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Planar approximation for spin transfer systems with application to tilted polarizer devices
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Planar spin transfer devices with dominating easy-plane anisotropy can be described by an effective one-
dimensional equation for the in-plane angle. Such a description provides an intuitive qualitative understanding
of the magnetic dynamics. We give a detailed derivation of the effective planar equation and use it to describe
magnetic switching in devices with tilted polarizer.
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I. INTRODUCTION

Spin transfer effect is a nonequilibrium interaction
that arises when a current of electrons flows through a
noncollinear magnetic texture.1–3 Spin transfer torque can
lead to current induced magnetic switching in multilayer
devices or domain-wall motion in devices with continuous
change of magnetization.4–6 Both phenomena serve as an
underlying mechanism for a number of suggested memory
and logic applications.7,8

Magnetic dynamics in spin transfer devices is described
by the Landau-Lifshitz-Gilbert (LLG) equation with added
current-induced torques.2,6 Analytic solutions of the LLG
equation can be readily found in the simplest case of an
easy axis magnetic anisotropy. However, when the form of
anisotropy energy becomes more complicated, investigations
of the static equilibria stability become much more involved.9

A study of precession cycles is even more complicated10 and
often makes it necessary to resort to numeric simulations.11,12

Due to the complexity of the LLG equation it is always
interesting to consider cases where some simplifying
approximations can be made.

In many devices the easy plane anisotropy energy is much
larger than the other anisotropy energies, and the system
is in the planar spintronic device regime13 (Fig. 1). The
limit of dominating easy plane energy is characterized by a
simplification of the dynamic equations,14 which comes not
from the high symmetry of the problem, but from the existence
of a small parameter: the ratio of the energy modulation within
the plane to the easy plane energy. Strong easy plane anisotropy
forces the deviations of the magnetization from the plane to
be small, making the motion effectively one dimensional. As
a result, an effective description in terms of just one azimuthal
angle becomes possible.

Our publications15–19 extended the planar approximation
to systems with spin transfer torques and presented a number
of results, highlighting the practical use of the method. In
this paper we give a detailed derivation the effective planar
equation for a macrospin free layer in the presence of spin
transfer torques (Sec. III). We then show how this equation
can be applied to a system with the tilted polarizer and obtain
a qualitative picture of the device dynamics (Sec. IV).

II. MAGNETIC DYNAMICS OF THE FREE LAYER

We consider a conventional spin transfer device consisting
of a magnetic polarizer (fixed layer) and a small magnet (free

layer) with electric current flowing from one to another (Fig. 1).
The free layer is influenced by spin transfer torque, while the
polarizer is too large to feel it. It is assumed that in the limit of
large exchange stiffness the free layer can be described by a
macrospin model, where its state is characterized by just one
vector, the total magnetic moment M = Mn with a constant
absolute value M and a direction given by a unit vector n(t).
The LLG equation2,9 reads

ṅ =
[
− δε

δn
× n

]
+ u(n)[n × [s × n]] + α[n × ṅ]. (1)

Here the rescaled energy ε = (γ /M)E has the dimensions of
frequency and is expressed through the total magnetic energy
E(n) of the free layer; γ is the gyromagnetic ratio, and α is the
Gilbert damping constant. The second term on the right-hand
side of the equation is the spin transfer torque. Unit vector
s points along the polarizer direction. We do not impose any
restrictions on the fixed layer (e.g., it is not required to have
a strong planar anisotropy) and assume that the direction of
s can be arbitrary (Fig. 1). The spin transfer strength u(n)
is proportional to the electric current I ,9 and in general is a
function of the angle between the polarizer and the free layer
u(n) = g[(n · s)] I . The spin current efficiency factor g[(n · s)]
is a material and device specific function.20

In standard polar coordinates θ and φ (see Fig. 8 in
Appendix A) Eq. (1) reads

θ̇ + αφ̇ sin θ = − 1

sin θ

∂ε

∂φ
+ u(n)(s · eθ ),

(2)

φ̇ sin θ − αθ̇ = ∂ε

∂θ
+ u(n)(s · eφ),

s

j

n
j

n
s

(a) (b)

FIG. 1. Planar spin transfer systems driven by current j . Hashed
parts of the devices are ferromagnetic and clear parts are made from
a nonmagnetic metal. Spin polarizers have arbitrary magnetization
directions s, while the free layer magnetization n is directed in the
easy plane.
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where the unit tangent vectors eθ and eφ are also defined in
Appendix A.

We choose the easy plane to be defined by θ = π/2, and
write the rescaled magnetic energy in the form

ε = ωp

2
cos2 θ + εr (θ,φ), (3)

where the first term represents the easy plane anisotropy, with
the planar frequency ωp related to the easy plane constant Kp

as ωp = γKp/M . The remainder εr is the “residual” energy.
The planar limit is characterized by ωp → ∞. The large easy
plane constant forces the energy minima to be very close
to the easy plane and the low-energy solutions of the LLG
equation to have the property θ (t) = π/2 + δθ with δθ → 0.
Equations (2) can then be expanded in small parameters,

|εr |
ωp

� 1 and
|u(n)|
ωp

� 1.

By truncating this expansion one obtains the effective planar
approximation.

