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We present a first-principles scheme that allows the orbital magnetization of a magnetic crystal to be evaluated
accurately and efficiently even in the presence of complex Fermi surfaces. Starting from an initial electronic-
structure calculation with a coarse ab initio k-point mesh, maximally localized Wannier functions are constructed
and used to interpolate the necessary k-space quantities on a fine mesh, in parallel to a previously developed
formalism for the anomalous Hall conductivity [X. Wang, J. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B
74, 195118 (2006)]. We formulate our new approach in a manifestly gauge-invariant manner, expressing the
orbital magnetization in terms of traces over matrices in Wannier space. Since only a few (e.g., of the order of
20) Wannier functions are typically needed to describe the occupied and partially occupied bands, these Wannier
matrices are small, which makes the interpolation itself very efficient. The method has been used to calculate
the orbital magnetization of bec Fe, hep Co, and fec Ni. Unlike an approximate calculation based on integrating
orbital currents inside atomic spheres, our results nicely reproduce the experimentally measured ordering of the

orbital magnetization in these three materials.

DOLI: 10.1103/PhysRevB.85.014435

I. INTRODUCTION

Magnetism in matter originates from two distinct sources,
namely, the spin and the orbital degrees of freedom of the
electrons. In many bulk ferromagnets the spin contribution
dominates, and it is therefore not surprising that the de-
scription of spin magnetism using first-principles methods is
considerably more developed than that of orbital magnetism.
In particular, the local spin-density approximation has been
successful in studying magnetic materials for decades.!

Although the orbital moments in bulk solids are strongly
quenched by the crystal field and typically give small con-
tributions to the net magnetization—between 5% and 10%
in Fe, Co, and Ni—they can be measured very accurately
with the help of gyromagnetic experiments.>® Moreover,
there are known instances where orbital magnetism plays a
prominent role. Some examples include weak ferromagnets
with large but opposing spin and orbital moments,** low-
coordination systems such as magnetic nanowires,” and the
recently predicted large orbital magnetoelectric coupling in
topological insulators and related materials.®'° In addition,
magnetic resonance parameters such as the NMR'!'"!3 and
EPR'* shielding tensors can be conveniently calculated as the
change in (orbital) magnetization under appropriate perturba-
tions. These examples highlight the need to develop accurate
and efficient first-principles schemes for describing orbital
magnetism in solids.

The traditional way of computing the orbital magnetization
M is by integrating currents inside atom-centered muffin-tin
spheres.'>!1® This requires choosing, somewhat arbitrarily, a
cutoff radius and neglects contributions from the interstitial
regions. A rigorous theory for the orbital magnetization of
periodic crystals free from such uncontrolled approximations
was obtained only recently!’~?? (see Ref. 21 for a review). The
theory was developed in the independent-particle framework,
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Here the integral is over the Brillouin zone (BZ), [dk] stands for
dk/(2m)?, Hy = e *THe’® T is the Bloch Hamiltonian whose
eigenfunctions are the cell-periodic Bloch functions |u,x) with
eigenvalues &k, fqk 1S the zero-temperature Fermi occupation
factor, and e is the Fermi energy. The third term in Eq. (1)
vanishes in ordinary insulators, but must be included in the
case of metals.'8-2°

The implementation of Eq. (1) requires a knowledge of
the k-space gradients |dxu,i) of the occupied Bloch states.?!
An easier quantity to compute in practice is the covariant
derivative |0xunx), defined as the projection of |dku k) onto the
ulloccupied bands. It turns out that the replacement |Oxu,x) —
|Okink) in Eq. (1) leaves the sum of its terms invariant. For
band insulators the covariant derivative can be conveniently
evaluated by finite differences.'® Unfortunately, the discretized
covariant derivative approach cannot be applied to metals,
as it relies on having a constant number of occupied bands
throughout the BZ.

Thus far, the only first-principles application of Eq. (1)
to metals is the calculation in Ref. 14 of the spontaneous
orbital magnetization in Fe, Co, and Ni crystals, where the
k derivatives of the Bloch wave functions were evaluated
using a linear-response method.?” This carries a cost per k
point comparable to that of a non-self-consistent ground-state
calculation. The number of k points needed to converge the
BZ integral in Eq. (1) for Fe, Co, and Ni is quite significant,
rendering the full calculation rather time consuming.

In this work we develop an alternative approach which
greatly reduces the computational cost of evaluating Eq. (1)
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for metals. Our implementation relies on a method for con-
structing well-localized crystalline Wannier functions (WFs)
by postprocessing a conventional band structure calculation.?®
A key ingredient is the “band disentanglement” procedure of
Ref. 24, which allows one to obtain a set of WFs spanning a
space that contains the occupied valence bands as a subspace.
These WFs are essentially an exact tight-binding basis for
those ab initio bands that carry the information about M.
Working in the Wannier representation, the problem of evalu-
ating M can then be reformulated in a very economical way.
This reformulation involves setting up the matrix elements of
certain operators in the Wannier basis. Once that is done, the
integrand of Eq. (1) can be evaluated very inexpensively and
accurately at arbitrary points in the BZ. The cost per k point
of the entire procedure is significantly reduced, especially
in cases where a dense sampling of the BZ is needed to
achieve convergence. Our method builds on the work of
Ref. 25, where a similar “Wannier interpolation” strategy
was introduced to calculate the anomalous Hall conductivity
(AHC) of ferromagnetic metals.

This paper is organized as follows. In Sec. II the orbital
magnetization formula, Eq. (1), is recast in a gauge-invariant
form, and a related expression for the AHC is introduced.
We then describe step by step the formalism used to ex-
press physical quantities in the Wannier representation. That
formalism is applied in Sec. III first to the AHC and then
to the orbital magnetization. In Sec. IV we describe the
procedure for evaluating the required k-space matrices by
Fourier interpolation. Some details of the first-principles
calculation and Wannier-function construction are given in
Sec. V, followed by an application of the method to bce Fe,
hcp Co, and fce Ni in Sec. VI. We conclude in Sec. VII with a
brief summary and discussion.

