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Domain walls in chiral p-wave superconductors: Quasiparticle spectrum and dynamics
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We calculate microscopically the viscous friction coefficient and the effective mass of domain walls separating
regions of opposite chirality in clean p-wave superconductors with kx ± iky order parameter. The domain-wall
viscosity and inertia are determined by the transitions between different Bogoliubov quasiparticle states induced
by the domain-wall motion. As a by-product, we present a detailed analysis of the quasiparticle spectrum, both
bound and scattering, in the presence of a general domain wall with an arbitrary phase difference between the
domains.
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I. INTRODUCTION

The properties of topological superconductors and su-
perfluids have attracted considerable interest recently. The
defining feature of these systems is that, while the fermionic
excitations in the bulk are fully gapped, nontrivial topology
of the order parameter manifests itself in the existence
of gapless quasiparticles localized near the order-parameter
inhomogeneities, such as Abrikosov vortices, domain walls,
or the sample boundaries. One of the most studied examples
is the chiral p-wave spin-triplet state, whose experimental
realizations include the superconducting state of Sr2RuO4

(Ref. 1) and thin films of superfluid 3He-A (Ref. 2). The chiral
p-wave state in fermionic superfluids is closely related to the
Moore-Read Pfaffian quantum Hall state.3

The momentum-space order parameter of a chiral p-wave
superconductor is proportional to kx ± iky . In the absence of an
external magnetic field, it is twofold degenerate: the states kx +
iky and kx − iky , which are obtained from each other by time
reversal, have the same energy. Therefore, superconducting
states with opposite chiralities separated by domain walls
(DWs) might form in different parts of the system. Indeed,
there is evidence of the DW existence in Sr2RuO4 (Refs. 4
and 5) and also in slabs of superfluid 3He (Ref. 6). The DW
formation costs gradient energy due to the spatial variation
of the order parameter. In contrast to ferromagnets, which
break up into domains in order to minimize the net magnetic
moment, there is no similarly compelling energy reason in a
neutral superfluid. One possible mechanism is that domains
are spontaneously formed upon cooling across the phase
transition due to the sample inhomogeneity. Alternatively, an
increase in the gradient energy might be compensated by the
creation of low-energy quasiparticles bound to the DW, which
is particularly effective in one-dimensional systems.7

While the static properties of the DWs in various real-
izations of the chiral p-wave state have been extensively
studied,8–18 their dynamics has received comparatively little
theoretical attention: see Ref. 19. The motion of a different
type of planar defect, namely, an interface between the A and
B phases of superfluid 3He, was studied in Refs. 20 and 21,
where it was pointed out that the scattering of Bogoliubov
quasiparticles by the moving interface results in an effective
friction force. Similar ideas can be applied in our case as
well. The DW, which is assumed to be moving uniformly
as a whole, suffers viscous friction and acquires mass due

to its interaction with fermionic quasiparticles; see Sec. II. To
obtain the DW dynamic characteristics we employ the effective
bosonic action formalism; see Sec. III. The Gaussian effective
action for the DW essentially depends on the Bogoliubov
quasiparticle spectrum, of both bound and scattering states,
in the presence of a static DW. The latter is studied in detail
for a general DW structure in Sec. IV. Although some bits and
pieces about the properties of the DW quasiparticle spectrum
can be found scattered in the literature, we believe it is useful
to present a complete picture in one place. Some of the more
technical details are discussed in four appendixes. Finally,
the DW friction coefficient and the zero-temperature effective
mass are calculated in Sec. V. Throughout the paper we use
the units in which h̄ = kB = c = 1.

II. THE MODEL

Let us consider a two-dimensional triplet p-wave fermionic
superfluid or superconductor. The gap function is a spin matrix
given by i(σ̂ d)σ̂2, where d = ẑ(η1kx + η2ky)/kF describes
triplet pairing, kF is the Fermi wavevector, and σ̂ are the Pauli
matrices.22 The order parameter η = (η1,η2) is characterized
by two planar components, which can depend on coordinates
and, in the dynamic case, time. We assume that the band dis-
persion is isotropic: ξ (k) = (k2 − k2

F )/2m∗, with the effective
mass m∗ (our results can be straightforwardly generalized for
the case of anisotropic dispersion). We also neglect disorder,
as well as the effects related to the electric charges, such as the
Meissner screening of the external or internal magnetic fields.

For a static DW, one can choose the axis along the normal
and write the order parameter as

η = (|η1|,|η2|e−iγ )eiφ, (1)

where the amplitudes of the components, the relative phase
γ , and the common phase φ all depend on x. Assuming that
the most stable superconducting state in the bulk is described
by one of the two degenerate chiral states η ∝ (1, ± i) and
allowing for a nonzero phase difference between the two
domains, we have the following expression for the order
parameter asymptotics far from the DW:

η(x) = �0(1,i), x → −∞,
(2)

η(x) = �0e
iχ (1,−i), x → +∞.
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Here χ is a parameter which depends on the microscopic
details (0 � χ � π ). Its value is fixed by the condition of
vanishing supercurrent across the DW; see a discussion of this
point in Appendix A.

An exact analytical expression for the DW structure is
not available and a variety of approximations have been
proposed in the literature. For instance, the amplitudes of both
components can be made constant: |η1| = |η2| = �0 (Ref. 9).
Alternatively, one can assume constant phases: η = �0(1,if )
or η = �0(if,1), where a real function f (x) varies between
1 at x = −∞ and −1 at x = ∞ (Refs. 2, 8, 10, and 11).
Other possibilities include η = �0(cos 
,i sin 
), where 
(x)
varies between 0 and π (Refs. 16 and 17), and (η+,η−) =
�0(eiφ+ cos ζ,eiφ− sin ζ ), where η± = (η1 ∓ iη2)/

√
2, φ± are

parameters, and ζ (x) varies between 0 and π/2 (Refs. 14
and 18). In all cases, the DW order-parameter variation occurs
within a region of width ξd around the origin x = 0, with
ξd being the DW thickness. The precise way in which the
DW order parameter varies between the asymptotics given by
Eq. (2) is not important for our purposes.

We are interested in the motion of the DW as a whole.
Such a motion can be caused, for instance, by the (extremely
weak) interaction of an external magnetic field with the orbital
moment of the Cooper pairs.23 The direction of the latter is
given by the unit vector l = i(η∗ × η)/|η∗ × η|, which takes
opposite values in the two domains [according to Eq. (1), l =
ẑ sgn (sin γ )], thus creating a transverse force on the DW. For
a small driving force one can expect a linear relation between
the DW velocity and the force. According to the fundamental
principles of nonequilibrium statistical mechanics, one can
express linear-response kinetic coefficients, in particular, the
DW viscous friction, in terms of the equilibrium fluctuation
properties. It is legitimate, therefore, to use the Matsubara
formalism with the magnetic field and the driving force both
set to zero. In the absence of external field, the controversy
about the magnitude of the orbital moment and the lack of its
local definition, see Refs. 22, 24, and 25, is not relevant for
our problem.