III. DERIVATION OF THE EFFECTIVE
PLANAR EQUATION

Explicitly separating the large easy plane terms, we rewrite
Eqs. (2) as

θ̇ + αφ̇ sin θ = fθ + uθ ,

φ̇ sin θ − αθ̇ = −ωp cos θ sin θ + fφ + uφ,

where the residual energy is responsible for the terms

fθ (θ,φ) = − 1

sin θ

∂εr

∂φ
, fφ(θ,φ) = ∂εr

∂θ
, (4)

and the spin transfer torque produces the terms

uθ (θ,φ) = u(n)(s · eθ ), uφ(θ,φ) = u(n)(s · eφ). (5)

We also introduce a notation Fθ,φ = fθ,φ + uθ,φ , and rewrite
the LLG system as

θ̇ = Fθ − α(−ωp cos θ sin θ + Fφ)

1 + α2
,

(6)

φ̇ = −ωp cos θ sin θ + Fφ + αFθ

(1 + α2) sin θ
.

Next, we make approximations. In the ωp → ∞ limit the
solution is expected to have a property θ (t) = π/2 + δθ (t)
with δθ → 0. Expanding all quantities on the right-hand side
of Eq. (6) in small δθ up to the first order we get

δθ̇ = F 0
θ + F 1

θ δθ − α
(
ωpδθ + F 0

φ + F 1
φ δθ

)
1 + α2

, (7)

φ̇ = ωpδθ + F 0
φ + F 1

φ δθ + α
(
F 0

θ + F 1
θ δθ

)
1 + α2

, (8)

where we have used the notation

F 0 = F

(
π

2
,φ

)
, F 1 = ∂F

∂θ

(
π

2
,φ

)
.

In the approximation (7) and (8), equations are linear with
respect to the unknown function δθ (t), but still fully nonlinear
with respect to φ(t).

Equation (8) can be solved with respect to δθ,

δθ = (1 + α2)φ̇ − F 0
φ − αF 0

θ

ωp + F 1
φ + αF 1

θ

= q(φ,φ̇), (9)

so that the out-of-plane deviation becomes a “slave” of
the in-plane motion.14 The presence of the large ωp in the
denominator ensures the smallness of δθ . Substituting the
resulting expression δθ = q(φ,φ̇) back into Eq. (7) one obtains
a second-order differential equation for a single unknown
function φ(t),

∂q

∂φ̇
φ̈ + ∂q

∂φ
φ̇ = F 0

θ − αF 0
φ

1 + α2
+

(
F 1

θ − αωp − αF 1
φ

1 + α2

)
q.

Denoting �(φ) = ωp + F 1
φ + αF 1

θ and simplifying the terms
we get

1 + α2

�
φ̈ +

(
α + ∂q

∂φ
− (1 + α2)

F 1
θ

�

)
φ̇

= F 0
θ − F 1

θ

(
F 0

φ + αF 0
θ

)
�

. (10)

In this form the equation is still rather complicated but since it
was obtained from the approximate system (7) and (8) we are
allowed to drop any terms below the approximation accuracy.
The terms neglected in Eqs. (7) and (8) were the second-order
terms F ′′δθ2 in the expansion of F , and the third-order terms
ωpδθ3 in the easy plane energy expansion. While formally the
latter terms are of higher order in the δθ expansion, the pres-
ence of a large coefficient ωp causes them to be comparable to
the former terms. To compare the orders of magnitude of the
terms consistently, we need to know the order of magnitude of
δθ . At the present stage we know that δθ is small but its exact
order of magnitude is not known because we do not have an
estimate for the φ̇ term in the numerator of Eq. (9).

A quick way to estimate δθ is to consider a typical trajectory
n(t) in a planar system with negligible dissipation (Fig. 2). In

B

Aδθ ϕ

FIG. 2. Typical trajectory of n(t) on a unit sphere in a system
with a dominating easy plane anisotropy. The azimuthal angle φ is
measured along the equator in the direction shown by the arrow. The
deviation δθ from the equator is small. In the planar picture vectors
n ending in the points A and B correspond to effective particles with
the same coordinates φ but opposite velocities φ̇.
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the absence of dissipation the trajectory is an equipotential line
ε(n) = const. Using the energy expression (3) and denoting
the change of the residual energy on the trajectory as �εr , one
can find the maximum deviation from the equator as δθmax =√

2�εr/ωp. Below we will show how the same result can be
observed in the framework of effective planar description.

A. Simple residual energy in the absence of spin torque

Let us first consider the problem in the absence of spin
transfer,14 assuming a simple form of residual energy εr =
εr (φ). In this case we find f 0

φ = f 1
φ = f 1

θ = 0 and get

q(φ,φ̇) = (1 + α2)φ̇ − αf 0
θ

ωp

. (11)

Equation (10) takes a form

1 + α2

ωp

φ̈ + α

(
1 − 1

ωp

∂f 0
θ

∂φ

)
φ̇ = f 0

θ .

Assuming that the residual energy εr (φ) does not have any
special points of fast change we can estimate f 0

θ ∼ ε � ωp.
Then

1 − 1

ωp

∂f 0
θ

∂φ
≈ 1

and we can approximate the equation by

1 + α2

ωp

φ̈ + αφ̇ = f 0
θ = −∂εr

∂φ
.

The equation above has the form of the Newton’s equation for
a particle of mass (1 + α2)/ωp moving in a one-dimensional
potential εr (φ), subject to a viscous friction force with a friction
coefficient α.