II. PRELIMINARIES

A. Orbital magnetization and anomalous Hall conductivity

For our purposes it will be convenient to recast Eq. (1) in a
different form as introduced in Ref. 19. We begin by writing
the axial vector M as an antisymmetric tensor,

Mup = 3€apy My, ©))

where Greek indices denote Cartesian directions. We now
partition Mg into two terms,

Mo = Mg + M. A3)
The “local circulation” is
i = -5 [ldk-2mGog — eeFl. )
and the “itinerant circulation” is
S = —% / [k [~21Tm(Hys — ep Fap)l.  (5)
The k-dependent quantities Fog, Gop, and H,g are
Fop = Tr[(3, P)Q (35 P)1. (6)
Gop = Tr[(3, PYOH Q(35 P)), @)
Hop = Tr[H(3, P)Q(35 P)), ®)
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where “Tr” denotes the electronic trace, 9, stands for d/dk,,
and the subscript k is implied in the Bloch Hamiltonian H
and in the projection operators P and O = 1 — P spanning
the occupied and unoccupied spaces respectively (here 1 is the
identity operator in the full Hilbert space).

We work at T = 0, so that Egs. (2)—(8) yield the same result
as Eq. (1). This can be seen by writing P in terms of the Bloch
eigenstates,

P =" |un) folunl, ©)

and setting the occupancies f, to either one or zero.

Compared to Eq. (1), the above formulation has the advan-
tage of being manifestly gauge invariant, i.e., independent
of any k-dependent phase twists applied to the occupied
Bloch states, or more generally, any k-dependent unitary
mixing among them. Because Eqs. (6)—(8) are written as traces
involving projection operators, they remain valid no matter
how we choose to represent the occupied space at each k.
Instead, Eq. (1) is written explicitly in terms of the energy
eigenstates; that is, it assumes a Hamiltonian gauge.

It should come as no surprise that it is possible to cast
a physical observable such as the orbital magnetization in
a gauge-invariant form. More interestingly, the two terms in
Eq. (3) are individually gauge invariant, and this led to the
speculation that they might be separately observable.!® That is
indeed the case—at least in principle—as discussed in Ref. 26.

Before continuing we mention another physical observable,
the intrinsic anomalous Hall conductivity, which can be
expressed in gauge-invariant form as

2
ol = —% /[dk] (—21m Fyp). (10)

In the Hamiltonian gauge the integrand of this equation
acquires a more familiar form, i.e., as the k-space Berry
curvature summed over the occupied bands."”

While developing the formalism in Sec. III we shall first
consider the AHC before tackling the more complex case of the
orbital magnetization. This will allow us to make contact with
the work of Ref. 25, where a Wannier interpolation scheme
was developed for the AHC, but using a somewhat different
formulation.

B. Wannier space and gauge freedom

The crux of our approach is to express the observables
of interest (orbital magnetization and AHC) not in terms of
the Bloch eigenstates |u,k), but using an alternative set of
Bloch-like states |u)y) constructed at each k as appropriately
chosen linear combinations of energy eigenstates. The defining
feature of the new states is that they are smooth functions of
k. As a result, the corresponding Wannier functions (WFs)

IRn) = /\% Z e R ) (11)

k
(here A3 is the number of k points distributed on a uniform
BZ mesh) are well localized in real space, and for this reason
we shall say that the states |uX) belong to the Wannier gauge.
The ability to construct a short-ranged representation of the
electronic structure in real space is what will allow us to devise
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an efficient and accurate interpolation scheme for the k-space
quantities Im Fyg, Im G4, and Im Hypg.

The construction of a Wannier basis proceeds in two steps,
which we call “space selection” and “gauge selection.” In the
case of insulators, the space selection is typically obvious;
we want the WFs to span just the occupied subspace. In k
space, we represent this subspace by a k-dependent “band
projection operator” Py defined as in Eq. (9) (with f, = 1
and 0 for occupied and empty bands, respectively). Denoting
the Wannier-space projection operator by Py, we can then set
u’ik = ﬁk.

For metals, on the other hand, the space selection step,
also known as “band disentanglement,” is more subtle. One
wants to choose a J-dimensional manifold, represented by
the projection operator Py, throughout the BZ such that it has
the following properties: (i) It must contain as a subspace the
set of all occupied eigenstates (hence J cannot be less than
the highest number of occupied bands at any K); (ii) it must
display a smooth variation with k, in the sense that Py is a
differentiable function of k. A procedure for extracting an
optimally smooth space from a larger set of band states was
developed in Ref. 24. The resulting space typically contains
some admixture of low-lying empty states in addition to the
occupied states.

The gauge selection consists of representing the smoothly
varying space Py using a set of J Bloch-like states which are
themselves smooth functions of k,

J
Pro=>" [um)ln - (12)

From these |“n\Y(> the WFs are constructed via Eq. (11). A
procedure for selecting an optimally smooth Wannier gauge
was developed in Ref. 23, such that the resulting WFs are
maximally localized in the sense of having the smallest
possible quadratic spread. The localization procedure was
originally devised with an isolated group of bands in mind
(e.g., the valence bands of an insulator), but it can be applied
to any smoothly varying Bloch manifold of fixed dimension J.
In the Wannier gauge the projected Hamiltonian [y =
[@kﬁk [f:k takes the form of a nondiagonal J x J matrix,

HY, () = (| Hic | )- (13)
We define the Hamiltonian gauge in the projected space as the
gauge in which this matrix becomes diagonal,

Hy, (K) = UTROHY ()U (k) = &t m- (14)

nm

Because of the nature of the space selection step, the “projected
eigenvalues” €, agree with the true ab initio eigenvalues &,k
for all occupied states, but they may differ for unoccupied
states.

The unitary matrices U (k) that diagonalize HY (k) can be
used to transform other objects between the Wannier and
Hamiltonian gauges. For example, the Bloch states transform
as

J
b =D ) Unn(K). (15)
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FIG. 1. The Hilbert space of Bloch functions at wave vector k
can be decomposed either as 1 = P 4+ O (occupied and unoccupied
spaces) or as 1 = P+ Q (“inner” and “outer” spaces, where the
“inner” space is spanned by Wannier functions).