In the bosonic effective action formalism,26 the order
parameter becomes a two-component dynamical field η(r,τ ),
which depends not only on coordinates, but also on the
Matsubara time τ . We use the following ansatz for a moving
DW:

η(r,τ ) = η[x − X(τ )], (3)

where η(x) is the mean-field order parameter of a static DW
and X(τ ) is the macroscopic coordinate describing a uniform
displacement of the DW. The effective action can be expressed
in terms of X as follows:

Seff[X] = S0 + T
∑
m

K(νm)X(νm)X(−νm), (4)

where S0 is the mean-field action for the static DW, the second
term is the DW dynamic action in the Gaussian approximation,
and νm = 2mπT is the bosonic Matsubara frequency. Due to
the translational invariance of the system, a time-independent
displacement should not affect the action, therefore K(νm =
0) = 0.

One can view the DW as a macroscopic quantum object in-
teracting with the equilibrium bath of fermionic quasiparticles.

Its motion induces transitions between the quasiparticle states,
which result in the effective DW friction and inertia. If the
leading term in the frequency expansion of the kernel K(νm)
is given by η|νm|, then η can be interpreted, in the spirit of the
Caldeira-Leggett model,27 as the viscous friction coefficient,
while a term quadratic in νm yields the inertial mass of the
DW. The frequency is assumed to be small compared to the
gap amplitude, so that the DW order-parameter profile is not
deformed during its motion. Note that there are different
ways to define the effective mass of a topological defect
in superconductors and superfluids, discussed mostly in the
context of the Abrikosov vortex dynamics; see Ref. 28. Our
approach, based on the Matsubara effective action, is similar
to the one developed for the vortex dynamics in Ref. 29. In
general, the dynamics of any stable inhomogeneous structure
of the order parameter can be analyzed in this way.30

III. DERIVATION OF THE EFFECTIVE ACTION

Our investigation of the DW dynamics is based on the
bosonic effective action for a chiral p-wave superconductor.
The standard procedure, which involves integrating out the
fermionic degrees of freedom,26 yields the following expres-
sion for the action:

Seff = 1

V

∫ β

0
dτ

∫
d r|η(r,τ )|2 − 1

2
Tr lnG−1, (5)

where V > 0 is the coupling constant of the triplet p-wave
pairing channel, β is the inverse temperature, and

G−1 =
(

−∂τ − ξ̂ −�̂(r,τ )

−�̂†(r,τ ) −∂τ + ξ̂

)
. (6)

Here ξ̂ = ξ (k̂), �̂(r,τ ) = σ̂1[η1(r,τ )k̂x + η2(r,τ )k̂y]/kF , and
k̂ = −i∇. For a DW moving as a whole, see Eq. (3), we have
�̂(r,τ ) = �̂0[x − X(τ )], where

�̂0(x) = σ̂1
η1(x)k̂x + η2(x)k̂y

kF

(7)

corresponds to the static DW, with the order parameter
components given by Eq. (1).

The first term in the effective action (5) does not depend
on X, while the second one can be expanded in powers of the
displacement, using G−1 = G−1

0 − �, where

G0(r1,r2; ωn) =
∑

j

〈r1|j 〉〈j |r2〉
iωn − Ej

(8)

is the Green’s function at X = 0. Here ωn = (2n + 1)πT

is the fermionic Matsubara frequency, |j 〉 and Ej are the
eigenfunctions and eigenvalues of the 4 × 4 Bogoliubov–de
Gennes (BdG) Hamiltonian for the static DW, which has the
following form:

H0 =
(

ξ̂ �̂0

�̂
†
0 −ξ̂

)
. (9)

The self-energy function � describes the effects of the DW
displacement. At the Gaussian level, we keep only the terms of
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the first and second order in X in its expansion: � = �1 + �2,
where �1 = −XH1, with

H1 =
(

0 ∇x�̂0

∇x�̂
†
0 0

)
(10)

and �2 = (X2/2)H2, with

H2 =
(

0 ∇2
x �̂0

∇2
x �̂

†
0 0

)
.

Subsequent calculations are facilitated by two identities:

〈i|H1|j 〉 = −(Ei − Ej )Wij , (11)

〈i|H2|j 〉 =
∑

k

(Ei + Ej − 2Ek)WikWkj , (12)

where Wij = 〈i|∇x |j 〉 are the matrix elements of the generator
of the DW translations. The first identity follows immediately
from the expressions H1 = [∇x,H0] and 〈i|[∇x,H0]|j 〉 =
(Ej − Ei)〈i|∇x |j 〉. To prove the second identity, we observe
that H2 = [∇x,[∇x,H0]]. On the other hand,

〈i|[∇x,[∇x,H0]]|j 〉
= (Ei + Ej )〈i|∇2

x |j 〉 − 2〈i|∇xH0∇x |j 〉
= (Ei + Ej )

∑
k

WikWkj − 2
∑

k

EkWikWkj .

The last line here is obtained using the completeness of the
eigenfunctions.

Inserting Eqs. (8), (11), and (12) into the expansion of
Tr lnG−1, it is straightforward to show that the terms linear in
X vanish, while the quadratic terms can be collected into the
expression (4) for the Gaussian action. The kernel is given by
K = K1 + K2, where

K1 = 1

4
Tr(�1G0�1G0)

= 1

4
T

∑
n

∑
ij

(Ei − Ej )2

(iωn + iνm − Ei)(iωn − Ej )
|Wij |2,

K2 = 1

2
Tr(�2G0) = −1

2
T

∑
n

∑
ij

Ei − Ej

iωn − Ei

|Wij |2.

Since K2 = −K1(νm = 0), the kernel vanishes for a stationary
DW, as expected. Calculating the fermionic Matsubara sums,
we arrive at the following result:

K(νm) = 1

4

∑
ij

iνm(Ei − Ej )

Ei − Ej − iνm

[f (Ei) − f (Ej )]|Wij |2

= ν2
m

4

∑
ij

(Ei − Ej )[f (Ej ) − f (Ei)]

(Ei − Ej )2 + ν2
m

|Wij |2, (13)

where f (E) = (eβE + 1)−1 is the Fermi function. It is easy
to see that the transitions between the BdG eigenstates
corresponding to the same energy do not contribute to K(νm).

We note that one could also arrive at Eqs. (4) and (13)
via a somewhat shorter route, using a change of coordinates
x − X(τ ) = x ′, y = y ′, τ = τ ′, to transform into the reference
frame co-moving with the DW. In this way, the invariance of the
action under a static displacement of the DW is manifest from

the beginning. A drawback of this approach is that the above-
mentioned transformation implies periodic boundary condi-
tions for the fermionic wave functions as well as for the order
parameter, which are actually inconsistent with a single DW.

It is convenient to represent the Gaussian kernel (13) in the
following form:

K(νm) = ν2
m

4

∫
dε dε′ (ε − ε′)[f (ε′) − f (ε)]

(ε − ε′)2 + ν2
m

N (ε,ε′),

(14)

where N (ε,ε′) = ∑
ij |Wij |2δ(ε − Ei)δ(ε′ − Ej ), satisfying

N (ε,ε′) = N (ε′,ε). To avoid dealing with ill-defined expres-
sions for the matrix elements involving the bulk quasiparticle
states, see Sec. IV below, one can use the identity (11) to obtain

N (ε,ε′) = 1

(ε − ε′)2

∑
ij

|〈i|H1|j 〉|2δ(ε − Ei)δ(ε′ − Ej ),

(15)

where the summation is performed over the pairs of the
eigenstates of H0, satisfying Ei �= Ej . The matrix elements of
H1 are well defined, because the order-parameter derivatives
are nonzero only in the vicinity of the DW.