Our goal is to estimate the value of φ̇, i.e., of the speed of
the “effective particle.” The characteristic speed depends on
the total energy of the particle,

εtot = φ̇2/2ωp + εr (φ),

and on the relative strength of the friction forces. We will
assume that the total energy is of the order of εr (this is the
mathematical equivalent of our original assumption about the
low-energy dynamics). Furthermore, in the present paper we
will concentrate on the case of α → 0 that corresponds to an
almost frictionless motion of the particle. Then one can use
the approximate conservation of the total energy and obtain
the maximum speed from φ̇2/2ωp = εr , which gives

φ̇ ∼ √
εrωp.

Using similar arguments one can estimate the maximum
acceleration as

φ̈ ∼ εrωp.

Note that the viscous friction can be approximately neglected
when αφ̇ � f 0

θ ∼ εr . Thus the Gilbert damping constant α

has to be not just small compared to unity but satisfy a more
stringent inequality,

α �
√

εr

ωp

� 1. (12)

We see now that φ̇ is the largest term in the denominator of
Eq. (11) and hence get an estimate

δθ ∼
√

εr

ωp

, (13)

in accord with the result obtained by considering a trajectory
on the unit sphere.

B. Arbitrary residual energy in the absence of spin torque

Let us return to the approximation (7) and (8) and assume a
general form of the residual energy εr = εr (θ,φ) but still keep
the current equal to zero (u = 0, F = f ). It is now possible to
use the a posteriori estimate (13) for δθ to consider the orders
of magnitude of the terms. We start the discussion from the
“slave” equation (8). Here

ωpδθ ∼ √
εrωp, f 0 ∼ εr , f 1δθ ∼ εr

√
εr

ωp

,

αf 0 � εr

√
εr

ωp

, αf 1δθ � εr

εr

ωp

.

As we see, the orders of magnitude of the terms form a series,

. . . εr

εr

ωp

, εr

√
εr

ωp

, εr ,
√

εrωp . . . , (14)

where each term is given by an expression εr (εr/ωp)n/2.
The terms neglected in transition from Eq. (6) to Eq. (8)

were

ωpδθ3 ∼ εr

√
εr

ωp

,
∂2f

∂θ2
δθ2 ∼ εr

εr

ωp

.

This means that in Eq. (8) one should only keep the terms of the
order εr and higher. Lower-order terms would be comparable
to some of the discarded ones. Using this argument we discard
f 1δθ , αf 0, and αf 1δθ . The 1/(1 + α2) factor in Eq. (8) can
be expanded using Eq. (12),

1

1 + α2
= 1 + δ, δ ∼ α2 � εr

ωp

.

This shows that 1/(1 + α2) can can be approximated by unity
in Eq. (8) without changing the accuracy. After all those
simplifications Eq. (9) takes the form

q(φ,φ̇) = φ̇ − f 0
φ

ωp

.

As for Eq. (7), the terms discarded in going from Eq. (6) to
Eq. (7) were

αωpδθ3 � εr

εr

ωp

,
∂2f

∂θ2
δθ2 ∼ εr

εr

ωp

,

and therefore we have to keep the terms of the order εr

√
εr/ωp

and higher. Thus the f 1δθ and αf 0 terms should be kept in
Eq. (7) but the αf 1δθ terms should be discarded. One can
also conclude that it is safe to replace the factor 1/(1 + α2) by
unity. Equation (7) is now replaced by

δθ̇ = f 0
θ + f 1

θ δθ − α
(
ωpδθ + f 0

φ

)
,
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where one should use

f 1
θ δθ = f 1

θ

φ̇ − f 0
φ

ωp

≈ f 1
θ φ̇

ωp

,

since the term f 1
θ f 0

φ /ωp ∼ ε2
r /ωp is of the same order as the

already discarded terms.
Without the discarded terms Eq. (10) reads

φ̈

ωp

+
(

α − 1

ωp

[
∂f 0

φ

∂φ
+ f 1

θ

])
φ̇ = f 0

θ = −∂εr (π/2,φ)

∂φ
.

This is the effective particle equation discussed in the previous
section, except that the viscous friction coefficient seems to
acquire a correction. While this correction is a small quantity
of the order εr/ωp � 1, it is added to a small number α � 1
and therefore can potentially change the sign of the dissipation
term, leading to a significant effect. However, one finds

∂f 0
φ

∂φ
+ f 1

θ = ∂

∂φ

∂εr

∂θ
+ ∂

∂θ

(
−∂εr

∂φ

)
= 0, (15)

so the correction actually vanishes. We come back to the
effective equation

φ̈

ωp

+ αφ̇ = −∂εr (π/2,φ)

∂φ
,

which corresponds to the most natural generalization of the
equation derived in the previous section. The positive effective
friction coefficient ensures that the effective particle always
stops at an energy minimum point, as expected for a closed
system with dissipation.

C. Effective equation in the presence of spin torque

Finally, we proceed to the derivation of the effective
equation in the presence of spin torque. Consider approxi-
mations (7) and (8) with εr = εr (θ,φ) and u 	= 0.

The orders of magnitude of the extra terms produced by
the current will depend on the value of u. For the planar
approximation to be valid, the spin torque terms certainly
have to be small compared to the torques produced by the
easy plane anisotropy. The latter are responsible for the terms
of the order

√
εrωp in Eqs. (7) and (8). Thus it seems that u

should not exceed εr , which is the largest term before
√

εrωp

in the series (14). Such a conclusion is correct for a general
situation. We will, however, see below that in some special
cases the current can be increased up to u ∼ √

εrωp without
violating the dominance of the easy plane anisotropy torque.

