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Spin-flip scattering and critical currents in ballistic half-metallic d-wave Josephson junctions
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We analyze the dc Josephson effect in a ballistic superconductor/half-metal/superconductor junction by means
of the Bogoliubov–de Gennes equations. We study the role of spin-active interfaces and compare how different
superconductor symmetries, including d-wave pairing, affect the Josephson current. We analyze the critical
current as a function of junction width, temperature, and spin-flip strength and direction. In particular, we
demonstrate that the temperature dependence of the supercurrent in the dxy symmetry case differs qualitatively
from the s and dx2−y2 symmetries. Moreover, we have derived a general analytical expression for the Andreev
bound-state energies that shows how one can either induce 0-π transitions or continuously change the ground-state
phase of the junction by controlling the magnetic misalignment at the interfaces.
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I. INTRODUCTION

The antagonistic nature of superconductivity and ferro-
magnetism makes their coexistence an unlikely one in bulk
materials. In conventional superconductors, the current is
carried by Cooper pairs consisting of two electrons in a
spin singlet state, i.e., with antiparallel spins.1 Ferromagnets
on the other hand, favor parallel spin alignment. Hence one
might expect that the proximity effect arising when bringing a
ferromagnet into contact with a superconductor would decay
rapidly due to this antagonistic nature.

However, it has been predicted that this rapid decay may
not occur if there is some magnetic inhomogeneity present
at the interface between a superconductor and a ferromagnet.
Bergeret, Volkov, and Efetov2 proposed a theory that coherent
triplet Cooper pairs can be induced in ferromagnets, which
in turn gives rise to a long-range triplet current. Several
experiments have detected signs of this long-range triplet
current,3–7 and it is evident that a magnetic inhomogeneity
is causing triplet pairing with parallel spins. Long-range
triplet currents should also appear in inhomogeneous magnetic
junctions with d-wave superconductors.8

Half metals9 are fully spin-polarized ferromagnets, i.e.,
they are metallic for one spin direction and insulating for the
other. Some half metals include CrO2, La0.7Sr0.3MnO3, and
Fe3O4.10 Keizer et al.11 were the first to report long-range
supercurrents through CrO2. However, this group reported
large variations in the magnitude of the critical current in
the different samples. Moreover, some samples did not show
any long-ranged supercurrent at all. Recent experiments have
detected stable long-range currents believed to be caused by
a formation of spin-triplet pairing.12 All experiments report
that some sort of spin-flip scattering caused by a magnetic
inhomogeneity is required to obtain the long-range currents.

As there is only one spin direction at the Fermi level in
half metals, the current passing through will be completely
spin polarized. This has the potential for useful applications
in low-temperature nanoelectronics. There have been several
theoretical works on half-metallic Josephson junctions,13–18

but to our knowledge no one has considered d-wave supercon-
ductors in this context. From a more general perspective, the
interplay between unconventional superconductivity, such as
d-wave pairing, and half metallicity has been studied in the

context of magnetoresistance and spin-injection properties of
cuprate/manganite hybrid structures.19–22 The study of a half-
metallic d-wave Josephson junction therefore has relevance
for these types of materials.

In this paper, we will study how the supercurrent through
unconventional half-metallic Josephson junctions depends on
the properties of spin-active interfaces. We also study how
the critical current depends on parameters like junction width
and temperature for different levels of spin-flip scattering.
Comparing the different superconducting symmetries, we find
that a dxy-wave superconductor gives a somewhat different
result than s-wave and dx2−y2 superconductors. Junctions made
of half metals and the latter two types of superconducting
order show a nonmonotonic temperature dependence of
the critical current, while corresponding junctions involving
dxy superconductors do not show this behavior. Moreover,
the junctions involving dxy superconductors may sustain a
critical current that is considerably larger than the two other
superconducting symmetries. We also show that one can
induce 0-π transitions23 by switching the alignment of the
magnetic interface fields from parallel to antiparallel. It is
also possible to tune the ground-state superconducting phase
by rotating the magnetic misalignment field at one interface
relative to the other interface. These results are obtained
numerically. We also provide a general analytical expression
for the Andreev bound-state (ABS) energy spectrum that
confirms our numerical findings.