IV. QUASIPARTICLE SPECTRUM

In order to calculate N (ε,ε′), we need to know the
quasiparticle spectrum for the static DW. In the absence of
external magnetic field, the 4 × 4 BdG Hamiltonian (9) can be
written as a direct sum of two identical 2 × 2 Hamiltonians,
labeled by the spin projection σ = ↑,↓. From this point on we
drop the spin index, restoring it only in the final expressions.
For a DW parallel to the y axis, the two-component wave
function for each spin projection can be written as eikyy�(x),
where �(x) satisfies the equation(

k̂2
x−k2

0
2m∗ �0(x)

�
†
0(x) − k̂2

x−k2
0

2m∗

)
� = E�. (16)

Here k0 =√
k2
F −k2

y and �0(x) = η1(x)(k̂x/kF ) + η2(x)(ky/kF ).
Since the superconducting order parameter varies slowly

on the scale of the inverse Fermi wavevector, one can use
the semiclassical, or Andreev, approximation31 and seek the
quasiparticle wave functions in the form �(x) = eikxxψ(x),
where kx = ±k0. The slowly-varying envelope function ψ =
(u,v)T has electron-like (u) and hole-like (v) components,
which are found by solving the Andreev equation(

−ivF,x∇x �kF
(x)

�∗
kF

(x) ivF,x∇x

)
ψ = Eψ. (17)

The Fermi wavevector kF ≡ (kx,ky) = kF (cos θ, sin θ ) de-
fines the direction of semiclassical propagation of quasipar-
ticles, along which the DW order parameter is given by

�kF
(x) = η1(x) cos θ + η2(x) sin θ, (18)

and vF,x = vF cos θ (vF = kF /m∗). Different models for the
DW structure, see Sec. II, result in different semiclassical order
parameters. However, the asymptotic values of �kF

(x) are
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fixed as follows:

�− ≡ �kF
(x � −ξd ) = �0e

iθ ,
(19)

�+ ≡ �kF
(x � ξd ) = �0e

iχe−iθ ,

according to Eq. (2).
Since �−kF

(x) = −�kF
(x), the Andreev Hamiltonian de-

fined by Eq. (17) has the property H−kF
= −HkF

. Therefore,
the quasiparticle spectrum is electron-hole symmetric in the
following sense: if E is an eigenvalue of HkF

, with the
eigenfunction given by ψ , then −E is an eigenvalue of H−kF

,
with the same eigenfunction.

At given kF , the spectrum of Eq. (17) consists of a
continuum of scattering states in the bulk, with |E| � �0,
and also discrete bound states (called the Andreev bound
states, or ABSs) with the energies |E| < �0. Below we discuss
general properties of the spectrum which are independent of a
particular choice for the DW structure.

A. Scattering states

At each energy satisfying |E| � �0, there are two scattering
states, labeled by L and R, corresponding to the two possible
directions of propagation of the incident Andreev modes. Their
wave functions can be found explicitly only far from the DW,
i.e., at |x| � ξd , where the order parameter is uniform. We
have

ψE,L(x) = C

{
α(−)

q eiqx + rLα
(−)
−q e−iqx, x � −ξd

tLα(+)
q eiqx, x � ξd

(20)

for the left-incident states and

ψE,R(x) = C

{
tRα

(−)
−q e−iqx, x � −ξd

α
(+)
−q e−iqx + rRα(+)

q eiqx, x � ξd

(21)

for the right-incident states. Here q(E) = √
E2−�2

0/|vF,x |�0 and

α(±)
q = 1√

2

⎛
⎝ �±

�0

√
1 + vF,xq

E
sgn E√

1 − vF,xq

E

⎞
⎠ .

The Andreev scattering states are normalized, in the δ-function
sense, with the normalization coefficient given by

C(E) = 1√
2π |vF,x |

√√√√ |E|√
E2 − �2

0

. (22)

The proof is presented in Appendix B.
The Andreev reflection and transmission coefficients

rL,R(E) and tL,R(E) can be found by matching the asymptotics
(20) and (21) and the solutions of Eq. (17) near the DW. They
satisfy the following general properties, independent of the
details of the DW structure:

|tL|2 + |rL|2 = |tR|2 + |rR|2 = 1, t∗RrL + r∗
RtL = 0,

(23)
tL

tR
= �−

�+
. (24)

It follows from Eqs. (23) and (24) that |tL| = |tR| = t and
|rL| = |rR| = r = √

1 − t2, and also that the scattering matrix

defined as

S =
(

tL rR

rL tR

)
(25)

is unitary.
Expressions (23) and (24) follow from certain “con-

servation laws” for the Andreev equation. Let ψE,p1 =
(uE,p1 ,vE,p1 )T and ψE,p2 = (uE,p2 ,vE,p2 )T be two solutions
of Eq. (17) corresponding to the same energy, with p1,2 = L

or R. We define an analog of the Wronskian as follows:
w[ψE,p1 ,ψE,p2 ] = tr(ψ†

E,p1
σ̂3ψE,p2 ). It is straightforward to

show that dw/dx = 0, i.e., w[ψE,p1 ,ψE,p2 ] does not depend
on x. Also, ψ̃ = σ̂1ψ

∗ corresponds to the same energy as ψ

and w[ψ̃E,p1 ,ψE,p2 ] does not depend on x either. Therefore,

u∗
E,p1

(x)uE,p2 (x) − v∗
E,p1

(x)vE,p2 (x) = const, (26)

vE,p1 (x)uE,p2 (x) − uE,p1 (x)vE,p2 (x) = const. (27)

The constants on the right-hand side can be calculated far from
the DW, using the asymptotic expressions (20) and (21). The
properties (23) and (24) are obtained from Eqs. (26) and (27),
respectively.

Explicit analytical expressions for the reflection and trans-
mission coefficients can only be derived in some simple cases,
in particular, for a “sharp DW” model, in which the DW
thickness is sent to zero; see Appendix C. These expressions
can be used to find the asymptotics of tL,R and rL,R for an
arbitrary DW of a finite thickness ξd at the energies close to
the bulk gap edge, when the wavelength of the Andreev modes
is much greater than ξd . It follows from Eq. (C2) that

tL,R = 0, rL,R = −1, (28)

at |E| = �0.
It is also possible to find the asymptotics of the reflection

and transmission coefficients for an arbitrary DW at |E| � �0.
At large energies, one can neglect the off-diagonal terms in the
Andreev equations (17). Then, the solutions for the left- and
right-incident modes have the form

ψE,L(x) = 1√
2π |vF,x |

(
1
0

)
eiEx/vF,x ,

ψE,R(x) = 1√
2π |vF,x |

(
0
1

)
e−iEx/vF,x ,

if E/vF,x > 0, and

ψE,L(x) = 1√
2π |vF,x |

(
0
1

)
e−iEx/vF,x ,

ψE,R(x) = 1√
2π |vF,x |

(
1
0

)
eiEx/vF,x ,

if E/vF,x < 0. Comparing these expressions with Eqs. (20)
and (21), we obtain

tL = �−
�+

, tR = 1, rL = rR = 0, for E/vF,x > 0,

(29)
tL = 1, tR = �+

�−
, rL = rR = 0, for E/vF,x < 0,

at |E| � �0.
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B. Bound states