To include those special cases we assume u � √
εrωp and

revisit Eqs. (7) and (8) discarding the terms smaller than
εr

√
εr/ωp in Eq. (7), and smaller than εr in Eq. (8).

Equation (8) acquires the form

φ̇ = (
ωp + u1

φ

)
δθ + f 0

φ + u0
φ,

where, just like in the previous section, the factor 1/(1 + α2)
was approximated by unity without loss of accuracy. By
solving for δθ and expanding the denominator up to the same
accuracy we find the form of the slave condition (9),

δθ =
(

1 − u1
φ

ωp

)
φ̇

ωp

− f 0
φ + u0

φ

ωp

+ u1
φu0

φ

ω2
p

. (16)

Differentiating both sides one gets a formula

δθ̇ =
(

1 − u1
φ

ωp

)
φ̈

ωp

− ∂u1
φ

∂φ

φ̇2

ω2
p

−
(

∂f 0
φ

∂φ
+ ∂u0

φ

∂φ
− 1

ωp

∂
[
u1

φu0
φ

]
∂φ

)
φ̇

ωp

(17)

for the time derivative of the out-of-plane angle.
Returning now to Eq. (7), we find that with the declared

accuracy it can be rewritten as

δθ̇ = f 0
θ + u0

θ − αu0
φ + (

f 1
θ + u1

θ − αωp

)
δθ.

Substituting δθ from Eq. (16) and discarding any terms that
are smaller than εr

√
εr/ωp, we get

δθ̇ = f 0
θ + u0

θ −
(

α − f 1
θ + u1

θ

ωp

+ u1
θu

1
φ

ω2
p

)
φ̇

−f 1
θ u0

φ + u1
θf

0
φ + u1

θu
0
φ

ωp

+ u1
θu

1
φu0

φ

ω2
p

.

The last step is to use Eq. (17) to express δθ̇ on the left-hand
side. This gives the form of the effective equation (10) without
the terms below our accuracy,

(
1 − u1

φ

ωp

)
φ̈

ωp

+
(

α − 1

ωp

[
∂f 0

φ

∂φ
+ f 1

θ + ∂u0
φ

∂φ
+ u1

θ

]
+ 1

ω2
p

[
∂
[
u1

φu0
φ

]
∂φ

+ u1
θu

1
φ

])
φ̇ − ∂u1

φ

∂φ

φ̇2

ω2
p

= f 0
θ + u0

θ − f 1
θ u0

φ + u1
θf

0
φ + u1

θu
0
φ

ωp

+ u1
θu

1
φu0

φ

ω2
p

.

Identity (15) can be further used to simplify the first square-
bracketed expression in the first line.

We now cast the effective planar equation in its final form,

mφ̈ + αeffφ̇ −
(
u1

φ

)′

ω2
p

φ̇2 = −(εeff)
′. (18)

Here primes denote differentiation with respect to φ, and the
parameters are given by

m = 1

ωp

(
1 − u1

φ

ωp

)
,

αeff = α −
(
u0

φ

)′ + u1
θ

ωp

+
(
u1

φu0
φ

)′ + u1
φu1

θ

ω2
p

,
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εeff = εr

(
π

2
,φ

)
+ U,

−U ′ = u0
θ − f 1

θ u0
φ + u1

θf
0
φ + u1

θu
0
φ

ωp

+ u1
θu

1
φu0

φ

ω2
p

. (19)

Equations (18) and (19) constitute the first main result of this
paper.

In the presence of the current the right-hand side of Eq. (18)
contains additional “effective forces” added to the zero current
term −εr

′. All these forces can be represented as derivatives
of an additional energy U due to the fact that we are dealing
with the functions of one variable.

One of the effective forces, namely the u0
θ term, requires a

special discussion. When u ∼ √
εrωp this term becomes larger

than εr
′ on the right-hand side of Eq. (18), and the estimates

for φ̇ and φ̈ made in Sec. III A become invalid. As discussed
above, this means that in a general case with nonzero u0

θ the
effective equations (18) and (19) can be only used for currents
u � εr . However, if u0

θ is identically equal to zero, while the
other spin torque terms in U and αeff remain nonzero, one can
apply Eqs. (18) and (19) for currents up to u ∼ √

εrωp. We
will see an example of such a situation in Sec. IV A below.

In the absence of current, corrections to the friction
coefficient vanish, giving αeff = α > 0. When the current is
turned on, the sign of the friction coefficient may change,15–19

reflecting the possible influx of the energy from the current
source into the system.

IV. TILTED POLARIZER DEVICE

We now present the application of the effective planar
equation approach to devices with a “tilted polarizer” ge-
ometry, which recently became a subject of a number of
investigations.21–30

The general discussion of Sec. III C is appli-
cable to a polarizer with arbitrary direction, s =
(sin θs cos φs, sin θs sin φs, cos θs). In this section we will
consider a special case of s lying in the (x,z) plane, i.e., φs = 0
(see Fig. 8). Vector s constitutes an angle of π/2 − θs with the
easy plane. To calculate uθ and uφ from Eq. (5) one needs to
know the function u(n). In many cases2,20 it has a form

u(n) = g0I

1 + g1(n · s)
,

where g0 and g1 are constant factors. We will consider the case
of small g1 � 1 and approximate

u(n) = g0I [1 − g1(n · s)]. (20)

Using the expressions in Appendix A, we find

uθ = g0I [1 − g1(sin θs sin θ cos φ + cos θs cos θ )]

× (sin θs cos θ cos φ − cos θs sin θ ),

uφ = −g0I [1 − g1(sin θs sin θ cos φ + cos θs cos θ )]

× sin θs sin φ.