The gauge invariance of the projection operators Py can be
checked explicitly by inserting the right-hand side of Eq. (15)
in place of |MX> in Eq. (12).

C. Projection operators and occupation matrices

In Eq. (9) we introduced the projection operator Py onto
the occupied manifold at k, and in Eq. (12) the projection
operator Py onto the Wannier space at k. Figure 1 represents
schematically the relationship between those two subspaces,
as well as other related subspaces to be defined shortly. The
notation in the figure is as follows: A double staff is used for
objects that concern the distinction between the space spanned
by the WFs (“inner”) and the corresponding orthogonal space
(“outer”), while a single staff will be used for objects that
distinguish between the occupied and unoccupied parts of the
Wannier space.

Consider, for example, the projection operator P onto the
occupied bands, as defined in Eq. (9). Recall that k labels were
suppressed in Sec II A; with k temporarily restored, we have

J
Po=) ) £k ]
n

J
= Z |u:t)1vk> fVZVn,k (“:X(

mn

, (16)

where Xl’k = (umlﬁkWX) is the (nondiagonal) occupation

matrix in the Wannier gauge. In the following, we will use a
strongly condensed notation, leaving band indices (and sums
over them) implicit, omitting wave vector subscripts, and
dropping the superscript “W” from objects in the Wannier
gauge. So, for example, we will write the Wannier-gauge Bloch
states simply as |u) instead of |uX).

In this notation, Py is expressed in the Wannier gauge as
just

P=u)ful. (17)
Similarly, the projector onto the Wannier (“inner”) space is

P = |u)(ul. (18)
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We also define
Q=1-1, (19)
0=1-P=0u+0Q (20)
with
Oin = lu)g(ul, @21
g=1-1 (22)

where “1” denotes the J x J identity matrix.

In practice the occupation matrix is first evaluated in the
Hamiltonian gauge in which it is diagonal, and then rotated to
the Wannier gauge with the help of Eq. (15),

f=Urtut. (23)

The matrices f and g are idempotent and satisfy

fg=8f=0, (24)
as well as
[f,H] = [g,H] =0, (25)
where
= (u| H u) (26)

is Eq. (13) using the concise notation. Equations (24) and (25)
imply

fHg = 0. 27)

Note that fH =Hf = fHf. We shall also make frequent use
of relations such as QmQ QQm =0, Q2 Q Q = Oin,

etc.

D. Compendium of “geometric”’ matrix objects

We list here for future reference a number of additional
J x J matrices that will be used to express Im Fyg, Im G g,
and Im H,g in the Wannier representation:

Ao = i(u|dyu), (28)
Fop = (Duut|dgu), (29)
Fop = (0u|Qlogu) = Fop — Ayhrg, (30)
Rap = iFap — iFl5 = dulg — Ipha, (31
Rop = iFap — iFly = Qop — ilAas ] (32)

The Hermitian matrices Ay, 2,4, and @aﬂ are known as the
Berry connection, Berry curvature, and gauge-covariant Berry
curvature. They play a central role in the theory of geometric-
phase effects in solids.?’

In addition to the above objects, which represent intrinsic
properties of the Bloch manifold, we shall make use of a
number of similarly defined quantities which also depend
on the Hamiltonian (and therefore are not strictly speaking
“geometric”):

B, = i (u|H|dqu), (33)
% = i(u|HQ|o,u) = B, — HA,, (34)
= (3qu|H|dpu), (35)
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Cop = (0ol QA Q1)

= Cap — AyBp — Bl A, (36)
Aap = iCop — iCly. (37
Aap = iCop —iCly

= Agp — i(A,Bg — AgB, — Hoc), (38)

where “H.c.” stands for Hermitian conjugate. Note that while
Agyp and Aalg are Hermitian, B, is not.

All of the matrices listed above are written in the Wannier
gauge, where they are smooth functions of k and can be
evaluated efficiently using Fourier transforms, as will be
described in Sec. I'V.

III. WANNIER-SPACE REPRESENTATION
OF PHYSICAL QUANTITIES

A. Anomalous Hall conductivity
1. Derivation

As a first application of our formalism, let us consider
Eq. (10) for the AHC. The integrand is the Berry curvature
—2Im F,g, and we wish to write it as a trace of products of
matrices defined within the Wannier space.

Our starting point is Eq. (6) for Fyg. In preparation for
taking the trace therein, let us express (Jy P)Q in the Wannier
gauge. Differentiating Eq. (17) leads to

0o P = |Bqu) f (1] + |1} f (Dtt] + 1) fo (1], (39)

where fo = 9, f. Multiplying on the right with 0 and using
Eq. (20) yields two terms for (9, P)Q. One is

(9 P)Q = [u) f (3,u|Q, (40)
where (1|Q = 0 was used, and the other is
B P)Oin = |u) f(+ib)glul + |u) fug(ul, (A1)
where Eq. (24) was used. Now, from Eq. (23) we find*®
fazi[fa-]ol]a (42)

where the Hermitian matrix J,, like f itself, is first evaluated
in the Hamiltonian gauge, being defined as

JH=iuts,U, (43)
and then rotated into the Wannier gauge,

Jo =UJHUT. (44)
Using Eq. (42) in Eq. (41) and defining

Ay = Ay + o, (45)

we arrive at the compact form

(02 P)Qin = ilu) f Aagul. (46)
The desired expression is the sum of Eqs. (40) and (46),
B P)O = |u) f (BuulQ + ilu) f Aag (ul. 47)
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With this relation in hand it becomes straightforward to
evaluate Eq. (6), and we quickly arrive at

Fup =t fFop + fAugAg], (48)

where “tr” denotes the trace over J x J matrices, not to
be confused with the trace “Tr” over the full Hilbert space
introduced earlier. We are interested in the imaginary part, and
using Eq. (32) we find

.

—2Im Fpp = Retr[f@aﬂ] —2Imtr[ fA,gAg]
= Retr[f Qo] + 2Imtr[ fAAp — fAL8AR].

(49)
Expanding A, and using the identity
Im tr{ f Ay Ag] = Imte[ f Ao (f + &)Ag]
= Imtr[ fA.gAs], (50)

we end up with

—2Im Fop = Retr [ f Q] — 2Imtr] fA,8Jp
+ flughp + fJagpl- (51

This expression for the Berry curvature of the occupied states
is our first important result.