At subgap energies, i.e., at |E| < �0, quasiparticles cannot
propagate in the bulk, but Eq. (17) has solutions that are
localized near the DW. It turns out that the number of such
solutions can be expressed in terms of the properties of the
scattering states:

NB = 1 + i

2π
ln

det S(∞) det S(−∞)

det S(�0) det S(−�0)
, (30)

where S(E) is the scattering matrix defined by Eq. (25). The
proof is presented in Appendix D. The expression (30) plays
the role of Levinson’s theorem for the Andreev equation (recall
that Levinson’s theorem relates the number of bound states of
the Schrödinger equation to the phase shifts of the scattering
states; see Ref. 32). Note that there is a formal similarity
between the Andreev Hamiltonian for a superconducting DW
and the Dirac Hamiltonian in one dimension. The analogs
of Levinson’s theorem for the Dirac equation have been
extensively studied, in particular in the context of soliton
charge fractionalization.33

The determinant of the S matrix is a pure phase, which
allows one to write the second term on the right-hand
side of Eq. (30) in a more transparent form. From the
asymptotics (28) and (29), we have det S(±�0) = −1 and
det S(±∞) = e±iζ , where ζ = (2θ − χ ) sgn vF,x . Therefore,
ln[det S(±�0)/ det S(±∞)] = ±iπ ∓ iζ + 2iπn± and

NB = 1 + n+ + n−, (31)

where the integers n± are the winding numbers picked up by
the phase of det S(E) as the energy varies between the bulk
gap edges and the infinities. In particular, for the sharp DW
model the determinant of the S matrix is given by Eq. (C3),
from which we obtain n+ = n− = 0 and therefore NB = 1,
in agreement with the direct calculation of the bound states
in Appendix C. Different models for the DW structure yield
different results for the ABS spectrum: while NB = 1 for a
sharp DW, one can have NB > 1 for a DW of finite width.8

At given kF = kF (cos θ, sin θ ), the bound states have
the energies Ea (a = 0, · · · ,NB − 1) and are asymptotically

described by the wave functions ψa(x) ∼ e−
√

�2
0−E2

a |x|/|vF,x |, at
|x| � ξd . As the angle θ varies between 0 and 2π , the bound
state energies change, forming the ABS bands Ea(θ ). The
BdG electron-hole symmetry is manifested in the following
property:

Ea(θ ) = −Ea(θ + π ). (32)

We use the index a = 0 to label the branch of the ABSs
whose energy vanishes at some θ (zero modes). Note that
if E0(θ ) = 0, then, according to Eq. (32), E0(θ + π ) = 0 as
well. The existence of zero modes is dictated by a topological
argument, which relates the number of such modes with
the difference between the k-space topological invariants of
the chiral order parameters in the two domains.2 Taking the
spin into account, there are two pairs of spin-degenerate zero
modes corresponding to the opposite directions of semiclas-
sical propagation, i.e., four zero modes altogether. This is
confirmed by the explicit calculation for a sharp DW model in
Appendix C. In general, fermion zero modes are present on any

interface separating two superfluid or superconducting states
with different topological charges; see Ref. 34 for a review.

An important property of the ABS bands is the absence of
degeneracies:

Ea(θ ) �= Eb(θ ), (33)

at any a and b. This can be shown as follows. Suppose that at
some θ there are two bound-state solutions of Eq. (17), ψ1 and
ψ2, corresponding to the same energy E. One can use Eq. (27)
with the constant on the right-hand side equal to zero (due
to the exponential decay of the bound states at infinity) and
obtain ψ1(x) = F (x)ψ2(x), where F (x) is a scalar function.
Inserting this into Eq. (17), we have vF,x∇xF = 0, therefore
F (x) = const, i.e., ψ1 and ψ2 in fact describe the same state.
The ABSs can only become degenerate when vF,x = 0, but
at such directions of kF the Andreev approximation is not
applicable,

The bound states are responsible for a nonzero density of
states at |E| < �0, which affects the system’s low-temperature
thermodynamics (for instance, there is a linear-in-T contri-
bution to the specific heat, whose magnitude is proportional
to the volume fraction occupied by the DWs; see Ref. 11),
and also influence the Josephson current between two chiral
superconductors.35

V. DOMAIN WALL FRICTION AND MASS

Now we are in the position to calculate N (ε,ε′) in the
Gaussian kernel (14). In the semiclassical approximation, the
states i and j in Eq. (15) correspond to the same Fermi
wavevector kF , so that the matrix elements can be taken
between the solutions of the Andreev equation (17). We have

N (ε,ε′) = 1

(ε − ε′)2
[ϕ1(ε,ε′)θ (|ε| − �0)θ (|ε′| − �0)

+ϕ2(ε,ε′)θ (|ε| − �0)θ (�0 − |ε′|)
+ϕ2(ε′,ε)θ (�0 − |ε|)θ (|ε′| − �0)

+ϕ3(ε,ε′)θ (�0 − |ε|)θ (�0 − |ε′|)]. (34)

At given kF , N (ε,ε′) contains contributions from the tran-
sitions between different scattering states (ϕ1), between the
scattering states and the bound states (ϕ2), and also between
different bound states (ϕ3). The total intensity of the quasipar-
ticle transitions is obtained by summing over all directions of
semiclassical propagation and over the two spin projections:

ϕ1(ε,ε′) = 2
∑
kF

∑
p,p′

|〈ε,p|Q̂|ε′,p′〉|2,

ϕ2(ε,ε′) = 2
∑
kF

∑
p

∑
b

|〈ε,p|Q̂|b〉|2δ(ε′ − Eb), (35)

ϕ3(ε,ε′) = 2
∑
kF

∑
a �=b

|〈a|Q̂|b〉|2δ(ε − Ea)δ(ε′ − Eb).

Here

Q̂ =
(

0
d�kF

(x)
dx

d�∗
kF

(x)

dx
0

)
,

with �kF
(x) given by Eq. (18), p,p′ = L or R, and a,b =

0, · · · ,NB − 1. The summation over kF amounts to the
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integration over the angle θ :∑
kF

(· · ·) = NF

∫ 2π

0
dθ |vF,x |(· · ·),

where NF = m∗/2π is the Fermi-level density of states.
It follows from the electron-hole symmetry of the quasi-
particle spectrum that N (−ε,−ε′) = N (ε,ε′) and, therefore,
ϕi(−ε,−ε′) = ϕi(ε,ε′).

