materials are known to show the coexistence of
ferromagnetism and superconductivity21–28 and, in particular,
the presence of the SO interaction due to the lack of spatial
inversion symmetry.29–32 We note that, a long time ago, the
possibility of magnetoelectric effects in noncentrosymmetric
superconductors already was predicted33 where it was shown
that a supercurrent should induce a spin polarization, and,
reversely, a Zeeman-like term should induce a supercurrent34

as a result of strong SO interaction. Other effects due to the
interplay of ferromagnetism and superconductivity also have
been considered.35–37 Recently, the interplay among super-
conductivity, magnetism, and SO interaction (or topological
insulators38,39) has received additional attention due to the
possibility of the Majorana edge states in a finite system
or inside superconducting vortices40–42 with its possible
applications in topological quantum computation. Moreover,
the coexistence of magnetism and superconductivity turned
out to be interesting also from the point of view of possible
applications in spintronics.43,44

In this paper, in Sec. II, we consider a spin-triplet super-
conductor, whereas, in Sec. III, we consider a conventional
superconductor with a magnetic impurity.45 In both cases,
we analyze the influence of the Rashba SO interaction. In
the first case, the magnetization is due to a ferromagnetic
order, whereas, in the second case, the system is polarized
locally by a magnetic impurity. The latter situation also may
be achieved when considering a superconducting film with a
magnetic dot juxtaposed. It has been shown before that, if the
coupling between the magnetic impurity and the spin density
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of conduction electrons is strong enough, the system becomes
magnetized through a first-order quantum-phase transition46,47

that leads to discontinuities in various physical quantities.48 In
both cases, we calculate the anomalous Hall conductance. We
show that the Hall conductance of a superconductor with a
magnetic impurity can be used to reveal the quantum-phase
transition. We consider the case of a system close to the
equilibrium with the chemical potential within the gap. As
we show, the energy spectrum in the state with both magnetic
and triplet superconducting orderings is generally gapped.
Therefore, possible isolated gapless points at the Fermi surface
only can give negligibly small contributions related to the side
jump or skew-scattering mechanisms from possible impurities.
Finally, we conclude with Sec. IV.

II. AHE IN A TRIPLET SUPERCONDUCTOR

First, we consider a superconductor with a uniform mag-
netization. Since magnetism and superconductivity compete,

a spin-singlet superconductor is not stable due to Cooper pair
breaking. Therefore, we consider a spin-triplet superconductor
where magnetism and superconductivity can coexist. The
system is described by the tight-binding model in 2D, to which
we add a superconducting-pairing term with the appropriate
symmetry. Additionally, we include the Rashba SO term,15

which generally is allowed in noncentrosymmetric materials.
Due to the SO term, a spin-singlet component �s generally
is induced, and therefore, there is a pairing mixture in the
system.49

We write the electron operators ψ�k,σ in terms of the
Bogoliubov operators γn,�k as

ψ�k,σ =
∑

n

(un(�k,σ )γn,�k − σvn(�k,σ )∗γ †
n,−�k), (1)

where �k,n label the eigenstates of the system. The wave
functions and energy eigenvalues satisfy the Bogoliubov–de
Gennes equations,50 which can be written as

⎛
⎜⎜⎜⎜⎝

ε�k − hz α(sin ky + i sin kx) −dx + idy dz + �s

α(sin ky − i sin kx) ε�k + hz dz − �s dx + idy

−dx − idy dz − �s −ε�k + hz α(sin ky − i sin kx)

dz + �s dx − idy α(sin ky + i sin kx) −ε�k − hz

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

un(�k, ↑)

un(�k, ↓)

vn(−�k, ↑)

vn(−�k, ↓)

⎞
⎟⎟⎟⎟⎟⎟⎠

= ε�k,n

⎛
⎜⎜⎜⎜⎜⎝

un(�k, ↑)

un(�k, ↓)

vn(−�k, ↑)

vn(−�k, ↓)

⎞
⎟⎟⎟⎟⎟⎠ .