The rest of the paper is organized as follows. In Sec. II, we
introduce our model and notation. Our results are presented
and discussed in Sec. III, and we present our conclusions in
Sec. IV. We use ˆ· · · for 4 × 4 matrices, and · · · for 2 × 2
matrices. Boldface notation is used for three-vectors.

II. MODEL AND FORMALISM

We use a modified BTK (Blonder-Tinkham-Klapwijk)
theory,24 which takes into account arbitrary pairing symmetries
and a spin-active S/F interface. We consider an S/F/S junction
of width L; see Fig. 1 . The spin-active interfaces may induce
long-range triplet currents. The propagation of quasiparticles
is described by the Bogoliubov–de Gennes (BdG) equations

Ĥψ = εψ, (1)
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FIG. 1. (Color online) Schematic illustration of our system. A half
metal of width L is sandwiched between two superconductors, which
are considered as reservoirs. The superconductors may have either
an s-wave or d-wave symmetry. The interface regions are assumed
to be spin active due to, e.g., magnetic disorder or misaligned local
magnetic moments.

where ψ is the eigenstate with energy eigenvalue ε. The
Hamiltonian of the system is given by

Ĥ =
(

H0 + V i�(θ )σ2

−i�(θ )∗σ2 −H0 − V ∗

)
, (2)

where

H0 =
(

− ∇2

2m
− EF

)
σ0 − hz�(x)�(L − x)σ3,

(3)

V =
(

V↑ Vx − iVy

Vx + iVy V↓

)
[δ(x) + δ(x − L)] .

Here, �(x) and δ(x) denote the Heaviside step function and the
δ function, respectively. The σ matrices are the Pauli matrices,
m is the effective mass of the quasiparticles in both the super-
conductors and the ferromagnet and EF is the Fermi energy.
We assume equal Fermi energies in the different regions of
the junction. The superconducting gap is denoted by �(θ ) =
�0(T )g(θ )[eiϕL�(−x) + eiϕR�(x − L)], where g(θ ) accounts
for the superconducting pairing symmetry, �0(T ) is the
temperature-dependent gap amplitude, and ϕL(R) is the phase
of the left (right) superconductor. We consider the usual BCS
temperature dependence �0(T ) = �0 tanh(1.74

√
Tc/T − 1)

where Tc is the superconducting critical temperature. The
exchange energy is hz, and its direction is parallel to the z axis.
We will consider the limit where the ferromagnet becomes half
metallic, i.e., hz → EF .

The barrier magnetic moment constitutes a spin-dependent
potential V , where the components entering Eq. (3) are given
by

Vx = −ρV0 cos � sin φ,

Vy = −ρV0 sin � sin φ, (4)

Vz = −ρV0 cos φ,

and Vσ = V0 + σVz. σ = ±1 for spin up and spin down. See
Fig. 2 for an illustration of the barrier magnetic moment and

Ψ

φ

x
y

z

FIG. 2. (Color online) The barrier magnetic moment at the inter-
face and its misalignment angles � and φ. The bulk magnetization
in the ferromagnet is assumed to be aligned with the z axis.

its misalignment angles � and φ. The nonmagnetic barrier
potential is V0, while ρ is the ratio between the magnetic and
nonmagnetic potentials, i.e.,

ρ = |V|/V0. (5)

We assume that the bulk magnetization of the ferromagnet is
aligned with the z axis in Fig. 2. For ρ �= 0 with φ = 0 we
have spin mixing and with φ �= 0 we also have spin-flip. For
details on spin mixing and spin-flip, see, e.g., Ref. 13.