To calculate the matrix elements in Eq. (35) one needs to
know the wave functions of the bound and scattering states.
Lacking such knowledge for a general DW, one can still make
progress using dimensional arguments. Since the only energy
and length scales of the problem are given by �0 and ξd

respectively, it is not difficult to show that∑
p,p′

|〈ε,p|Q̂|ε′,p′〉|2 = �2
0

v2
F,x

F1

(
ε

�0
,

ε′

�0
; θ

)
,

∑
p

∑
b

|〈ε,p|Q̂|b〉|2δ(ε′ − Eb) = �2
0

v2
F,x

F2

(
ε

�0
,

ε′

�0
; θ

)
,

∑
a �=b

|〈a|Q̂|b〉|2δ(ε − Ea)δ(ε′ − Eb) = �2
0

v2
F,x

F3

(
ε

�0
,

ε′

�0
; θ

)
,

(36)

where Fi(x,x ′; θ ) are dimensionless functions. Inserting these
expressions in Eq. (35), we obtain

ϕi(ε,ε
′) = 2NF �2

0

vF

∫ 2π

0

dθ

| cos θ |Fi

(
ε

�0
,

ε′

�0
; θ

)

= NF �2
0

vF

fi

(
ε

�0
,

ε′

�0

)
, (37)

where fi are dimensionless functions. The Fermi surface
angular integrals logarithmically diverge at θ → ±π/2 (i.e.,
for the quasiparticles moving almost parallel to the DW)
and have to be cut off at | cos θ | ∼ √

�0/εF � 1. In this
way we obtain, with logarithmic accuracy, fi = ln(εF /�0)f̃i ,
where εF = k2

F /2m is the Fermi energy and f̃i(x,x ′) =
2Fi(x,x ′; π/2) + 2Fi(x,x ′; −π/2). Therefore,

ϕi(ε,ε
′) = NF �2

0

vF

ln

(
εF

�0

)
f̃i

(
ε

�0
,

ε′

�0

)
. (38)

The expressions above can be calculated explicitly in the
case of a sharp DW.19 It follows from Eq. (C1) that

Q̂ = �0

(
0 ρ

ρ∗ 0

)
δ(x),

where ρ = (�+ − �−)/�0. Using Eqs. (20) and (21), we
obtain

F1(x,x ′; θ ) = 2

π2
sin2

(
θ − χ

2

) |xx ′|t2(x)t2(x ′)√
x2 − 1

√
x ′,2 − 1

×
[

1 − 1

xx ′ cos2

(
θ − χ

2

)]
. (39)

Here t is the absolute value of the Andreev transmission
coefficient, see Eq. (C2), for which we have

t2(x) = x2 − 1

x2 − cos2(θ − χ/2)
.

Using Eqs. (20), (21), and (C4), we obtain

F2(x,x ′; θ ) = 2

π
sin2

(
θ − χ

2

) |x|t2(x)√
x2 − 1

√
1 − x ′,2

×
[

1 − x ′

x
cos(2θ − χ ) −

√
1 − x ′,2

x

× sgn (cos θ ) sin(2θ − χ )

]
δ

[
x ′ − E0(θ )

�0

]
,

(40)

where the bound-state energy E0 is given by Eq. (C6). Finally,
F3 = 0, since there is only one bound state at each θ . One
can see that Fi are nonsingular near the bulk gap edge, i.e.,
at |x|,|x ′| → 1, because of the vanishing of the Andreev
transmission coefficients. This property actually holds for a
general DW, since the wavelength of the Andreev states near
the bulk gap edge diverges, making it possible to neglect the
DW width at |E| → �0.

Equations (39) and (40) yield the following expressions for
the energy dependence in Eq. (38):

f̃1(x,x ′) = 8

π2
cos2 χ

2

|xx ′|√x2 − 1
√

x ′,2 − 1

[x2 − sin2(χ/2)][x ′,2 − sin2(χ/2)]

×
(

1 − 1

xx ′ sin2 χ

2

)
, (41)

f̃2(x,x ′) = 4

π
cos3 χ

2

|x|√x2 − 1

x2 − sin2(χ/2)

(
1 − x ′

x

)

×
[
δ

(
x ′ − sin

χ

2

)
+ δ

(
x ′ + sin

χ

2

)]
, (42)

f̃3(x,x ′) = 0. (43)

In some exceptional cases the logarithmic approximation, see
Eq. (38), might be insufficient. For instance, it follows from
Eqs. (41)–(43) that the functions f̃i all vanish for a sharp DW
with χ = π . In such cases one should use the more general
Eq. (37).

A. Results

Now we turn to the calculation of the effective dynamic
action for the DW; see Eq. (14). At finite temperatures, the
most singular contribution to the action at νm → 0 comes from
ε′ close to ε, which means that one can keep only the first term
in the expression (34). The contribution from the transitions
between the bound states can be neglected, because the ABS
bands are nondegenerate; see Eq. (33). We have

K(νm) = ν2
m

2

∫ ∞

�0

dε

(
−∂f

∂ε

)
ϕ1(ε,ε)

∫ ε−�0

−∞

dε

ε2 + ν2
m

,

where ε = ε − ε′. The integration over ε can be extended to
infinity, since we are only interested in the low-frequency
limit. Inserting here ϕ1 given by Eq. (38), we obtain the
result that the leading frequency dependence of the kernel
(13) is nonanalytic: K(νm) = η|νm|, with the viscous friction
coefficient given by

η(T ) = NF �2
0

vF

ln

(
εF

�0

)
�

(
�0

T

)
, (44)
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where

�(y) = πy

8

∫ ∞

1

dx

cosh2(yx/2)
f̃1(x,x).

It is not possible to calculate the integral and obtain an
analytical expression for �(y). Even in the simplest case of a
sharp DW, it follows from Eq. (41) that

�(y) = y

π
cos2 χ

2

∫ ∞

1

dx

cosh2(yx/2)

x2 − 1

x2 − sin2(χ/2)
,

which still cannot be evaluated in a closed form.
At low temperatures, all we need is the asymptotics of �(y)

at y � 1, which is given by �(y) ∼ e−y . Therefore,

η(T ) ∼ NF �2
0

vF

ln

(
εF

�0

)
e−�0/T ,

at T � �0. Physically, the DW friction is caused by the
transitions between the bulk scattering states. These states
absorb energy from the DW and then carry it away to dissipate
into the thermal reservoir. Since the bulk quasiparticles are
gapped, the temperature dependence of the friction coefficient
is exponential.

Note that the expression (44) has the same general order
of magnitude, but a different temperature dependence, as the
friction coefficient of an A-B interface in superfluid 3He
(Refs. 20 and 21). In the latter case, there are low-energy
quasiparticles in the bulk with the momenta close to the
A-phase gap nodes. The interface friction at low temperatures
is dominated by the Andreev reflection of such quasiparticles
off the interface, leading to a power-law behavior η(T ) ∝ T 4

or T 3, depending on the orientation of the orbital vector l
relative to the interface.21

At T → 0, the friction is negligibly small and the DW
dynamics is dominated by inertia. Setting νm = 0 inside the
integral in Eq. (14), we obtain K(νm) = Mν2

m/2, where

M =
∫ ∞

0
dε

∫ 0

−∞
dε′ N (ε,ε′)

ε − ε′ (45)

is the effective mass per unit length of the DW. Inserting here
Eqs. (34) and (38), we obtain

M = C
NF �0

vF

ln

(
εF

�0

)
, (46)

where

C =
∫ ∞

1
dx

∫ −1

−∞
dx ′ f̃1(x,x ′)

(x − x ′)3

+ 2
∫ ∞

1
dx

∫ 0

−1
dx ′ f̃2(x,x ′)

(x − x ′)3

+
∫ 1

0
dx

∫ 0

−1
dx ′ f̃3(x,x ′)

(x − x ′)3
(47)

is a dimensionless coefficient. We see that the transitions
between the electron and hole branches of the continuous
spectrum (the first term on the right-hand side), between the
bound and the scattering states (the second term), and between
different bound states (the third term) all contribute to the DW
inertial mass.