(2)

Here, ε�k = −2t(cos kx + cos ky) − εF is the kinetic part,
where t denotes the hopping parameter set in the following
as the energy scale t = 1, εF is the chemical potential, chosen
in the following as εF = −1, �k is a wave vector in the xy

plane, and we have taken the lattice constant to be unity a = 1.
Furthermore, hz in Eq. (2) is the magnetization, in energy
units, along the z direction, while the vector �d = (dx,dy,dz)
is the vector representation of the superconducting pairing
(p wave). Finally, the Rashba SO term is written as HR =
�s · �σ = α(sin kyσx − sin kxσy), where α is measured in the
energy units, and σx,σy are the Pauli matrices.

The pairing matrix can be written as51

� =
(

�↑,↑ �↑,↓
�↓,↑ �↓,↓

)
=

(−dx + idy dz

dz dx + idy

)
. (3)

Thus, we can write dx = (�↓,↓ − �↑,↑)/2, dy = −i(�↓,↓ +
�↑,↑)/2, and dz = �↑,↓, whereas, the vector �q = i �d × �d∗
is given by qx = Re[(�↓,↓ + �↑,↑)�∗

↑,↓], qy = Im[(�↓,↓ −
�↑,↑)�∗

↑,↓], and qz = 1
2 [|�↑,↑|2 − |�↓,↓|2]. When this vector

vanishes, the pairing is called unitary. We have verified that
considering the s-wave component generally has a very small
effect on our results, and therefore, we assume �s = 0 in the
following.

The energy eigenvalues of Eq. (2) can be written (for �s =
0) as

ε�k,α1,α2
= α1

√
z1 + α22

√
z2, (4)

where

z1 = �d · �d + �s · �s + ε2
�k + h2

z,
(5)

z2 = ( �d · �s)2 + (
ε2

�k + d2
z

)(�s · �s + h2
z

)
,

and α1,α2 = ±.
In the normal phase ( �d = 0), the SO coupling lifts the spin

degeneracy of the energy bands in the tight-binding model,
except at �k = (0,0), (π,π ), and (0,π ) (and equivalent points).
These remaining degeneracies are lifted when including the
magnetization. This is shown in Fig. 1 where the two energy
bands are shown as a function of momentum for λso = α/2 =
2 and various values of hz. As can be seen from Eq. (4), the
lowest band is gapless at the points where

(�s · �s + h2
z

) + ε2
�k = 2

√(�s · �s + h2
z

)
ε2

�k . (6)

In a general case ( �d �= 0), the lowest band has gapless points
that are solutions of the equation z1 = 2

√
z2, which yields

�d · �d + �s · �s + ε2
�k + h2

z

= 2
√

( �d · �s)2 + (
ε2

�k + d2
z

)(�s · �s + h2
z

)
. (7)

Thus, in the superconducting phase, the system generally is
gapped. In particular, without the SO interaction, the gapless
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FIG. 1. (Color online) Energy bands in units of the hopping t as a function of momenta kx,ky in the normal phase for λso = 2 and various
values of the magnetization: From left to right, hz = 0 and hz = 0.5 (top); hz = 1 and hz = 1.2 (bottom).

points are obtained by �d · �d + ε2
�k = 0, which implies particular

values for the chemical potential.
The charge current along a link in the lattice can be obtained

by adding a vector potential to the kinetic and SO terms
and taking a functional derivative of the Hamiltonian with
respect to the vector potential,50,52 or through its definition in
the charge continuity equation.53 The zero-momentum charge
current in the μ = x,y direction can be written as

jμ =
∑

�k
ψ̄

†
�kV

μ

�k ψ̄�k, (8)

where ψ̄�k = ( ψ�k,↑ ψ�k,↓ )
T

and

V x = 2e

h̄

(−tηx
�k,−I + λsoη

x
�k,+σy

)
,

(9)