Solving the BdG equations yields the wave function in the
different regions of our system.25 We can have four different
incoming quasiparticles, electronlike quasiparticles (ELQs)
with spin up and down, and holelike quasiparticles (HLQs)
with spin up and down. For an incident spin-up electron in
the left superconductor, the wave function is

ψL(x) = [uL(θ+),0,0,vL(θ+)e−iγ +
L ]eik+x

+ r↑
e [uL(θ−),0,0,vL(θ−)e−iγ −

L ]e−ik+x

+ r↓
e [0,uL(θ−),ζvL(θ−)e−iγ −

L ,0]e−ik+x

+ r
↑
h [0,ζvL(θ+)eiγ +

L ,uL(θ+),0]eik−x

+ r
↓
h [vL(θ+)eiγ +

L ,0,0,uL(θ+)]eik−x. (6)

For this particular process, the coefficients r
↑
e ,r

↓
e ,r

↑
h ,r

↓
h

describe normal reflection, normal reflection with spin-flip,
novel Andreev reflection, and usual Andreev reflection,
respectively. We note that the momentum parallel to the
interface is conserved for these processes.

The corresponding wave function in the right superconduc-
tor is

ψR(x) = t↑e [uR(θ+)eiϕ,0,0,vR(θ+)e−iγ +
R ]eiq+x

+ t↓e [0,uR(θ+)eiϕ,ζvR(θ+)e−iγ +
R ,0]eiq+x
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+ t
↑
h [0,ζvR(θ−)eiγ −

R eiϕ,uR(θ−),0]e−iq−x

+ t
↓
h [vR(θ−)eiγ −

R eiϕ,0,0,uR(θ−)]e−iq−x, (7)

where the t’s are the transmission coefficients, corresponding
to the reflection processes described above. We have defined
eiγ± = �(θ±)/|�(θ±)| with θ+ = θ and θ− = π − θ , and
ϕ = ϕR − ϕL is the phase difference over the junction. The
parameter ζ accounts for singlet or triplet pairing in the
superconductors. Here, we will consider only singlet pairing,
i.e., ζ = −1. Previous works have considered tunneling
in p-wave superconductor/ferromagnet structures.26–29 The
coherence factors are defined as usual,

u(θ ) =
√√√√1

2

(
1 +

√
ε2 − |�(θ )|2

ε

)
,

(8)

v(θ ) =
√√√√1

2

(
1 −

√
ε2 − |�(θ )|2

ε

)
.

k± =
√

2m(EF ±
√

ε2 − |�L(θ )|2) cos θ is the wave vector
for ELQs (k+) and HLQs (k−) in the left superconductor and q±
is the corresponding wave vector in the right superconductor.
The wave function in the half metal is

ψHM (x) = (eeik
↑
e x + f e−ik

↑
e (x−L))[1,0,0,0]

+ (e′eik
↓
e x + f ′e−ik

↓
e (x−L))[0,1,0,0]

+ (ge−ik
↑
h x + heik

↑
h (x−L))[0,0,1,0]

+ (g′e−ik
↓
h x + h′eik

↓
h (x−L))[0,0,0,1], (9)

where kσ
e,h = √

2m(EF + σhz ± ε) cos θ .
All scattering coefficients can be determined by matching

wave functions at the interfaces. The boundary conditions
are

ψL(0−) = ψHM (0+),
(10)

∂x[ψL(x) − ψHM (x)]|x=0 = 2mVLψL(0)

for the left interface and

ψHM (L−) = ψR(L+),
(11)

∂x[ψHM (x) − ψR(x)]|x=L = 2mVRψR(L)

for the right. We will later use the parameter Z = 2mV0/kF as
a measure of interface transparency. Here, kF = √

2mEF is the
Fermi wave vector. After the differentiation in the boundary
conditions, we take the half-metallic limit k

↓
e,h → 0. From the

boundary conditions we obtain a system of linear equations
that yields the scattering coefficients.

With the scattering coefficients at hand, we can use a
generalized version of the Furusaki-Tsukuda18,30–32 formalism
to calculate the Josephson current,

I (ϕ) = e

4β

∑
ωn

∫ π/2

−π/2
dθ�L(θ )

k+(ωn) + k−(ωn)

�n

×
[
a1(ωn) − a2(ωn)

k+(ωn)
+ a3(ωn) − a4(ωn)

k−(ωn)

]
, (12)

where ωn = (2n + 1)π/β are fermionic Matsubara frequen-
cies with n = 0, ± 1, ± 2, . . . , and �n = √

ω2
n + |�L(θ )|2.