2. Discussion

The ingredients that go into Eq. (51) are the matrices A,,
$4p, f,and J, expressed in a smooth (but otherwise arbitrary)
gauge. It should be noted that while A, and .4 are themselves
smooth functions of K, this is not so for f and J,. Consider
f, given by Eq. (23). In metals it is affected by the steplike
discontinuity in fH at the Fermi surface. More generally it is
also affected by the wrinkles in the rotation matrix U [recall
that U relates via Eq. (15) the smooth Wannier-gauge Bloch
states to the Hamiltonian-gauge states, which are nonanalytic
as a function of k at points of degeneracy]. The situation is
even more severe in the case of J,. Because it contains the
derivative d,U of a nonsmooth function, it has spikes in k
space.

How does one reconcile the existence of irregular and spiky
quantities inside Eq. (51) with the form of Eq. (6), which
suggests that F,g is a smooth function of k, except possibly
when crossing the Fermi surface (when a state comes in or out
of the occupied manifold, introducing a discontinuity in £y)?
The answer is that while J, itself has a very irregular behavior,
combinations like fJ,g which actually appear in Eq. (51) do
not, as will be discussed in Sec. IV A.

Let us now make contact with the formulation of Wannier
interpolation developed in Ref. 25. In that work the expression
for the Berry curvature of the occupied states [Eq. (32) therein]
was written in the Hamiltonian gauge, where the occupation
matrices are diagonal. This required transforming A, and R4
from the Wannier gauge, where they are first constructed, to
the Hamiltonian gauge. Here we choose to keep everything
in the Wannier gauge throughout. The advantage is that even
though the matrices f and J, have to be constructed first in the
Hamiltonian gauge, it is straightforward to rotate them into the
Wannier gauge where all other needed objects are constructed.
Instead, the reverse transformation of those other objects can
in certain cases become nontrivial.

PHYSICAL REVIEW B 85, 014435 (2012)

The two formulations are of course equivalent, and it is in-
structive to recover explicitly from Eq. (51) the corresponding
expression in Ref. 25. Consider for example the last term in
Eq. (51). Taking the trace in the Hamiltonian gauge we find

J
trl flug gl = £ 0,(1

nm

and thus

J
—2Im tr[f‘]dg‘lﬁ] = —i Z (fnl;I - an)JoIt{nm J/.gmn’ (53)

nm

which agrees with the last term in Eq. (32) of Ref. 25 (D
therein corresponds in our notation to —i J1T).

It is pleasing to see that Eq. (51), when converted to the
Hamiltonian gauge, reduces to what was termed in Ref. 25 the
“sum over occupied bands” expression, where individual terms
have spiky features only when two bands, one occupied the
other empty, almost touch at the Fermi level, as the factor an —
£ suppresses spikes associated with pairs of occupied states.
As we shall see in Sec. IV A, this is a general feature of our
formulation, which leads naturally to expressions where the
spiky object J,, appears under the trace sandwiched between

f and g.

B. Orbital magnetization

Let us now apply to Im Hyg and Im G.g the same strategy
developed above for Im F,g, completing the list of quantities
needed to evaluate the orbital magnetization. We remark that
it would be possible to proceed along the lines of Ref. 25 in
order to arrive at “sum over occupied bands” expressions for
those quantities in the Hamiltonian gauge. However, we found
such an approach to be rather cumbersome, especially in the
case of Im Gyg.

1. Derivation

Inserting Eq. (47) into Eq. (8) leads to
Hop = [ fHfFop + fHF AugApl, (54)
so that
—21Im Hyp = Retr[ fHf Qo] — 2Imtr[ fHf Agg Agl

= Retr[ fH fR]
+2Imtr[ fHf AL — fHfALgABL.  (55)

Using Eq. (45), this takes the desired form

—2Im Hyp = Retr[ fHfRop] + 2Imtr[ fHFA, fAg]
- 2Imtr[f|Hf(Aothﬂ + JagAﬂ + Jag‘]ﬂ)]
(56)
in terms of basic matrix objects with every J, sandwiched
between an f and a g (after taking account of the cyclic

property of the trace).
Repeating for G4, we find

Gap = tr[ f(Cop + AugBp + BlgAp + AugHgAp)l  (57)
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and
—2Im Gop = Retr[fAog] — 2Imtr[(fAugBp — a <> )
+ fAsgHgAgl. (58)
Expanding Ka,g and @ﬁ, this becomes
—2ImGyp = Retr[ fAup] —2Imtr[ f(AugBpg — AugHAg
—AyBg —a < B)
+ f(hgHAg + AaglHg Ap)]. (59

Next we expand A, and gather terms in three groups,
containing zero, one, and two occurrences of the matrices J,
and Jg,»

—2ImGu =JO0+J1 4 J2. (60)
The J2 group contains only one term,
J2 = 2Imt[fJ,gHg Jg]. (61)
The J1 group is
J1 = =2Imtr[fJ,g(Bg — HAg + Hghg) — a < B]
= —2Imt[fJ,gBpg — a < B, (62)
where in the second equality we replaced one instance of g
with 1 — f and then used Eq. (27). The JO group reads, after
combining certain terms and canceling out some others,
JO =Retr[ fAup] + 2Imtr[ f(Ay fBg — Ap fBq
— AHfAp)]. (63)
This can be simplified further with the help of the following
identity proven in the Appendix,
[ fAs fBgl = t[ f A, fHAg], (64)
which leads to
JO =Retr[ fAyp] —2Imtr[ fHfA, fAg]. (65)

Collecting terms, we find

—2Im Gop = Retr[ fAup] — 2Imte[ fHF A, fAg]
— 2Imtlf(JogBp —a < B) + fJagHgJpl.
(66)

2. Final expressions

The quantities Im Fg, Im G4, and Im H,g enter the orbital
magnetization expression in the combinations Im(Ggg —
erFyg) and Im(H,p — £F Fyp). Using the condensed notations