Therefore

u0
θ = −g0I [1 − g1 sin θs cos φ] cos θs,

(21)
u0

φ = −g0I [1 − g1 sin θs cos φ] sin θs sin φ,

and

u1
θ = −g0I [sin θs cos φ − g1(sin2 θs cos2 φ − cos2 θs)],

u1
φ = −g0Ig1 sin θs cos θs sin φ. (22)

A. In-plane polarizer

In the case of an in-plane polarizer (θs = π/2) further
simplifications happen:

u0
θ = 0, u0

φ = −g0I (1 − g1 cos φ) sin φ,

u1
θ = −g0I (1 − g1 cos φ) cos φ, u1

φ = 0.

As we see, the in-plane polarizer happens to be one of the spe-
cial cases with u0

θ ≡ 0 discussed at the end of Sec. III C. Con-
sequently, the effective equation can be used up to the rescaled
currents u ∼ √

εrωp. Coefficients (19) acquire the form

m = 1

ωp

, αeff = α + g0I [2 cos φ − g1(3 cos2 φ − 1)]

ωp

, (23)

−U ′ = −g0I (1 − g1 cos φ)

ωp

[
g0I (1 − g1 cos φ) sin φ cos φ

− (
f 1

θ sin φ + f 0
φ cos φ

)]
. (24)

Importantly, the φ̇2 term in Eq. (18) vanishes identically.
In Refs. 15 and 16 the in-plane polarizer was considered in

the case of g1 = 0 and a residual energy

εr = −ωa

2
sin2 θ cos2 φ − h sin θ cos φ, (25)

describing a free layer with a small easy axis anisotropy ωa �
ωp, and an external magnetic field h, both directed along the x

axis. In this case one finds f 1
θ = f 0

φ = 0 and expressions (24)
reproduce the results obtained in Refs. 15 and 16.

B. General case of a tilted polarizer

When the polarizer magnetization s points at an arbitrary
angle θs the term u0

θ is nonzero and we have to limit the
current magnitudes to g0I � εr to maintain the validity of
Eq. (18). With smaller currents more terms can be discarded
from the effecitve equation without changing its accuracy.
Expressions (19) reduce to

m = 1

ωp

, αeff = α −
(
u0

φ

)′ + u1
θ

ωp

, − U ′ = u0
θ . (26)

Moreover, for g0I � εr the nonlinear term with φ̇2 becomes
small enough to be dropped from Eq. (18).

The effective planar equation now reads

φ̈

ωp

+ αeffφ̇ = −∂εeff

∂φ
, (27)

where the effective damping and the effective energy can
be expressed through the polarizer tilting angle θs using
Eqs. (21), (22), and (26),

αeff = α + g0I

ωp

(2 sin θs cos φ − g1[3 sin2 θs cos2 φ − 1]),

εeff = εr

(
π

2
,φ

)
+ g0I (cos θs · φ − g1 sin θs cos θs sin φ).

(28)
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Note how in the presence of spin torque the effective energy
acquires a term that is linear in φ.

C. Switching diagram of the tilted polarizer device

Let us now discuss the consequences of the spin torque
induced modifications α → αeff and εr → εeff. The advantage
of the effective planar approximation is the possibility of using
the analogy with the particle motion. The latter enables one
to utilize mechanical intuition to predict the behavior of the
solutions of Eq. (27) and qualitatively understand the dynamics
of the spin transfer device. The mechanical analogy makes it
clear that the modifications of the effective damping quali-
tatively transform the particle motion when αeff(φ) changes
its sign, and the modifications of εeff(φ) become qualitatively
important when equilibrium points appear or disappear as the
energy profile is deformed.

We will consider the standard nanopillar device described
by the residual energy (25). In the special case of an in-
plane polarizer this problem was discussed in our earlier
publications.15,16,18 Our goal here is to generalize these results
to the case of a nonzero polarizer tilt and show that the effective
planar approach allows one to understand the qualitative
picture of the motion without doing the detailed calculations.
Switching diagrams for devices with arbitrary θs and φs = 0,
h = 0 were recently studied by conventional methods.26,27 We
will use the same assumptions and compare the results.

For a generic value of the tilt angle θs the terms entering
expressions (28) with a small factor g1 produce negligible
corrections and can be discarded. Those terms can be important
only when θs approaches zero or π/2 and the main terms
vanish. We will assume that s is not too close to either
the in-plane or the perpendicular directions and inequalities
cos θs, sin θs � g1 hold. Finding the critical currents in the
narrow bands of angles θs ≈ 0 or θs ≈ π/2 where the g1 terms
are important would require a more careful consideration.

Discarding the g1 terms one gets a simplified form of
Eqs. (28),

αeff = α + 2g0I sin θs

ωp

cos φ,

(29)
εeff = −ωa

2
cos2 φ + (g0I cos θs) φ.

As already mentioned in Sec. IV B, the energy εeff(φ) contains
a term linear in φ: Spin torque produces a tilted washboard
potential for the effective particle (Fig. 3). The washboard
tilt reflects the fact that the total magnetic energy of the free
layer can change due to the energy transfer from the current
source.