Since NF = m∗/2π in two dimensions, we have M ∼
(m∗/ξ0) ln(εF /�0), where ξ0 ∼ vF /�0 is the pair coherence
length. At zero temperature ξd ∼ ξ0, therefore, the ratio of the
DW mass to the total fermionic mass per unit length contained
in a strip of width ξd is of the order of (�0/εF )2 ln(εF /�0), i.e.,
very small. This is consistent with the estimate of the effective
mass of the A-B interface: according to Ref. 20, it is smaller
by a factor of (�0/εF )2 than the total mass of the superfluid in
the interface region.

VI. CONCLUSIONS

We have calculated the viscous friction coefficient and
the zero-temperature effective mass of a domain wall in a
chiral p-wave superconductor. The origin of both can be
traced to the interactions of the DW with the Bogoliubov
fermionic quasiparticles. The viscous friction is caused by
the transitions among the bulk quasiparticle states induced by
the DW motion. The friction coefficient is exponentially small
at low temperatures, due to the bulk quasiparticles requiring
thermal activation. The effective mass is determined by the
transitions involving both the scattering states in the bulk and
the Andreev bound states localized near the wall.

The classical equation of motion for a DW can be
written as MẌ + ηẊ = F , where the effective mass M

and the friction coefficient η are given by Eqs. (46) and
(44), respectively. The right-hand side contains the external
driving force, which can come from the interaction of
the orbital magnetization of the Cooper pairs with the
external magnetic field,23 or from the coupling of the
superconducting order parameter with the lattice deformation
created by a sound wave.36 The latter mechanism offers a
direct way of measuring the dynamical characteristics of
the DWs by probing their contribution to the ultrasound
attenuation.37

The DW dynamics for small deviations from equilibrium
are determined by the Bogoliubov quasiparticle spectrum
in the presence of a static DW. We presented a detailed
investigation of this spectrum, including the general
properties of the scattering states as well as the derivation of
an analog of Levinson’s theorem counting the number of the
Andreev bound states. We did most of our calculations for a
general DW with an arbitrary phase difference between the
domains, without relying on any particular model for a DW
structure. To illustrate the general formulas, we discussed in
detail the case of a DW of zero width, for which one can make
considerable analytical progress.

Our results are immediately applicable to clean neutral
fermionic superfluids, such as 3He or cold atomic Fermi gases.
In real superconductors, one has to take into account magnetic
fields and screening currents, as well as disorder. The latter
will create an external pinning force on the DW, changing its
dynamics qualitatively. In addition, impurities will affect the
DW friction and inertia by introducing quasiparticle relaxation.
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APPENDIX A: GINZBURG-LANDAU DESCRIPTION

To develop a phenomenological understanding of the static
DW structure, in particular, the origin of the phase difference
between the domains, we use the Ginzburg-Landau (GL) free
energy density given by F = Fu + Fg , where

Fu = α(|η1|2 + |η2|2) + β1(|η1|2 + |η2|2)2 + β2

∣∣η2
1 + η2

2

∣∣2

(A1)

is the uniform part and

Fg = K1(∇iηj )∗(∇iηj ) + K2(∇iηi)
∗(∇j ηj )

+K3(∇iηj )∗(∇j ηi) (A2)

is the gradient part. To avoid unnecessary complications we
use the expression appropriate for the isotropic case. The chiral
states η = �0(1,±i), with �0 = √|α|/4β1, correspond to the
minimum of Fu if β1,β2 > 0.

The DW structure, see Eq. (1), can be written as

η1(x) = �0f1(x)eiφ(x), η2(x) = �0f2(x)eiφ(x)−iγ (x), (A3)

where f1,2 are dimensionless amplitudes of the order-
parameter components. The order-parameter asymptotics are
given by Eq. (2).

The origin of a nonzero phase difference χ can be
traced to the condition of vanishing supercurrent across the
DW. The latter is obtained from Eq. (A2) in the standard
manner, with the result ji = 2 Im (K1η

∗
j∇iηj + K2η

∗
i ∇j ηj +

K3η
∗
j∇j ηi). Inserting here Eq. (A3), we obtain

jx = 2�2
0

(
K123f

2
1 + K1f

2
2

)
(∇xφ) − 2K1�

2
0f

2
2 (∇xγ ),

(A4)

where K123 = K1 + K2 + K3. The presence in this expression
of both the common and the relative phase gradients reflects
the intimate coupling of the gauge and the internal (orbital)
degrees of freedom in p-wave fermionic superfluids.

Because of current conservation we have ∇xjx = 0, there-
fore jx = const. The value of the transverse current is fixed
by external sources and one can set jx = 0 at all x. Then,
Eq. (A4) yields a linear relation between the gradients of φ

and γ , which allows one to eliminate the common phase from
the GL energy functional. The result is

Fu = α�2
0

(
f 2

1 + f 2
2

) + β1�
4
0

(
f 2

1 + f 2
2

)2

+β2�
4
0

(
f 4

1 + f 4
2 + 2f 2

1 f 2
2 cos 2γ

)
,

(A5)
Fg = K123�

2
0(∇xf1)2 + K1�

2
0(∇xf2)2

+ K1K123f
2
1 f 2

2

K123f
2
1 + K1f

2
2

�2
0(∇xγ )2.

Variational minimization of these expressions yields a system
of three coupled nonlinear differential equations for f1,2(x)
and γ (x), subject to the boundary conditions f1,2(±∞) = 1
and γ (±∞) = ±π/2. Using the solution of these equations,
we can calculate the parameter χ in Eq. (2):

χ ≡ φ(+∞) − φ(−∞) =
∫ ∞

−∞

K1f
2
2

K123f
2
1 + K1f

2
2

dγ

dx
dx.

(A6)

The value of χ is manifestly nonuniversal, in the sense that it
depends on the microscopic details. We note that, while the
“locking” between φ and γ , which results in the relation (A6),
is due to the condition jx = 0, the supercurrent along the DW
remains nonzero.

Due to the complexity of the equations for f1,2(x) and γ (x),
there is no exact analytical solution for the DW structure.
To make progress, one can use, e.g., a constant-amplitude
ansatz for the order-parameter components,9 which amounts
to putting f1,2(x) = 1 at all x. Then, we obtain from Eq. (A5)
the following expression for the free energy:

F = (· · ·) + K̃�2
0(∇xγ )2 + 2β2�

4
0 cos 2γ,

where the first term contains the γ -independent contributions
and K̃ = K1K123/(K123 + K1). The variational equation for
the relative phase has the form of a sine-Gordon equation,
with a kink-like solution sin γ (x) = tanh(x/ξd ), where ξd =√

K̃/4β2�
2
0 is of the order of the GL correlation length and has

the meaning of the DW thickness. From Eq. (A6) we have

χ = K1

2K1 + K2 + K3
π. (A7)

In the weak-coupling model, K1 = K2 = K3 (Ref. 22), there-
fore χ = π/4.