X' = rXxf, (67)
X! =gXg, (68)
Xt =gXf, (69)
X~ = fXg, (70)

in Egs. (51), (56), and (66), we obtain for the integrand of M ;%,
Eq. (5),

—ZIm(HO,ﬁ — SFFaﬁ)
= +Re tr[([Ho — 8p)§22ﬁ] + 2Im tr[[HoAg.A%]
—2Imuf(H —ep)(A, I + Iy Af + T, ID) (71
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and for the integrand of 1\71055, Eq. (4),

—21m(G0¢; — 8FFa/3)
0 0 0,0 0
= +Retr[Aaﬁ — 5p§2aﬂ] — 2Imt[H AaAﬁ]
— ZImtr{[Ja’([Bg — 8FA'5) — o < B]
+ I, H —ep)Jg ) (72)

Note that the second terms in these two equations are equal and
opposite. For the special case of an insulator with f = 1 and
g = 0, only the first two terms are nonzero in each of Egs. (71)
and (72), and these expressions reduce to those derived in
Ref. 19.

IV. INTERPOLATION OF THE WANNIER-GAUGE
MATRICES

We calculate the orbital magnetization by averaging
Egs. (71) and (72) over a sufficiently dense grid of k points in
order to approximate the BZ integrals in Eqs. (4) and (5). At
each k the matrices f, Jy, H, Ay, By, R4p, and A o4 are needed,
and they are calculated by Fourier interpolation as follows.

A. Fourier transform expressions

We start with the matrix H. Inverting Eq. (11),

uy =Y e PR, (73)
R

and inserting into Eq. (26) yields

H=Y"e*®0/AR). (74)
R

We emphasize that any desired wave vector k can be plugged
into this expression, allowing one to smoothly interpolate the
matrix H between the A ab initio grid points used in Eq. (11)
to construct the WFs. Diagonalizing H [Eq. (14)] and using
the resulting rotation matrix U and interpolated eigenvalues
€, in Eq. (23) yields the occupation matrix f.

Next we consider the matrix J,. In practice it can be
calculated by inserting U into Eq. (44) and then using?

iU He Ul

Em—En

if n#m,
if n=m,

Ji =

o,nm
0

(75)

where H, = d,H is obtained by differentiating Eq. (74). In
the vicinity of band degeneracies and weak avoided crossings
the denominator in Eq. (75) becomes small, leading to strong
peaks in J} . as a function of k. If both bands n and m
are occupied, such peaks must eventually cancel out in the
final expressions for the AHC and orbital magnetization, as
discussed in Sec. III A 2.

We can make such cancellations explicit from the outset by
noting that J, only appears in the combinations J, = fJ,g
and J;F = gJ, f. Taking the former, for example, we find using
Egs. (23) and (44) that

Jy=vuJ8uT, (76)
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where the matrix elements of J!'~ = fHyH(1 — 1) are
He w if n occupied and m empty,
Jom = EmEn . (77
’ 0 otherwise.

J H,‘f is given by a similar expression, but with m occupied and
n empty. Unlike Eq. (75), the expressions for JH~ and J!!* are
well behaved in that they will only show peaks when the direct
gap is small and mixing between occupied and empty states is
strong. By working directly with them, we avoid introducing
any quantity that would react strongly to crossings among
occupied states

While f, J,,and J, + are first calculated in the Hamiltonian
gauge and then converted to the Wannier gauge, the remaining
quantities entering Eqs. (71) and (72) are most easily calculated
directly in the Wannier gauge, in the same way as H. It is
sufficient to consider the Wannier representation of the three
basic quantities A,, By, and C,p introduced in Sec. IID.
Inserting Eq. (73) into the respective definitions we find

= Z *R(0/7,|R), (78)
R

By = ) ¢*®OITI(F — R)uIR), (79)
R

Cap = D e*®(0IFH(F — R)pIR). (80)
R

The expressions for 2,4 and A,g are obtained by inserting
Eq. (78) into Eq. (31) and Eq. (80) into Eq. (37), respectively.

It was shown in Ref. 25 that the computation of the AHC
requires a knowledge of the Wannier matrix elements of H and
f. Inspection of the Fourier transform expression given above
reveals that the bulk orbital magnetization requires in addition
the matrix elements of H{# and #/{#. This is more than might
have been anticipated, given that the matrix elements of t and
i are not needed for calculating the orbital moment of finite
samples under open boundary conditions, but it is the price
to be paid for a formulation that extends also to the case of
periodic boundary conditions.

B. Evaluation of the real-space matrices

We shall follow the approach of Ref. 25, whereby the
needed real-space matrix elements are actually evaluated in
reciprocal space. Inverting the Fourier sums in Egs. (74), (78),
(79), and (80), we find

OIHR) = = Z e ¥R, (81)

(017, |R) = N3 Z e R (g |9 1)

:mz

N, Z ™ ® (x| H| 0 1)

e Ry bg Vi, (82)
(0|H(? — R)|R) =

~ m > e RuybyHep,  (83)
k,b
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<0|faﬂ<f — R)s|R)

=5 Z ¢ %R (B, uy| Ay | dpuy)

1 )
~ 7 2 ¢ R bbb, (89)

k,bi,b;

where the sums are over the /3 points in the uniform ab initio
mesh. The second equalities in Egs. (82)-(84) follow from
using a finite-difference expression for the derivatives of the
smooth Bloch states,?

|0aun) =Y wpbylurin) + OB (85)

b
(wp are appropriately chosen weights, and the sum is over
shells of vectors b connecting a point k on the ab initio grid to
its neighbors), together with the definitions

Hib = (x| Hicluxn), (86)
Mip = (ukluksn), 87)
Hibbs = (ticrn, | Hlutsn,), (88)

which complement Eq. (26) for H, needed in Eq. (81). Writing
the states |u) as linear combinations of the original ab initio
eigenstates |u°),

Tk
i) = Y [ Vicon» (89)

we arrive at the following expressions for the J x J matrices
appearing in Eqgs. (81)—(84):

He = V/Hi Vi, (90)

i = Vi HicMich Vi, o1)

Mich = Vi MicVicsn. (92)

Hiby.b, = Vlj+blHk,b1,b2 Victb, 93)

where

M = (] ), o)

Mucp = (up|upy), (95)