In the presence of current the effective energy minima are
shifted from their zero current positions φ = 0 (parallel, or P
state) and φ = π (antiparallel, or AP state) to the new positions
φm(I ) given by

sin 2φm = −2g0I cos θs

ωa

.

The energy minima are located at the angles φmin + πn, and
are separated by the energy maxima located at at φmax =

φ

ε

φ

I = 0

I < I ∗ε

(a)

(b)

I > I∗ε(c)

φ

ε

ε

FIG. 3. (Color online) Effective energy profiles at different
current magnitudes. Red (gray) dashed lines show the regions of
negative friction.

π/2 − φmin + πn [Fig. 3(b)]. All minimum points φmin(I ) are
equivalent from the point of view of effective energy (29) but
the minima that had evolved from the P and AP points can
differ in effective friction. To be concise, we will continue
calling the minima satisfying φmin(0) = 0 the P points, and
those satisfying φmin(0) = π the AP points.

As the current grows, the washboard tilts more and more,
until the extrema of the energy εeff(φ) disappear altogether
[Fig. 3(c)]. A short calculation shows that this occurs at a
critical current

I∗ε = ωa

2g0 cos θs

. (30)

For |I | > I∗ε the effective particle slides down the slope of the
potential energy profile (either left or right, depending on the
current direction), regardless of the sign and magnitude of αeff.
This motion corresponds to the full 360◦ rotations of vector n
in the azimuthal angle φ. In the spin transfer literature such a
regime is called the out-of-plane precession (OPP).

Importantly, the OPP precession can exist even at |I | < I∗ε.
When the particle moves down the tilted washboard, the
drop of its potential energy during one spatial period may be
large enough to overcome the frictional energy loss (Fig. 4).
Therefore there must be a second critical current IOPP < I∗ε,
such that the OPP precession is possible for |I | > IOPP. In
the interval IOPP < |I | < I∗ε the stable equilibrium state at
the energy minimum coexists with the stable OPP state. The
functional form of IOPP(θs) depends on the energy profile
and the friction coefficient. Our goal here is not to find
the expression for it, but to see how far can we proceed
in qualitative understanding of the device dynamics without
doing the actual calculations.
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M

M

M1

2

3

AP

P

FIG. 4. (Color online) Effective particle performing a 360◦

motion, starting from the energy maximum M1 and reaching an
equivalent maximum M3. The red (gray) dashed line denotes the
interval of αeff < 0.

The possibility of energy transfer from the current source
to the spin torque device can also manifest itself in the form
of negative effective friction. The regions of negative friction
αeff(φ) first appear in the vicinity of the angles φ+n = 2π (n +
1/2) for I > 0 and φ−n = 2πn for I < 0 when the current
magnitude exceeds the threshold

I∗α = αωp

2g0 sin θs

. (31)

The intervals of αeff < 0 are shown in Figs. 3 and 4 by red
(gray) dashed lines. The first consequence of their presence is
that on parts of the trajectory the friction force increases the
energy of the system instead of decreasing it in a usual fashion.
This, in particular, makes it easier for the particle to achieve
the state of the OPP precession and thus the actual calculation
of the IOPP threshold must take into account the energy gain
due to both the tilt of the potential and the presence of negative
friction intervals. Both features mathematically represent the
ability of the spin torques to transfer energy from the current
source to the system.

The second important effect of negative αeff is the local
destabilization of the energy minima. A minimum point
φmin(I ) lying within the interval of αeff < 0 is unstable,
and finite amplitude stationary oscillations around it are
developed. Figure 5(a) shows such oscillations near the AP
minimum destabilized by a sufficiently large positive current
[see Eq. (29)]. These oscillations correspond to the motion
of vector n around the equilibrium point, which is called an
in-plane precession (IPP) in the spin transfer literature.

The critical current of energy minimum destabilization is
determined from the equation αeff[φmin(I )] = 0, which can be
rewritten for P and AP minima as

IAP cos[φmin(IAP)] = I∗α, IP cos[φmin(IP)] = −I∗α. (32)

Both threshold currents satisfy |IP,AP| > I∗α . This result can
be naturally understood as follows. The friction first becomes

M

M1

2

AP

M

M1

2

AP

B

(a) (b)

FIG. 5. (Color online) (a) Effective particle performing finite
amplitude oscillations (IPP precession) near the AP minimum. The
red (gray) dashed line denotes the interval of αeff < 0. (b) With
growing current the amplitude of the oscillations increases and the
particle reaches the M2 maximum point. Above this threshold the IPP
precession is unstable.

negative at the φ = 0 or φ = π points at I = ±I∗α . But the P
and AP minima are shifted from the 0,π points to the φmin(I )
points. In order to destabilize them, the negative friction
interval has to grow large enough to cover the actual minima
positions.

The amplitude of stationary oscillations is determined
by the balance of energy influx and energy dissipation on
the intervals of negative and positive friction.15,16,18,19 Two
possible scenarios can be realized at the local destabilization
threshold:31 (1) Soft generation. Stationary oscillations with an
infinitesimally small amplitude are developed. Their amplitude
grows with the further current increase. (2) Hard gener-
ation. Stationary oscillations immediately develop a finite
amplitude.