V y = 2e

h̄

(−tη
y

�k,−I − λsoη
y

�k,+σx

)
is a velocity matrix operator.54 Here, η

μ

�k,+ = cos(�k · �δμ) and

η
μ

�k,− = sin(�k · �δμ), where �δμ is a vector displacement (in units
of the lattice constant) between nearest neighbors along the μ

direction. In turn, I is the 2 × 2 unit matrix.
The Hall conductance now can be calculated using a Kubo-

like formula,55 which in the limit of uniform and stationary
currents �q → 0 and ω → 0, is given by

Re(σxy) = −i
h̄

N

∑
�k

∑
α,β

∑
γ,δ

∑
n,m

fn,�k − fm,�k
(εn,�k − εm,�k + i0+)2

[
V x

�k;α,β
V

y

�k;γ,δ
u∗

n(�k,α)un(�k,δ)um(�k,β)u∗
m(�k,γ )

−V x
�k;α,β

V
y

−�k;γ,δ
γ δu∗

n(�k,α)vn(−�k,γ )um(�k,β)v∗
m(−�k,δ)

]
. (10)

where N is the number of sites and fn,�k is the Fermi function

for the state described by n and �k. In the normal phase,
the wave functions u and v are decoupled. The presence of
superconducting pairing mixes the particle and hole characters
and, as already mentioned above, the charge no longer is a good
quantum number. Then, the results for the Hall conductance
depend on the choice of the pairing matrix.51,56

Let us now assume that the pairing amplitude is
a free parameter. This describes the situations where

superconductivity is induced by proximity, and therefore,
no self-consistent solution is implied. This also applies to
a situation where σxy is measured on a normal sample in
which superconductivity pairing exists due to the proximity
effect in the presence of a nearby triplet superconductor. We
consider both unitary and nonunitary cases. Then, we consider
the case where the pairing amplitude is determined by solving
the Bogoliubov–de Gennes equations self-consistently. In the
latter case, we consider a nonunitary situation, for which the
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FIG. 2. (Color online) Anomalous Hall conductance in units of
e2/h in the normal phase as a function of hz and λso.

amplitudes �↑,↑ and �↓,↓ are real, to simplify. This, in turn,
implies that dy is imaginary. In all cases, we take �↑,↓ = 0
(dz = 0), which means that only the qz component may be
nonvanishing.

In Fig. 2, the anomalous Hall conductance in the normal
phase (zero-pairing amplitude) is plotted as a function of the
magnetization hz and SO coupling λso. The Hall conductance
vanishes if either the magnetization or the SO coupling
vanishes. Then, the absolute value of the Hall conductance
increases as either parameter increases. Dependence on hz

is more complex, as the conductance reaches a minimum
around hz = 1 ∼ −εF , which shifts if we change the chemical
potential. The minimum in the Hall conductance as a function
of the magnetization hz (keeping the SO constant, for instance,
λso = 2) is associated with the gaplessness of the spectrum at
the point (0,π ) and the equivalent points (see also Fig. 1).

Now, we consider the superconducting phase. Since the
SO coupling renders the type of pairing undefined (with the
mixture of spin-triplet and spin-singlet pairings), the strength
of the triplet pairing is expected to be weakened in comparison
to the same superconductor with a vanishing SO coupling.

However, it was shown before57 that the amplitude of the triplet
pairing was not affected by the SO term when vector �d was
parallel to the SO vector �s. We have found that this pairing
choice leads to results for the anomalous Hall conductance,
which are very similar to those for the Hall conductance in the
normal phase. This indicates that, for this particular case, the
superconducting order does not change the Hall conductance
significantly, and therefore, we do not show the corresponding
results. We also have considered other choices of pairing, for
which vector �d is not parallel to the SO vector �s. We have
considered both unitary and nonunitary cases. It is already
known for a unitary case57 that, even though the amplitude of
the triplet coupling is somewhat weakened with respect to the
case of vanishing SO term, it is still finite.