APPENDIX B: NORMALIZATION OF THE ANDREEV
SCATTERING STATES

Let us consider two solutions, ψE,p and ψE′,p′ , of Eq. (17),
corresponding to energies E and E′, with p,p′ = L or
R. It is easy to show that ivF,x∇x tr(ψ†

E,pσ̂3ψE′,p′ ) = (E −
E′) tr(ψ†

E,pψE′,p′ ), where “ tr” denotes a 2 × 2 matrix trace
in the electron-hole space (setting E = E′, we recover the
“conservation law” for w[ψE,p,ψE,p′ ]; see Sec. IV A). After
integration, we arrive at the following useful identity:

(E − E′)
∫ x2

x1

tr(ψ†
E,pψE′,p′ ) dx

= ivF,x tr(ψ†
E,pσ̂3ψE′,p′ )|x2

x1
, (B1)

which is valid for arbitrary x1 and x2.
The next step is to put x1 = −�/2, x2 = �/2, and take the

limit � → ∞. The integral on the left-hand side of Eq. (B1)
becomes the inner product of the states ψE,p and ψE′,p′ ,
denoted by 〈E,p|E′,p′〉. To prove the normalization, it is
sufficient to consider the case E′ → E. The normalization
integral for the scattering states of the Schrödinger equation
contains a Dirac δ-function,38 i.e., it should be interpreted as
a generalized function, and we expect the same to hold for
the Andreev scattering states as well. After the substitution of
the asymptotic expressions (20) and (21), the right-hand side
of Eq. (B1) contains the terms proportional to e±i(q+q ′)�/2 and
e±i(q−q ′)�/2, where q ′ = q(E′). The former terms oscillate fast
at � → ∞ and can be neglected.

Since the terms containing e±i(q−q ′)�/2 oscillate fast unless
q = q ′, one can put E = E′ in the pre-exponential coefficient.
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Then, using the properties (23), we obtain

〈E,L|E′,L〉 = 〈E,R|E′,R〉

= 2v2
F,xq

E
C2(E) lim

�→∞
sin(q − q ′)�/2

E − E′ ,

〈E,L|E′,R〉 = 〈E,R|E′,L〉 = 0. (B2)

The identity lim�→∞ sin(x�)/x = πδ(x) allows one to write
the last factor on the right-hand side of Eq. (B2) in the form

lim
�→∞

sin(q − q ′)�/2

E − E′ = π sgn E δ(E − E′).

Substituting in Eq. (B2) the expressions (22) for the nor-
malization coefficients, we finally obtain 〈E,p|E′,p′〉 =
δpp′δ(E − E′).

APPENDIX C: “SHARP DW” MODEL

Many qualitative features of the DW quasiparticle spectrum
can be illustrated using a simple model, in which there is
a sharp boundary at x = 0 between the two domains with
uniform order parameters of opposite chirality. The order
parameter in the Andreev equation (17) has the form

�kF
(x) = �−θ (−x) + �+θ (x), (C1)

where �± are given by Eq. (19) and θ (x) is the Heaviside
step function. The boundary condition for the Andreev wave
functions is ψ(+0) = ψ(−0).

For the scattering states (|E| � �0), one can use Eqs. (20)
and (21) at all x. A straightforward calculation produces
the following expressions for the transmission and reflection
coefficients,

tL = �−
�+

tR = 2�−vF,xq

(�+ + �−)vF,xq + (�+ − �−)E
,

(C2)

rL = rR = − �0(�+ − �−) sgn E

(�+ + �−)vF,xq + (�+ − �−)E
,

and also for the determinant of the S matrix; see Eq. (25):

det S(E) =
√

E2 − �2
0 + iλE√

E2 − �2
0 − iλE

, (C3)

where λ = tan(θ − χ/2) sgn vF,x .
For the subgap bound states (|E| < �0), the normalized

wave function has the form

ψ(x) =
√

�

2|vF,x |e
−�|x|/|vF,x |

(
�±

E∓i� sgn vF,x

1

)
, (C4)

where � =
√

�2
0 − E2. The upper (lower) sign corresponds

to x > 0 (x < 0). Matching the wave functions at x = 0 we
arrive at the characteristic equation

E + i� sgn vF,x

E − i� sgn vF,x

= �−
�+

. (C5)

It has only one solution, which can be found as follows.
Let us introduce Ẽ = E sgn vF,x . Since Ẽ2 + �2 = �2

0, one
can write Ẽ = �0 cos 
 and � = �0 sin 
. It follows from
Eq. (C5) that e2i
 = ei(2θ−χ), therefore 
 = θ − χ/2 + πn

-1

0

1

χ=π

-1

0

1

E
0
/Δ

0

χ=π/4

0 1 2 3 4 5 6
θ

−1

0

1
χ=0

FIG. 1. The ABS energy for a sharp DW as a function of the
direction of the quasiparticle propagation, for different values of the
phase difference across the DW: χ = 0 (bottom panel), χ = π/4
(middle panel), and χ = π (top panel).

(n is an integer) and Ẽ = �0(−1)n cos(θ − χ/2). The par-
ity of n can be found from the condition � � 0, which
yields sgn(sin 
) = (−1)n sgn[sin(θ − χ/2)] = 1. Collecting
all pieces together, we obtain the following expression for the
ABS energy:

E0(θ ) = �0s(θ ) cos

(
θ − χ

2

)
, (C6)

where s(θ ) = sgn[sin(θ − χ/2) cos θ ].
Expression (C6) is valid for an arbitrary phase difference

across the DW, thus generalizing the results of Refs. 8, 10, 11,
and 13, in which the bound states were studied for the (1,±i)
(i.e., χ = 0) and (±1,i) (i.e., χ = π ) DWs. Note that the
ABS energy is not a continuous function of θ , in general. The
discontinuities occur at the special directions of semiclassical
propagation: at θ = ±π/2, i.e., for the quasiparticles moving
parallel to the DW (in this case the Andreev approximation
is actually not applicable and a more accurate treatment is
needed), and also at θ = χ/2 and θ = χ/2 + π , for which the
DW is “invisible” to the quasiparticles, because �+ = �−.

In Fig. 1 we plotted the ABS energy for several values
of χ . In particular, if χ = π , then Eq. (C6) yields E =
−�0 sin θ = −�0ky/kF (see also Ref. 11), vanishing at ky =
0. The presence of zero modes is in fact generic: the ABS
energy vanishes at θ = (χ ± π )/2, resulting in low-energy
quasiparticles bound to the DW. Taking the spin into account,
we have two pairs of spin-degenerate zero-mode branches.