Appendix B shows that in our situation the choice between
the soft and hard generation scenarios is controlled by the
second derivative d2αeff/dφ2 at the position of the energy
minimum, and a soft scenario is realized for the function αeff

given by Eq. (29), i.e., the amplitude of stationary oscillations
is zero at the threshold. As the current is increased beyond
the threshold, the amplitude grows and eventually becomes
so large that the particle reaches the crest of the potential, as
shown in Fig. 5(b), and falls down into the neighboring valley.
This process leads to the destruction of the IPP state. The latter
therefore exists between the two threshold currents. For the AP
equilibrium these are the IAP threshold, where the AP point
becomes unstable, and the IIPP threshold, where the oscillation
amplitude becomes too large to be contained in the AP
valley.

The critical current IIPP depends on the shape of the
potential in the entire interval traveled by the particle in
Fig. 5(b). Its actual calculation is not the goal of our qualitative
approach. However, we can make two general statements
about IIPP. First, due to the soft character of generation the
destabilization of the IPP state certainly happens at a current
that is larger than the local destabilization threshold: For
example, IIPP > IAP.

To set the stage for the second observation, we proceed
to the discussion of the switching diagram. In our case the
experimental parameters are the current I and the tilting angle
θs . Various critical currents are represented as lines dividing
the (I,θs) plane into domains with different sets of stable states.
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IP
P

AP

I

∗αI

∗εI

P, A
P

θs

0

π/2

s

P
s

A
P

IP
P

T

T1
T2

FIG. 6. Preliminary discussion of the critical lines on the (I,θs)
switching diagrams. Each line is marked by the name of the state
which gets destabilized on it. The name is put on the side of the line
where the state is stable. Inset: An impossible arrangement of the AP
and IPP lines.

The lines for the four thresholds discussed above are sketched
in Fig. 6. The I∗ε(θs) and I∗α(θs) lines intersect according to
Eqs. (30) and (31). Due to the inequality IAP > I∗α the IAP(θs)
line has to be located to the right of the I∗α(θs) line on the
diagram. The IIPP(θs) > IAP(θs) line has to be located even
further to the right. Both IAP(θs) and IIPP(θs) cross the I∗ε(θs)
line, and one can prove that they do it at the same point T .
This is the second general property of the IIPP threshold.

The uniqueness of the point T can be proven by considering
a hypothetical switching diagram shown in the inset of Fig. 6
where it is assumed that the AP and IPP lines cross I∗ε(θs) at
different points T1 and T2. Consider the point T2. On the one
hand, approaching it from within the domain of existence of
the IPP precession one should observe a decreasing amplitude
of oscillations around the AP minimum, because the size of
the valley around AP shrinks to zero with the approach to the
I∗ε line. At T2 the amplitude of sustained oscillations around
AP should be infinitesimally small. On the other hand, close
to T2 there is a finite region of negative friction around the AP
point because the current is larger than the IAP threshold. Thus
infinitesimally small stationary oscillations are impossible
since they would be entirely contained in the negative friction
region, and their amplitude would grow due to the constant
increase of effective particle’s energy.16 This contradiction
proves that the assumption about the existence of two different
crossing points T1,2 was inconsistent. The point T2 cannot lie
to the right of T1. But we already know that it cannot lie to the
left of T1 either, since that would be incompatible with the soft
generation scenario. We conclude that both AP and IPP lines
cross I∗ε at the same point T .

The relationships between IAP and IIPP discussed above
follow from the fact that both currents are determined by the
energy and friction near the same minimum. The IOPP current
depends on the details of εeff and αeff on the whole 2π interval
of φ and thus no general relationships for it can be found,
except for the already mentioned inequality IOPP < I∗ε(θs). A
qualitative sketch of the switching diagram is given in Fig. 7 for
I > 0. The full diagram is symmetric with respect to the I →
−I transformation, which is a consequence of two symmetries
built into the energy and friction functions (29): the π period-
icity of εr (φ), and the αeff(π − φ, −I ) = αeff(φ,I ) symmetry
of the effective friction. The latter depends on vector s lying in
the (x,z) plane and the fact that the g1 terms were dropped. If

IP
P

A
P

I

P, A
P

θs

0

π/2

s

P

s
O

PP

FIG. 7. Switching diagram of a spin transfer device with a tilted
polarizer: a qualitative sketch. Each line is marked by the name of the
state which gets destabilized on it. The arrows next to the name point
to the side of the line where this state is stable. Horizontal gray bands
denote regions where approximations (29) may fail and Eqs. (28)
should be used.

either of the two symmetries were violated, the P and AP states
would no longer be equivalent in all respects. Note also that
had the effective friction function allowed for a hard generation
of the IPP states, the diagram would be more complex.

Notably, Fig. 7 reproduces all qualitative features of the
switching diagrams obtained by conventional methods.26,27

In addition, it brings important qualitative understanding of
the behavior of critical currents as a function of system
parameters and approximations used for the spin torque
efficiency factor g(n). For example, it warns that in the two
most frequently considered limiting cases of the perpendicular
(θs = 0) and in-plane (θs = π/2) polarizers the threshold
currents will be most sensitive to the g(n) function used for the
calculations.