Hib b, = (uﬁerl |I:Ik|”g+hz>' (96)

The diagonal eigenvalue matrix Hy and the overlap matrix
My are readily available, as they constitute the input to the
space-selection and gauge-selection steps in the wannieriza-
tion procedure. While they suffice for calculating the AHC, 2
as well as MIC, the M'C term in the orbital magnetization
requires the additional quantities Hy b, b,-

V. COMPUTATIONAL DETAILS

Plane-wave pseudopotential calculations were carried out
for the ferromagnetic transition metals bcc Fe, hep Co, and
fcc Ni at their experimental lattice constants (5.42, 4.73, and
6.65 bohr, respectively). The calculations were performed
in a noncollinear spin framework, using fully relativistic
norm-conserving pseudopotentials®® generated from param-
eters similar to those in Ref. 25. The energy cutoff for the

014435-7



LOPEZ, VANDERBILT, THONHAUSER, AND SOUZA

expansion of the valence wave functions was set at 120 Ry
for Fe and Ni and at 140 Ry for Co; a cutoff of 800 Ry
was used for the charge density. Exchange and correlation
effects were treated within the PBE generalized-gradient
approximation.!

The calculation of the orbital magnetization comprises the
following sequence of steps: (i) self-consistent total-energy
calculation; (ii) non-self-consistent band structure calculation
including several conduction bands; (iii) evaluation of the
matrix elements in Egs. (95) and (96); (iv) wannierization of
the selected bands; and (v) Wannier interpolation of Egs. (71)
and (72) across a dense k-point mesh, with the value of ep
taken from step (i). Steps (i) and (ii) were carried out using
the PWSCF code from the QUANTUM-ESPRESSO package,’” and
in step (iii) we used the interface routine PW2WANNIER90 from
the same package, modified to calculate Eq. (96) in addition
to Eq. (95). Step (iv) was done using the WANNIER90 code,
and for step (v) a new set of routines was written (we plan
to incorporate these in a future release of the WANNIER90
distribution).

The BZ integration in step (i) was carried out on a 16 x
16 x 16 Monkhorst-Pack mesh,** using a Fermi smearing
of 0.02 Ry. In step (ii), the 28 lowest band states were
calculated for bee Fe and fcc Ni on A x N x N K-point
grids including the I" point. (For hcp Co, with two atoms
per cell, 48 states per k point were calculated.) After testing
several grid densities for convergence (see Sec. VI A below),
we settled on N = 10 for all three materials. In step (iv)
we followed the procedure described in Ref. 35 to generate
eighteen disentangled spinor WFs per atom, capturing the s,
p, and d characters of the selected bands. In the case of fcc
Ni, we also tested an alternative set consisting of only fourteen
WFs, ten of which are atom-centered d-like orbitals while the
remaining four are s-like and are centered at the tetrahedral
interstitial sites.”* We found excellent agreement—to within
0.0002 w g/atom—between the values of M obtained with the
two sets of WFs.

It should be kept in mind that our calculations use a
pseudopotential framework in which the contributions to
M coming from the core region are not quite described
correctly. A rigorous treatment using the so-called GIPAW
approach®® was developed in Refs. 11 and 14. It was shown
that Eq. (1), written in terms of the pseudo—wave functions
and pseudo-Hamiltonian, must be supplemented by certain
core-reconstruction corrections (CRCs) in order to obtain the
full orbital magnetization.

We know from the work of Ref. 14 that the CRCs are small
for bulk Fe, Co, and Ni, of the order of 5%. This suggests
that the errors inherent in our uncontrolled approximations in
the core are also of the same order. If one wants to treat the
problem correctly and capture this missing 5%, one should use
the GIPAW approach. However, the issues of implementing
the CRCs are completely orthogonal to the issues of Wannier
interpolation, and so we have not pursued that here. (As the
CRCs originate in the atomic cores, there is nothing to be
gained from using Wannier interpolation to calculate them.)
Alternatively, the Wannier matrix elements could be generated
starting from an all-electron first-principles calculation,’ in
which case the present formulation should yield the full first-
principles orbital magnetization.

PHYSICAL REVIEW B 85, 014435 (2012)

Finally, we mention an issue in all DFT-based studies of
orbital-current effects, namely that the accuracy of the ordinary
exchange-correlation functionals (LSDA, GGA, GGA+U,
etc.) has not been well tested in this context. A variety of inter-
esting ideas have been proposed for improved functionals,*!
but exploring these would take us outside the scope of the
present work.

VI. RESULTS

In this section, the Wannier interpolation method is used
to calculate the orbital magnetization of the ferromagnetic
transition metals bce Fe, hep Co, and fcc Ni. We begin by
carrying out convergence tests with respect to BZ sampling.
Converged values are then tabulated for the three materials,
and compared with measurements and previous calculations.
Finally, we investigate how M is distributed in k space in the
case of bcc Fe.

A. Convergence studies

Recall that two separate BZ grids are employed at different
stages of the calculation (the ab initio grid used to evaluate
the Wannier matrix elements, and the interpolation grid used
to carry out the BZ integrals in the orbital magnetization
expression), and both must be checked for convergence.

Table I shows the calculated orbital magnetization as a
function of the number N x N x N of points on a uniform
interpolation grid in the BZ, for a fixed 10 x 10 x 10 ab initio
grid. For N = 20 the orbital magnetization per atom is already
reasonably well converged (to within 0.002 w ) in the case of
Fe and Co, while Ni requires N = 50 to reach a similar level
of convergence. Setting N = 100 allows to converge M to
better than 0.0002 w5 /atom across the board. By comparison,
the calculation of the AHC converges much more slowly.?
With N = 25, for example, the AHC of bce Fe is oy, = 554
S/cm, about 73% of the converged value of 756 S/cm, which
demands a nominal mesh of the order of N = 200, adaptively
refined around the strongest Berry curvature spikes.>>*?

Next we look at the convergence properties with respect
to the ab initio mesh, keeping the interpolation mesh fixed at
N = 125 (Table II). The situation is now reversed, with the

TABLEI. Convergence of the orbital magnetization of bcc Fe, hep
Co, and fcc Ni (in units of uz/atom) with respect to the interpolation
mesh in the Brillouin zone, for a fixed 10 x 10 x 10 ab initio mesh.
For each material the magnetization is along the easy axis (see
Table IV below).