β is the inverse temperature. k+(ωn),k−(ωn), and ai(ωn) are
obtained from k+, k−, and ai by analytically continuing ε to
iωn. ai with i = 1,2,3,4 are the ordinary Andreev reflection
coefficients for incoming ELQs with spin up or spin down,
and incoming HLQ with spin up or spin down, respectively.
The summation over the Matsubara frequencies is performed
numerically.

If we neglect the contribution from the incoming quasipar-
ticle, we get a homogeneous system of linear equations,

�x = 0, (13)

where x = [r↑
e ,r

↓
e ,r

↑
h ,r

↓
h ,t

↑
e ,t

↓
e ,t

↑
h ,t

↓
h ] and � is an 8 × 8 matrix

obtained by expressing the scattering coefficients in the half
metal by the scattering coefficients in the left and right
superconductor. By requiring a nontrivial solution of this
system, det � = 0, we find the Andreev bound-state energy
spectrum Ei .

From the Andreev bound states we can find the Josephson
current for a short junction L/ξ 
 1, where ξ is the supercon-
ducting coherence length, in the ordinary way,33

I (ϕ) = 2e
∑

i

∂Ei

∂ϕ
f (Ei), (14)

where e is the elementary charge and f (Ei) denotes the Fermi-
Dirac distribution function. We find the critical current from
Ic = maxϕ |I (ϕ)|.

III. RESULTS

For conventional s-wave pairing we use g(θ ) = 1. For d

wave we use g(θ ) = cos(2θ − 2α) where α = 0 and π/4 cor-
respond to dx2−y2 and dxy pairing, respectively. We will use the
superconducting gap �0 as a unit of energy. The Fermi energy
is EF = 1000�0, the interface transparency is Z = 1, and we
use T = 0.2Tc unless otherwise stated. We consider equal gap
amplitude for the different pairing symmetries to ease the com-
parison. Unless otherwise stated, we assume that the magnetic
misalignment angles φ and � on both interfaces are equal.

Figure 3 shows the critical current for all three pairing
symmetries for two values of ρ with misalignment angles
φ = π/2 and � = π/2. The first value, ρ = 0, corresponds
to no spin-flip. As expected, there is no current in this case.
However, when spin-flip scattering is present, ρ = 0.5, we see
that a long-range current appears. We find that junctions with s

and dx2−y2 symmetry behave very similarly, with dx2−y2 having
a slightly lower current magnitude. The critical current is pro-
portional to the gap amplitude multiplied by a weighting factor
depending on the Andreev reflection coefficients [see Eq. (12)]
averaged over the angles of incidence θ . As the s-wave
symmetry is independent of θ , its average is larger than for
the dx2−y2 . The dxy symmetry carries a current approximately
three times larger than s and dx2−y2 for our parameter choice.

Figure 4 shows how the critical current depends on the
magnetic misalignment angle φ with � = π/2 for three junc-
tion widths kL = 10,100,1000, which corresponds to widths
of approximately 2, 20, and 200 nm, respectively. Notice that
we obtain the maximal critical current at a misalignment angle
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0.15

I c

kL

FIG. 3. (Color online) Critical current as a function of junction
width for ρ = 0 (dashed lines) and ρ = 0.5 (solid lines) with mis-
alignment angles � = π/2 and φ = π/2. Blue, green, and red lines
indicate s-, dx2−y2 -, and dxy-wave pairing symmetry, respectively.

φ > π/2 when the misalignment at both interfaces is parallel
to each other. If we rotate the misalignment 180◦, which
is equivalent to inverting the exchange field hz → −hz, the
maximum will appear at φ < π/2. As long as hz �= 0, the
system is not invariant under a spatial inversion.34 Therefore
the direction of the exchange field relative to the misalignment
field will determine whether the maximal current appears at
misalignment angles smaller or larger than π/2.