We would like to note that one can also use Eq. (C5) to
obtain the ABS spectrum for a DW between two isotropic
s-wave superconductors, which can be realized as a Josephson
junction with the phase difference χ . In this case, the right-
hand side of Eq. (C5) is equal to e−iχ and the bound state
energy is given by E = −�0 sgn vF,x cos(χ/2) (Ref. 39).
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APPENDIX D: PROOF OF EQ. (30)

We start with the Andreev Hamiltonian H defined
by Eq. (17), with the order parameter written in the
form �kF

= |�kF
|eiϕ , where the amplitude and the phase

have the following asymptotics: ϕ(x) = θ at x � −ξd ,
ϕ(x) = χ − θ at x � ξd , and |�kF

(x)| = �0 at |x| � ξd .
To represent the DW as a localized perturbation, we remove
the phase from the off-diagonal elements by a unitary
transformation as follows: U †HU = H̃ , where U = eiϕσ̂3/2.
The transformed Hamiltonian is given by H̃ = H0 + δH ,
where H0 = −ivF,x σ̂0∇x + �0σ̂1 describes the Bogoliubov
excitations in the uniform p-wave superconducting state, and
δH = vF,xϕ

′(x)σ̂0/2 + (|�kF
(x)| − �0)σ̂1 is a perturbation

which is nonzero only near the DW.
The number of the bound states for H is the same as

for H̃ . To calculate the latter we observe that there is a
one-to-one correspondence between the eigenstates of H̃ and
H0, which are found from the equations H̃ ψ̃i = Eiψ̃i and
H0ψ

(0)
i = E

(0)
i ψ

(0)
i , respectively (to verify this, one can put

the system in a box of length �, with � → ∞, introduce
H̃λ = H0 + λδH , and consider the smooth evolution of the
spectrum as the parameter λ varies from 0 to 1). The total
number of states is “conserved,” which is formally expressed
by the formula

∫ ∞
−∞ dε[ρ(ε) − ρ0(ε)] = 0, where

ρ(ε) = lim
�→∞

∫ �/2

−�/2
dx

∑
i

δ(ε − Ei) tr ψ̃
†
i (x)ψ̃i(x) (D1)

is the density of states for H̃ and

ρ0(ε) = lim
�→∞

∫ �/2

−�/2
dx

∑
i

δ
(
ε − E

(0)
i

)
tr ψ

(0),†
i (x)ψ (0)

i (x)

(D2)

is the density of states for H0. One can write ρ = ρB + ρS ,
where ρB (ρS) is the contribution of the bound (scattering)
states. On the other hand, ρ0 is nonzero only at |E| � �0.
Therefore,

0 =
∫

|E|<�0

ρB dε +
∫

|E|��0

(ρS − ρ0)dε

= NB +
∫

|E|��0

(ρS − ρ0)dε.

Inserting here Eqs. (D1) and (D2) and using the energy E and
the direction of propagation p = L,R to label the scattering

states, we arrive at the following expression for the number of
the bound states:

NB = −
∫

|E|��0

dE lim
�→∞

∫ �/2

−�/2
dx

∑
p=L,R

× [
tr ψ̃

†
E,p(x)ψ̃E,p(x) − tr ψ

(0),†
E,p (x)ψ (0)

E,p(x)
]
. (D3)

Since the eigenstates of H and H̃ are related by a unitary
transformation, ψ̃E,p(x) = e−iϕ(x)σ̂3/2ψE,p(x), one can replace
ψ̃E,p(x) in Eq. (D3) by ψE,p(x).

The right-hand side of Eq. (D3) is ill-defined because it
contains the difference between two infinite (δ-function) nor-
malization integrals for the scattering states with and without
the DW. To make sense of this expression, we split the energies
of the eigenfunctions as follows: ψ

†
E,pψE,p − ψ

(0),†
E,p ψ

(0)
E,p =

[ψ†
E,pψE′,p − ψ

(0),†
E,p ψ

(0)
E′,p]E′→E . Then, one can use the identity

(B1) to express the integral over coordinates in Eq. (D3) in
terms of the asymptotic values of the eigenfunctions far from
the DW. In this way, we obtain

NB = −ivF,x

∫
|E|��0

dE lim
�→∞

P, (D4)

where

P = lim
E′→E

1

E − E′
∑

p=L,R

[
tr(ψ†

E,pσ̂3ψE′,p)
∣∣�/2
−�/2

− tr
(
ψ

(0),†
E,p σ̂3ψ

(0)
E′,p

)∣∣�/2
−�/2

]
.

The asymptotics of ψE,p are given by Eqs. (20) and (21),
while the expressions for ψ

(0)
E,p can be obtained from Eqs. (20)

and (21) by setting tL,R = 1 and rL,R = 0. After some
straightforward algebra, we have

P = lim
E′→E

1

E − E′ [A(E,E′)e−i(q−q ′)�/2 + B(E,E′)ei(q+q ′)�/2

+B∗(E′,E)e−i(q+q ′)�/2], (D5)

where

A(E,E′) = [t∗L(E)tL(E′) + r∗
R(E)rR(E′) − 1]a++(E,E′)

− [r∗
L(E)rL(E′) + t∗R(E)tR(E′) − 1]a−−(E,E′),

B(E,E′) = rR(E′)a−+(E,E′) − rL(E′)a+−(E,E′),

and

ass ′ (E,E′) = 1

2
C(E)C(E′)

[√(
1 + s

vF,xq

E

)(
1 + s ′ vF,xq ′

E′

)
sgn E sgn E′ −

√(
1 − s

vF,xq

E

)(
1 − s ′ vF,xq ′

E′

)]
,

with s,s ′ = ±.
It is easy to see that A(E,E) = 0, due to the property (23) of the transmission and reflection coefficients, and B(E,E) = 0.

Therefore,

P = − ∂A(E,E′)
∂E′

∣∣∣∣
E=E′

− ∂B(E,E′)
∂E′

∣∣∣∣
E=E′

eiql − ∂B∗(E′,E)

∂E′

∣∣∣∣
E=E′

e−iql . (D6)
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In the first term, one has only to differentiate the coefficients
in front of a++ and a−−, because |tL| = |tR| = t and |rL| =
|rR| = √

1 − t2. In the last two terms, one has only to
differentiate a−+ and a+−. The result is P = P1 + P2, where

P1 = − 1

2πvF,x

sgn E

(
t∗L

∂tL

∂E
+ r∗

L

∂rL

∂E
+ t∗R

∂tR

∂E
+ r∗

R

∂rR

∂E

)
(D7)

and

P2 = − i

vF,x

C2 �0

|E| Im

[
(rL + rR)

eiql

q

]
.

In P1, one can use the definition of the S matrix, Eq. (25),
to represent the expression in the brackets as tr(S†∂S/∂E).
In P2, we observe that in the limit � → ∞ only small q are
important, corresponding to the energies close to the buk gap

edge. For these energies, the asymptotics (28) hold and we
have rL + rR → −2. Therefore,

lim
�→∞

P2 = 2i

vF,x

C2 �0

|E| lim
�→∞

sin q�

q

= i

vF,x

[δ(E + �0) + δ(E − �0)] . (D8)

Inserting Eqs. (D7) and (D8) into Eq. (D4), we obtain

NB = 1 + i

2π

∫
|E|��0

dE sgn E tr

(
S† ∂S

∂E

)
. (D9)

The unity on the right-hand side originates from the states
located exactly at the bulk gap edge, which give rise to
the δ functions in Eq. (D8). When integrated over en-
ergy, each of these δ functions contributes 1/2 to NB .
Finally, using tr(S†∂S/∂E) = ∂(ln det S)/∂E, we arrive at
Eq. (30).
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