Interpolation Mesh bce Fe hep Co fce Ni
10 x 10 x 10 0.0769 0.0900 0.0461
15 x 15 x 15 0.0797 0.0839 0.0394
20 x 20 x 20 0.0731 0.0830 0.0455
25 x 25 x 25 0.0748 0.0827 0.0535
50 x 50 x 50 0.0749 0.0840 0.0462
75 x 75 x 75 0.0760 0.0841 0.0472
100 x 100 x 100 0.0761 0.0838 0.0466
125 x 125 x 125 0.0760 0.0839 0.0468
150 x 150 x 150 0.0760 0.0840 0.0468
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TABLE II. Convergence of the orbital magnetization M, (in units
of wp/atom) of becc Fe with respect to the ab initio mesh, for a
fixed 125 x 125 x 125 interpolation mesh. The two gauge-invariant
contributions to M, = MZLC + M;C are also shown.

Ab initio Mesh Total M, M« M©

4x4x4 0.0855 0.1050 —0.0195
6x6x6 0.0784 0.0970 —0.0186
8 x8x8 0.0765 0.0948 —0.0183
10 x 10 x 10 0.0760 0.0943 —0.0183
12 x 12 x 12 0.0760 0.0943 —0.0183

orbital magnetization converging relatively slowly compared
to the exponentially fast convergence reported in Ref. 25 for
the AHC. The term M ZIC actually converges very rapidly, like
the AHC, but the convergence rate of M. is held back by the
larger term M ZLC.

In order to shedJight on t~his behavior, we show in Table 111
the breakdown of M€ and ML, calculated from Egs. (71) and
(72), into the three types of terms introduced in Eq. (60). The
J2 terms give by far the largest contribution to M ZIC (k), similar
to what was found previously for the Berry curvature.” This is
not, however, the case for M ;‘C(k), where the JO and J1 terms
make comparable contributions,® and these terms are the ones
limiting the convergence rate. The reason is that they depend
on matrix elements involving the position operator, Eqgs. (82)—
(84). In our implementation such matrix elements are evaluated
on the ab initio grid using the finite-differences expression
(85), and this introduces a discretization error which decreases
slowly with the grid spacing b. Instead, the J2 terms depend
exclusively on the Hamiltonian matrix elements (81), whose
convergence rate is only limited by the decay properties of
the WFs in real space (it is therefore exponentially fast). It
should be possible to achieve an exponential convergence for
the matrix elements (82)—(84) by evaluating them directly on
a real-space grid, but we have not explored that possibility in
our calculations.

Based on the results of the convergence tests presented
here, we ultimately chose to work with a 10 x 10 x 10 ab
initio grid and a 100 x 100 x 100 interpolation grid for all the
calculations presented in the following section. This choice
of parameters ensures that the values reported for the orbital
magnetization are converged with respect to k-point sampling
to within 0.0002 p 5 /atom.

B. Orbital magnetization of Fe, Co, and Ni

For each of the three materials, two separate sets of
calculations were carried out, one with the spin magnetization

TABLE III. Decomposition of the 10 x 10 x 10 row of Table II
into the three types of terms appearing in Eqs. (71) and (72), classified
according to the number of occurrences of the matrices Jf [Eq. (76)].

JO J1 J2
M Le 0.0397 0.0250 0.0296
A7I§C —0.0002 0.0023 —0.0204
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TABLE IV. Orbital magnetization (in units of xz/atom) for bulk
Fe, Co, and Ni. Experimental results for M along the easy axis
were obtained in Ref. 2 by combining saturation-magnetization and
gyromagnetic measurements. Results from the Wannier interpolation
of Eq. (1) (“This Work”’; M€ contributions in parentheses) are given
and compared with the results obtained in Ref. 14 (see endnote 44) by
evaluating Eq. (1) without Wannier interpolation (“Modern Theory”)
and by integrating currents inside muffin-tin spheres (“Muffin Tin”).
All calculations were done using the PBE functional.

Modern Theory Muffin Tin

Axis Expt. This Work Ref. 14 Ref. 14
bec Fe  [001]* 0.081 0.0761 (0.0943) 0.0658 0.0433
bec Fe  [111] 0.0759 (0.0944)  0.0660 0.0444
hcp Co [001]*  0.133 0.0838 (0.1027) 0.0957 0.0868
hep Co  [100] 0.0829 (0.0999) 0.0867 0.0799
fceNi  [111]*  0.053 0.0467 (0.0443) 0.0519 0.0511
fccNi  [001] 0.0469 (0.0440) 0.0556 0.0409

*Experimental easy axis.

pointing along the easy axis and another with the magneti-
zation constrained to point along a different high-symmetry
direction. In each case the calculated orbital magnetization
was found to be parallel to the spin magnetization, as expected
from symmetry.

The numerical results are summarized in Table IV, where
they are compared with measurements and previous calcula-
tions. In view of the uncertainties in the accuracy of ordinary
GGA functionals for describing orbital-current effects, as
mentioned at the end of Sec. V, the overall agreement with
experiment is quite reasonable. It can be seen that calculations
based on Eq. (1) (both ours and those of Ref. 14) give
the ordering fcc Ni < bec Fe < hep Co for the orbital
magnetization per atom, in agreement with experiment.
Instead, the approximate muffin-tin scheme switches the first
two, because of a large contribution in bcc Fe coming from
the interstitial regions between the muffin-tin spheres.!* The
calculated anisotropy (orientation dependence) of M is very
small, and agrees reasonably well with the one obtained in
Ref. 14.

While they agree in the general trends, some difference
can be seen between the values of M obtained from Eq. (1)
of this work and in Ref. 14. Those differences can probably
be attributed to a combination of several technical factors,
including differences in pseudopotentials, k-point sampling,
and our neglect of the core-reconstruction corrections.

Regarding the two gauge-invariant contributions to M in
Eq. (3), we find that they have opposite signs in bcc Fe and
hep Co, and the same sign in fcc Ni. In bee Fe and hep Co
|MLC| is larger than |M'C| by a factor of about 5, while in fcc
Ni that factor is more than 15.