If the magnetic moments at the interfaces are switched from
parallel (ρL = ρR) to antiparallel alignment (ρL = −ρR), the
current-phase relation changes sign as seen in Fig. 5 . This
indicates a 0-π transition. Hence it is possible to induce 0-π
transitions in half-metallic junctions by switching the relative
direction between the two misalignment fields. Note that the
other superconducting symmetries show the same behavior.
We also note that for antiparallel alignment, the maximal
critical current is obtained at a misalignment angle φ = π/2
for both interfaces.

0

0.02

0.04

0.06 (a)

I c

0

0.02

0.04

0.06

(b)I c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
(c)

I c

φ/π

FIG. 4. (Color online) Critical current as a function of the mis-
alignment angle φ. Solid, dashed, and dash-dotted lines correspond to
junction widths kL = 10,100, and 1000, respectively. Panels (a)–(c)
show s-, dx2−y2 -, and dxy-wave pairing symmetry, respectively.

It is also possible to continuously change the ground-state
phase of the junction by rotating the misalignment field at one
interface relative to the other. Figure 6 shows the current-phase
relation for a dxy junction when the magnetic moment at
the left interface points in the x direction while at the right
interface the magnetic moment is rotated in the xy plane
from being parallel to the left interface, to pointing in the
y direction. Here, φL = φR = π/2. We see that the current
changes continuously with �R . Hence, we can obtain a finite
current at zero superconducting phase difference by tuning
the magnetic misalignment fields. This is the same result as
reported in Ref. 35 for s-wave superconductors. We get the
same results for s- and dx2−y2 -wave junctions.

To gain further insight into the physical mechanisms
underlying our numerical results, we have solved Eq. (13)
analytically. This yields a rather large and complicated
expression for the ABS energies, but it is nevertheless possible
to infer how the interplay between the misalignment angles and
superconducting phase difference is manifested. The resulting
expression is

E = ± |�(θ )|
√

1

2
+ A1 + A2τ cos (ϕ + χ ) ±

√
B1 + B2τ cos (ϕ + χ ) + B3τ 2 cos2 (ϕ + χ )

C
, (15)

where Ai , Bi , and C are large expressions that depend
on junction parameters like junction width kL, the barrier
magnetic moment V, the angle of incidence θ , and the wave
vectors k

↑
e,h. τ = αρ2V 2

0 sin2 φL where α = ±1 for parallel and
antiparallel misalignment, respectively, and χ = �R − �L is
the difference between the azimuthal angle of the right and
left interface magnetic moments. As the Jospehson current
depends on the ABS energy differentiated with respect to
ϕ, see Eq. (14), much of the qualitative behavior can be
explained with this expression. First, if we have no spin-flip,
i.e., φ = 0 and/or ρ = 0, then τ = 0. Every term containing

ϕ is multiplied by a τ factor, which shows that no spin-flip
equals no current. This corresponds to the result we see in
Fig. 3 where the current vanishes without spin-flip. Second,
we see that a change of the magnetic misalignment on the two
interfaces from parallel, α = 1, to antiparallel α = −1 is the
same as shifting ϕ → ϕ + π , i.e., a 0-π transition like the one
we see in Fig. 5. Last, the χ phase shows that it is possible
to continuously change the ground-state phase of the junction
by tuning the interface magnetic moments as shown in Fig.
6, since χ effectively renormalizes the superconducting phase
difference: ϕ → ϕ + χ .
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FIG. 5. (Color online) Current-phase relation for a junction with
dxy superconductors on both sides. The black solid line shows parallel
misalignment at both interfaces, while the red dashed line shows
antiparallel misalignment.

The most significant difference between the three gap
symmetries is the temperature dependence of the critical
current. The Josephson current in the case of dxy symmetry
decreases monotonically with increasing temperature, while
the Josephson currents for the two other symmetries show a
nonmonotonic behavior. Figure 7 demonstrates the tempera-
ture dependence of the critical current for the different gap
symmetries.