In Fig. 3, we show the anomalous Hall conductance in
the superconducting phase for the two choices of the triplet
pairing. We consider a unitary choice given by

�↑,↑ = d(− sin ky + i sin kx),�↑,↓ = �↓,↑ = 0,

�↓,↓ = d(sin ky + i sin kx)

qx = 0, qy = 0, qz = 0. (11)

and a nonunitary choice given by

�↑,↑ = d sin kx, �↑,↓ = �↓,↑ = 0, �↓,↓ = 0,
(12)

qx = 0, qy = 0, qz = d2

2
sin2 kx.

In the case of unitary coupling (top panels of Fig. 3), σxy = 0 if
either λso = 0 or hz = 0. However, in the case of a nonunitary
coupling (bottom panels of Fig. 3), σxy = 0 if λso = 0, but for
a nonzero SO coupling, there is a finite Hall conductance even
if hz = 0. In this nonunitary case, there is a magnetization
induced by the pairing, which leads to a finite σxy in a similar
way as in 3He.

FIG. 3. (Color online) Anomalous Hall conductance for a spin-triplet superconductor. Left panels present a Hall conductance as a function
of hz and λso for d = 1, whereas, right panels present it as a function of d and λso for hz = 0.5. Top figures correspond to the unitary case, see
Eq. (11), while bottom figures correspond to the nonunitary case, Eq. (12).
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FIG. 4. (Color online) Spin-triplet superconductor calculated self-consistently. Left, d̃ as a function of hz and λso. Right, Hall conductance
along cuts of constant magnetization as a function of the SO coupling.

In the unitary case, the energy spectrum has a gap at the
Fermi energy. This gap decreases as λso increases. As λso

grows, the gap between the first and the second bands seems
to decrease slightly, and then it increases. In general, one can
expect that small gaps between the bands will lead to large
contributions for the Hall conductance. In the nonunitary case,
the energy spectrum also has a gap at the Fermi surface, which
is small for small λs0, increases for slightly larger SO coupling,
but vanishes when λso exceeds λso ∼ 0.7. As λso grows further,
the gap between the first and the second bands increases.

In the case in which the superconductivity is intrinsic to
the material, we have to solve the Bogoliubov–de Gennes
equations self-consistently. We look for a situation of the type,

�↑,↑ = d̃(− sin kx + sin ky), �↑,↓ = �↓,↑ = 0,

�↓,↓ = d̃(sin kx + sin ky), qx = 0, (13)

qy = 0, qz = d̃2

2
(−4 sin kx sin ky),

where amplitude d̃ is determined self-consistently for a given
magnetization, taking into account that

d̃ = g

N

∑
�k

(− sin kx + sin ky)〈ψ�k↑ψ−�k↑〉, (14)

where g is the pairing interaction. The corresponding numer-
ical results are shown in Fig. 4. As the left panel shows, the
superconductivity is destroyed for a large enough SO coupling.
In the right panel, we see that the Hall conductance (as a
function of λso) decreases with increasing λso, and as the
transition to the normal phase appears, there are oscillations
of the Hall conductance with relatively large amplitudes.

III. AHE IN A CONVENTIONAL SUPERCONDUCTOR
WITH MAGNETIC IMPURITY

Now, consider a classical spin immersed in a 2D s-wave
conventional superconductor. We now use a description of
the system in real space. In the center of the system �r =
�lc = (xc,yc), we place a classical spin along the z direction.
The kinetic-energy part is described by a tight-binding model
with hopping amplitude t , similar to the case of triplet
superconductivity. The superconductor pairing is taken as s

wave, and the SO interaction58 is assumed as in the preceding
section. The electron operator is written in terms of the
Bogoliubov operators,

ψ(�r,σ ) =
∑

n

[un(�r,σ )γn − σvn(�r,σ )∗γ †
n ]. (15)

The zero-momentum charge current in the μ = x,y di-
rection can be written as jμ = ∑

�r ψ̄
†
�r V

μψ̄�r , where ψ̄�r =
(ψ�r,↑ ψ�r,↓)T and the velocity-matrix operators are given
by

V x = e

h̄
(itηx

−I + λsoη
x
+σy),

(16)
V y = e

h̄
(itηy

−I − λsoη
y
+σx).