Finally, we should mention that the results obtainable in
the effective planar approach are not limited to the qualitative
conclusions. The method also allows one to calculate the
critical currents, often being the only one providing analytical
expressions in the case of precession states, where the results
are traditionally obtained from numeric simulations.11 In the
limit of small friction α � √

ωa/ωp considered here, the
critical currents IOPP(θs) and IIPP(θs) and the frequencies
of the precession states can be analytically found using the
methods introduced in Refs. 16 and 19. In the present paper
we have found analytic formulas for the I∗ε threshold (30),
and the IP and IAP thresholds (32). The crossing point T of
the AP, IPP, and I∗ε lines can be found by solving the equation
I∗ε(θs) = IAP(θs), which gives

tan θs(T ) =
√

2αωp

ωa

.

V. CONCLUSIONS

We have given the detailed derivation of the effective planar
equation for spin transfer devices with dominating easy plane
anisotropy and illustrated its application by performing a qual-
itative study of tilted polarizer devices. Once the parameters
of the effective equation are found, the approach allows one
to understand the dynamics qualitatively without performing
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detailed calculations. This is especially important in the case
of precession cycles, which are usually studied numerically.
The method also elucidates the role of approximations used to
model the spin transfer efficiency factor and shows the limits
of their applicability.

The obtained switching diagram demonstrates a compe-
tition between the two types of switching. For small θs the
destabilization of the AP minimum results from the merging
and disappearance of the minimum and maximum points of
εeff. For θs close to π/2 the destabilization happens locally,
changing the nature of the AP equilibrium from stable to
unstable. This type of competition is not unique to the systems
with strong easy plane anisotropy—it was shown in Ref. 32
that it may happen in any spin transfer device.
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APPENDIX A: VECTOR DEFINITIONS

We use the standard definitions of polar coordinates and
tangent vectors (see Fig. 8):

n = (sin θ cos φ, sin θ sin φ, cos θ ),

eθ = (cos θ cos φ, cos θ sin φ, − sin θ ), (A1)

eφ = (− sin φ, cos φ,0).

For the polarizer unit vector s with polar angles (θs,φs) the
scalar product expressions are

(s · eθ ) = sin θs cos θ cos(φs − φ) − cos θs sin θ,

(s · eφ) = sin θs sin(φs − φ). (A2)

APPENDIX B: SOFT AND HARD GENERATION

Suppose the effective energy has a minimum at the point
φmin and the effective friction is negative in the interval
[φ−(I ),φ+(I )], such that the right end of the interval reaches
the equilibrium at the critical current Ic and the minimum

z
eφ

θe

n

φ

θ

x

s
θs

FIG. 8. Definitions of the tangent vectors and polar angles.

remains completely covered by the negative friction region
after that,

φ− < φ+ < φmin, I < Ic,

φ− < φ+ = φmin, I = Ic,

φ− < φmin < φ+, I > Ic.

In order to understand the character of generation that occurs
for currents exceeding Ic by a small increment, we will
use the simplest Taylor approximations for the energy εeff

and effective friction αeff near the equilibrium point φmin.
In the case of soft generation the stationary oscillations’
amplitude is small. Thus both εeff and αeff will be accurately
approximated by just a few terms of the Taylor series. Solution
of an approximate equation using these Taylor expansions
instead of the exact functions εeff and αeff will be close to
the actual one. For hard generation there is no solution with
small amplitude which will be reflected in the absence of a
stationary solution for the approximate equation.

To implement this program we start with Eq. (27),

φ̈

ωp

+ αeff(φ)φ̇ = −∂εeff

∂φ
,

and approximate

εeff(φ) = ωmin(φ − φmin)2

2
,

(B1)

αeff(φ) = α0 + α′(φ − φmin) + 1

2
α′′(φ − φmin)2.

The exact value of the positive number ωmin = ∂2ε/∂φ2 > 0 is
not important. The numbers α0, α′, and α′′ are the value and the
derivatives of the function αeff(φ) at φ = φmin. For a current
slightly higher than critical α0 is a small negative number.
Condition α0(Ic) = 0 reflects the fact that the negative friction
interval touches φmin at the critical current. The derivative α′
is positive to ensure φ+ > φmin for I > Ic.

We will investigate the stationary oscillations by using the
condition of zero total dissipation.16,19 The change of the total
effective particle energy during one period T equals

�εtot = −
∫ T

0
αeff(φ)φ̇2dt.

In the limit of small friction coefficient one can substitute the
zero-friction solution

φ(t) = φmin + A cos �t, � = √
ωp ωmin,

into the integral above. The stationary oscillations condition
�εtot = 0 then reads
∫ T̃

0

(
α0 + α′A cos �t + α′′

2
A2 cos2 �t

)
A2�2 sin2 �t dt = 0

with the approximate period T̃ = 2π/�. After the integrals
are taken, one gets an expression for the amplitude

A2 = −8α0

α′′ .

Since α0 < 0 for I > Ic, the equation for the stationary
amplitude can be solved if α′′ > 0. The solution A ∼ √−α0

describes a soft generation of oscillations: Their amplitude
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is equal to zero at the critical current and then continuously
grows.

It is easy to check that the effective friction given by Eq. (29)
indeed has positive second derivative at φmin. In addition it
has a property (−α0) ∼ I − Ic, so the oscillation’s amplitude
obeys the law

A ∼
√

I − Ic (I > Ic).

In the case of α′′ � 0 there is no stationary solution. The
energy change �εtot > 0 is always positive and the amplitude
would grow, until limited by the properties of the functions
εeff and αeff far away from the equilibrium where the truncated
Taylor expansions (B1) are not valid. This would be the case
of hard generation.
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