C. Distribution of orbital magnetization in k space

In order to understand in more detail the results of Sec. VI A
for the convergence of the orbital magnetization, let us look at
its distribution in k space, and compare with the AHC. For the
orbital magnetization we sum the integrands in Egs. (4) and (5),

Mz(k) = _2Im[ny(k) + ny(k) - 28Fny(k)] , 97
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FIG. 2. Band structure, Berry curvature [Eq. (98)], and integrand

of the orbital magnetization [Eq. (97)] calculated by Wannier

interpolation along the path I'-H-P in the Brillouin zone. Atomic
units (a.u.) are used in the middle and lower panels.

and for the AHC we take the integrand in Eq. (10), i.e., the
Berry curvature

Q. (k) = —2Im F, (k). (98)

We will examine bcc Fe with the magnetization along the easy
axis [001], and accordingly we have picked the z components
of the axial vectors M(Kk) and (k).

The two quantities are plotted in Fig. 2 along the high-
symmetry lines '-H-P, together with the energy bands close
to the Fermi level. The Berry curvature (middle panel) is
notorious for its very sharp peaks, which occur when two
bands, one occupied the other empty, almost touch.?>*? It
can be seen in the lower panel that M, (k) displays similar
sharp features around the same locations, but not nearly
as pronounced. The reason is that while Im G,,(k) and
Im H,, (k) are individually as spiky as €2.(k), a large degree
of cancellation occurs when the three quantities are assembled
in Eq. (97). This explains why the calculation of the orbital
magnetization is less demanding in terms of BZ sampling than
the AHC.

In Fig. 3 we break down the M, (k) curve of Fig. 2 into
various parts. The upper panel shows the contributions from
Eq. (71), i.e.,

M (k) = —2Im[H,y (k) — &5 Foy (K], 99)
the middle panel those from Eq. (72), i.e.,

MM (k) = —21m[G,, (k) — &7 Fy (K)], (100)

and the lower panel their sum M, (k). Each panel contains
three curves, labeled J0, J1, and J2 according to the notation
of Eq. (60) and Table III. The J2 curves are the most spiky,
giving rise to the sharpest features in M, (k). This is because
the matrices J* appear twice in those terms, making them
very sensitive to small energy denominators in Eq. (77). The
main features we encountered in Table III for the integrated
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FIG. 3. Decomposition of the quantity M.(k) = M}C(k) +
lec(k) plotted in the lower panel of Fig. 2 into contributions from
the three types of terms defined in Table III.

quantities can already be seen in this figure—in particular, the
predominance of the J2 terms in M. Zlc(k) (note the logarithmic
scale on the upper panel of Fig. 3), compared to a much more
even distribution of M;“C(k) among the three types of terms
(middle panel).

VII. CONCLUSIONS

We have presented a first-principles scheme, based on
partially occupied Wannier functions, to efficiently calculate
the orbital magnetization of metals using the formally correct
definition for periodic crystals, Eq. (1). The localization
of the WFs in real space is exploited to carry out the
necessary Brillouin-zone integrals by Wannier interpolation,
starting from the real-space matrix elements of a small set of
operators [Egs. (74) and (78)—(80)]. The same type of strategy
has previously been used to evaluate other quantities, e.g.,
the anomalous Hall conductivity>> and the electron-phonon
coupling matrix elements,*> which are notoriously difficult to
converge with respect to k-point sampling.

As a first application, we used the method to calculate the
spontaneous orbital magnetization of the bulk ferromagnetic
transition metals. Compared to the AHC in these systems,
we find that the orbital magnetization, while displaying
similar spiky features in k space around the Fermi surface,
is somewhat less demanding. Nevertheless, well-converged
results still require a fairly dense sampling of the BZ, making
it advantageous to use an accurate interpolation scheme instead
of a direct first-principles calculation for every integration
point.

Besides being computationally very efficient, the Wannier
interpolation approach has the appealing feature that the
evaluation of Eq. (1) is done outside the first-principles code
in a postprocessing step. The algorithm is in fact completely
independent of such details as the basis set used in the first-
principles calculation. As a result, the calculation of the orbital
magnetization only needs to be coded once in the Wannier
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package, and the same code can be reused by interfacing it
with any desired k-space electronic structure code.

We envision several possible applications for the method
developed in this work. One example is the study of enhanced
orbital moments in low-dimensional systems, such as magnetic
nanowires deposited on metal surfaces.”*® The method is not
restricted to the spontaneous orbital magnetization in ferro-
magnets; changes in magnetization induced by perturbations
that preserve the lattice periodicity can also be treated within
the same framework. One such application is the determination
of the NMR shielding tensors using the so-called “converse”
approach.'?!3 At present the converse approach, using Eq. (1)
for the induced orbital magnetization, has only been applied
to molecules and bulk insulators. However, by combining it
with the present Wannier-based formulation, it could provide
a practical route for the evaluation of the shielding tensors in
metals, a problem which is known to demand a very dense
sampling of the Brillouin zone.*’
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APPENDIX A: DERIVATION OF EQ. (23)

With the help of Eq. (23), the left-hand side of Eq. (64) can
be written as

[ fAUTAU) FAUTBRU)I. (A1)
Next we use the identities
UlpU = Al — JH (A2)
and
U'BgU = B — HHJJ! (A3)

[these can be obtained by inserting Eq. (15) into the definitions
(28) and (33)], to recast Eq. (A1) as

J
Z f:{ (Ag,nm - J;,Inm) ft};I ([BI;,mn - Em J;mn) .

nm

(A4)

Now we note that

ABY . = if i (ul| H|dpull) = 5,

m /S,mn 9 (AS)
since by construction the occupied Hamiltonian-gauge states
are eigenstates of the Hamiltonian (see Sec. IIB). Using
Eq. (AS5) in the expression (A4), factoring out €,,, and invoking

Eqg. (A2) once more yields
[ fAUTAU) FAHRU T AL U] (A6)

Inserting 1 = UTU between fH and H, the right-hand side
of Eq. (64) is finally obtained.
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