Here, f (�r)ημ
+g(�r) = f (�r + �δμ)g(�r) + f (�r)g(�r + �δμ) and

f (�r)ημ
−g(�r) = f (�r + �δμ)g(�r) − f (�r)g(�r + �δμ), where �δμ

is a displacement between nearest neighbors along the μ

direction, while σx,σy are Pauli matrices, as above.
The real-space wave functions obey the Bogoliubov–de

Gennes equations for the energy excitations εn,

⎛
⎜⎜⎜⎝

−h − εF − Jδ�r,�lc ��r λso(−ηx + iηy) 0

�∗
�r h + εF − Jδ�r,�lc 0 λso(ηx − iηy)

λso(ηx + iηy) 0 −h − εF + Jδ�r,�lc ��r
0 λso(−ηx − iηy) �∗

�r h + εF + Jδ�r,�lc

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

un(�r, ↑)

vn(�r, ↓)

un(�r, ↓)

vn(�r, ↑)

⎞
⎟⎟⎟⎠ = εn

⎛
⎜⎜⎜⎝

un(�r, ↑)

vn(�r, ↓)

un(�r, ↓)

vn(�r, ↑)

⎞
⎟⎟⎟⎠ , (17)

where h = t ŝ�δ with ŝ�δf (�r) = f (�r + �δ). Furthermore, ηx = ±1 if the neighbor along x is ix + 1 (ix − 1) and ηy = ±1 if the
neighbor along y is iy + 1 (iy − 1). Parameter J describes the coupling between the impurity spin and the spin density of the
conduction electrons. Note that the solution to this problem requires diagonalization of a 4N × 4N matrix, where N is the
number of lattice sites. This is in contrast to the problem of the triplet superconductor described in the previous section where a
partial diagonalization was possible due to the translational invariance. Owing to this symmetry, the problem could be reduced to
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a simple diagonalization of a 4 × 4 matrix for each momentum value. Since the effect of the magnetic impurity is rather local, a
system of 15 × 15 lattice sites is sufficient to have small finite-size effects as we have shown previously.47 We solve the problem
self-consistently, as in a previous paper (see Ref. 47 for details).

As in the case of triplet superconductivity studied in Sec. II, the Hall conductance can be obtained from a Kubo-like formula,
which now reads

Re(σxy) = i
h̄

V

∑
�r1,�r2

∑
α,β

∑
γ,δ

∑
n,m

fn − fm

(εn − εm + i0+)2

[
V x

�r1;α,β V̄
y

�r2;γ,δ
un(�r1,α)∗un(�r2,δ)um(�r1,β)um(�r2,γ )∗

−V x
�r1;α,βV

y

�r2;γ,δ
γ δun(�r1,α)∗vn(�r2,γ )um(�r1,β)vm(�r2,δ)∗

]
. (18)

In this expression, V̄ is the complex conjugate, and V
μ

�ri
means

that the operator acts on the coordinate �ri .
The corresponding numerical results are presented in Fig. 5

where we show the total magnetization, order parameter at
the impurity site, and the anomalous Hall conductance as a
function of J and λso for a system of 15 × 15 lattice sites.
The case with no SO coupling (λso = 0) was studied before.45

Note, that the SO interaction shifts the critical value Jc, at
which the quantum-phase transition to a magnetic state occurs
for higher values. However, if λso is large enough, the transition
is washed out. Note also that the various quantities reveal the
quantum-phase transition when fixing λso and plotting them as
a function of J . At the transition point, the impurity captures
one electron and breaks a Cooper pair. Note that there still is a
transition when we introduce the SO coupling, but one needs
larger coupling parameter J as the SO increases. If we increase
the SO coupling further, superconductivity is destroyed, and
the Hall conductance exhibits strong oscillations as in the case
of the triplet superconductor.