This unusual temperature dependence can be explained
by considering the proximity-induced density of states in the
half metal. The critical current is proportional to the energy
integral of the density of states multiplied by the slope of

−3 −2 −1 0 1 2 3

−0.1

−0.05

0

0.05

0.1

0.15

I
(ϕ

)

ϕ

FIG. 6. (Color online) Current-phase relation for a junction with
dxy superconductors on both sides. The misalignment field in the xy

plane is rotated from parallel to perpendicular, i.e., �R changes from
0 to π/2 in steps of π/8 (left to right). �L = 0 and ρL = ρR = 0.5.
Here, φL = φR = π/2.
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(a)s-wave, kL = 100
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(b)dx2−y2 -wave, kL = 100
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(c)dxy-wave, kL = 100

c
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FIG. 7. (Color online) Critical current as a function of temper-
ature for all three superconducting symmetries at junction width
kL = 100. Notice that the dxy-symmetry decreases monotonically,
while s- and dx2−y2 -symmetries have a non-monotonic behavior. The
legends show the misalignment angle φ in units of π .

the Fermi distribution:36

Ic ∼
∫

dE N (E)∂Ef (E), (16)
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where N (E) is a proximity-induced density of states in the
half metal, which vanishes when superconductivity vanishes.

As shown in Refs. 36 and 37 the proximity-induced
density of states for a half-metallic Josephson junction with
s-wave superconductors has a peak at finite energies. Spin-flip
processes at the interfaces create long-ranged spin-triplet pairs
that penetrate the interface and create a peak in the density of
states in the half metal due to the formation of bound states (in
the ballistic limit). This peak is the origin of the nonmonotonic
temperature behavior of the critical current that we also obtain;
see Fig. 7(a). Subgap bound states may be thermally activated
and contribute to the transport at a temperature T ∗ of the
order of the energies of the bound states. Thus, when the
temperature T is increased toward T ∗ the critical current can
increase, although one should also take into account the fact
that the superconducting order parameter is suppressed with
increasing temperature. For the case of s-wave and dx2−y2 -
wave superconducting gaps, the required temperature T ∗ is of
the order of the gap amplitude. For a dxy-symmetric gap, the
bound states tend to be at lower energies close to the Fermi
surface,25 yielding a lower T ∗, and hence a critical current
that essentially is monotonically decreasing with temperature.
We emphasize that all of this is contingent on the presence of
spin-active tunneling barriers. Figure 7(b) shows that dx2−y2

pairing yields the same nonmonotonic behavior as s-wave
pairing, while Fig. 7(c) shows that dxy pairing decays in the
usual monotonic way.

We expect the same behavior for other superconducting
symmetries as well: If the bound states are at energies close to
the Fermi level, i.e., the density of states peaks at or very
close to EF , we expect the usual monotonic temperature
dependence. However, if the bound states are at higher
energies, i.e., the density of states peaks at higher subgap
energies, we expect a nonmonotonic temperature dependence.

IV. CONCLUSIONS

In conclusion, we have analyzed the dc Josephson effect in
an S/HM/S junction with spin-active interfaces. The possibility
of spin-flip scattering at the interface creates equal spin
triplet Cooper pairs in the half metal, such that a long-range
supercurrent may be sustained. We have considered the role
of unconventional superconducting symmetries, in particular
d wave, and found that dxy symmetry yields the largest critical
current magnitude, while s and dx2−y2 symmetry show similar
behavior. In addition, the temperature dependence of the
critical current is qualitatively different in the dxy-wave case.
Namely, while the current shows a nonmonotonic behavior
for s and dx2−y2 symmetry, it decays monotonically in the
dxy-wave case. This may be explained by considering the
proximity-induced density of states in the half metal. When
the density of states in the half metal has more weight near the
Fermi level, as in the dxy-wave case due to the hybridization
of the bound states at the S/HM interfaces, the temperature
dependence of the critical current is monotonically decaying
as the temperature increases. On the other hand, if the
density of states has a peak far from the Fermi level, we
expect a nonmonotonic temperature dependence. We have also
discussed how it is possible to switch between a 0 and π

junction, both continuously and abruptly, by controlling the
magnetic properties of the interfaces. Finally, we have found
a general analytical expression for the Andreev bound-state
energy spectrum, which confirms our numerical results.
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