In order to emphasize the connection between the behavior
of the Hall conductance and the quantum-phase transition,
in Fig. 6 (for different SO couplings), we show the Hall

conductance, amplitude of the order parameter at the impurity
location, and the total magnetization of the conduction
electrons as a function of the coupling between the spin
density of the conduction electrons and the impurity spin. At
the quantum-phase transition, both the amplitude of the order
parameter and the total magnetization have discontinuities.
At this critical coupling, the Hall conductance has a sharp
minimum, which therefore, signals the phase transition.

IV. SUMMARY

We have analyzed the AHE in superconductors, considering
only the intrinsic mechanism that results from the interplay of
the Rashba SO interaction and magnetization. In the normal
phase, the effect appears when both the SO term and the
magnetization are nonzero. In a conventional spin-singlet
superconductor of s-wave symmetry, an extended magneti-
zation destroys the superconductivity. As we have shown,
to have a nonvanishing anomalous Hall conductance in the
superconducting phase, it then is sufficient to assume a single
magnetic impurity in the presence of SO interaction. However,
vanishing coupling between the conduction electrons and the

FIG. 5. (Color online) In the top panels from left to right, total magnetization, order parameter at the impurity site, and anomalous Hall
conductance for the conventional superconductor with a magnetic impurity, calculated for a finite system including 15 × 15 lattice points as a
function of J and λso. In the lower panel, we show some cuts of the Hall conductance for J fixed and varying SO coupling.
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FIG. 6. (Color online) Order parameter at the impurity site, total
magnetization, and anomalous Hall conductance for the conven-
tional superconductor as a function of coupling strength for the
impurity spin, calculated for the SO coupling corresponding to
λso = 0.8, λso = 1.1, and λso = 1.4 as indicated. The first two values
cross the quantum-phase transition, and for the highest value, the
transition turns into a crossover.

magnetic impurity or vanishing SO coupling, lead to zero Hall
conductance.

The case of a spin-triplet superconductor is qualitatively
different. An extended magnetization does not destroy the
superconducting order. The magnetization, generally, either
can be induced by an adjacent ferromagnet owing to the
proximity effect (we also may consider the superconducting
order as a proximity effect in heterostructures where some
metal is coupled to a magnet and a superconductor), or it
may be an intrinsic property of the material (described by
a self-consistent solution for the pairing amplitude). In the
first case, two pairing forms lead to different results. If the

pairing is unitary, the results are similar to those for the normal
phase, and both magnetization and SO coupling are required
for a finite-Hall conductance. The superconducting case also
is very similar to the normal phase when �d is parallel to �s. In
the nonunitary case, however, there is a polarization associated
with the pairing amplitude, and the Hall conductance is finite
as long as the SO coupling is finite (a nonunitary pairing leads
to a finite magnetization as in the case of 3He).

Since the SO interaction generates spin flips, its moderate
values destroy superconductivity in both the conventional
and the triplet superconductors. In the case of s-wave su-
perconductors, critical values of the spin coupling J in the
presence of SO coupling are larger than those for zero SO
coupling, thus, shifting the point at which the quantum-phase
transition appears. In the case of spin-triplet superconductors
with the pairing amplitude determined self-consistently, the
SO coupling leads to suppression of the superconductivity
through a continuous-phase transition. Finally, we have shown
that the Hall conductance tracks the quantum-phase transition
induced by magnetic impurities in conventional supercon-
ductors. This provides transport measurement as a possible
tool to detect the transition, related to earlier predictions
that transport properties are affected by the presence of
magnetic impurities in a superconductor.59 We note that
one of the interests of the AHE is that it can easily be
measured.
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