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Hysteresis features of the direct and inverse magnetocaloric effect associated with first-order magnetostructural
phase transitions in Ni-Mn-X (X = Ga, Sn) Heusler alloys have been disclosed by differential calorimetry
measurements performed either under a constant magnetic field, H , or by varying H in isothermal conditions. We
have shown that the magnetocaloric effect in these alloys crucially depends on the employed measuring protocol.
Experimentally observed peculiarities of the magnetocaloric effect have been explained in the framework of a
model that accounts for different contributions to the Gibbs energy of austenitic gA and martensitic gM phases.
Obtained experimental results have been summarized by plotting a phase fraction of the austenite xA versus the
driving force gM − gA. The developed approach allows one to predict reversible and irreversible features of the
direct as well as inverse magnetocaloric effect in a variety of materials with first-order magnetic phase transitions.
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I. INTRODUCTION

Materials with a coupled magnetostructural first-order
phase transition may display an enhanced magnetocaloric
effect (MCE) due to the presence of the latent heat of
the structural transformation.1 This effect, called the giant
magnetocaloric effect, is of a great interest for the development
of magnetic refrigeration at room temperature.2 Among the
alloys displaying coupled magnetostructural transitions, we
find Gd-Si-Ge,3 La-Fe-Si,4 Mn-Fe-P-As5 and the family of
the Heusler alloys like Ni-Mn-Ga6–8 and Ni-Mn-Sn,9,10 which
displays a martensitic phase transformation.

The Heusler alloys are particularly attractive as magnetic
refrigerant because (i) they are characterized by a large entropy
change at the transformation (around �s = 30 J kg−1 K−1),
(ii) they contain no expensive rare earths elements, and (iii)
the martensitic transformation temperature, Tt , can easily be
tuned around room temperature by element substitution in
off-stoichiometric compounds.1 On the other hand, martensitic
transformations have the disadvantage of displaying thermal
and magnetic hysteresis. The magnetic-field-induced entropy
change, �s(H,T ), around Tt is characterized by irreversibility
and hysteresis11,12 and it is not yet clear how it is possible to
achieve, by a magnetic field, the full entropy change available
at the first-order transformation.9,12 The MCE depends on the
magnetic and thermal history of the system and the hysteresis
of the phase transformation is the feature that generates the
irreversibility effects.11,13,14

The aim of the present paper is to establish quantitative
relations between the measured irreversibility of MCE and
the hysteresis of the first-order phase transition. For the
present study two representatives of the Heusler alloys with
relevant MCE and relatively small and large hysteresis
were selected. The sample with relatively small hysteresis

is Ni53.3Mn20.1Ga26.6 single crystal, while the sample with
relatively large hysteresis is Ni50Mn36Co1Sn13 polycrystal.
The Ni-Mn-Ga-based alloys exhibit conventional MCE, due
to a common transformation sequence from a low-temperature
ferromagnetic martensitic state to a high-temperature para-
magnetic (or ferromagnetic) austenite. For these alloys the
magnetic-field-induced entropy change, �s, in the vicinity
of the martensitic transformation temperature, Tt , is negative
because the magnetic field stabilizes the low-temperature
phase with a higher magnetization.6–8 Contrary to Ni-Mn-
Ga, an uncommon transformation from the low-temperature
paramagnetic to the high-temperature ferromagnetic state can
be realized in Ni-Mn-Co-Sn alloys with certain composition.
In this case, �s around Tt is positive and the system exhibits
so-called inverse MCE.9,10

II. MATERIALS AND THE MEASUREMENT PROCEDURE

Ni-Mn-Ga with direct MCE. Some Ni-Mn-Ga alloys
display a coupled magnetostructural transition between the
magnetically ordered martensite (M) and the paramagnetic
austenite (A) and are characterized by a direct MCE around the
transition. Typical behavior of the spontaneous magnetization
is sketched in the left side of Fig. 1, with TcA

< TcM
. According

to the phase diagram reported in Ref. 6 the stoichiometric
compound Ni2MnGa has Tt < TcA

with Tt = 202 K and TcA
=

376 K. The off-stoichiometric compound Ni2+xMn1−xGa,
with Mn partially substituted by Ni, displays an increase of
Tt and a decrease of TcA

with increasing x. The crossing
of the two temperatures is observed for a Ni excess around
x = 0.19 and for this composition the transformation from
ferromagnetic martensite to paramagnetic austenite takes place
at Tt = 342 K. The type of transition where TcA

< Tt < TcM
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FIG. 1. Scheme of the temperature dependence of spontaneous

magnetization at the martensitic transformation in Heusler alloys.
(Left) Material with a direct MCE like Ni-Mn-Ga. (Right) Material
with an inverse MCE like Ni-Mn-Sn.

is realized in the range of compositions 0.19 � x � 0.25.
For x > 0.25, Tt temperature is significantly larger than TcM

.
In the system Ni2+xMn1−x−yGa1+y , where Mn is partially
substituted by both Ni and Ga, one has another degree
of freedom to adjust the transformation temperature closer
to room temperature.17–19 The alloy studied in this paper,
Ni53.3Mn20.1Ga26.6, has x + y = 0.19 and y = 0.06 giving a
transition temperature Tt = 322.4 K which is slightly below
TcA

= 337 K (see Fig. 1).
Ni-Mn-Co-Sn with inverse MCE. Heusler alloys of the

Ni2Mn1+ySn1−y system can exhibit a peculiar phase transfor-
mation from the low-temperature paramagnetic martensite to a
high-temperature ferromagnetic austenite9 and, therefore, are
characterized by an inverse MCE. The phase transformation
sequence where TcM

< TcA
is sketched in the right side of

Fig. 1. In the off stoichiometric alloys, the substitution of Sn
by Mn leads to an increase of the martensitic transformation
temperature. In these alloys the high-temperature phase is L21

austenite and a low-temperature phase is tetragonal martensite
with the 10M modulation. With y = 0.48 (Ni50Mn37Sn13) the
transition temperature is around room temperature. It takes
place (according to the DSC peaks) on heating at 310 K (M to
A) and on cooling at 295 K (from A to M).9 Curie temperature
of the martensitic phase, TcM

, is equal to 230 K, while that of
the austenitic phase TcA

= 311 K. A small substitution of Co
for Mn further reduces Tt and increases TcA

.10 The alloy studied
in this paper, Ni50Mn36Co1Sn13, has a transition temperature
at 295 K on heating and at 279 K on cooling and TcA

= 321
K. The variation of the saturation magnetization between the
two phases A and M is around MA − MM = 40 Am2 kg−1 and
the entropy change at the transformation is around sA − sM =
30 J kg−1 K−1.10,15

Samples were prepared by the method described in Ref. 14.
The Ni53.3Mn20.1Ga26.6 single crystalline sample with a mass
of 96.3 mg was about 6 mm long, and the lateral sides
were around 1–2 mm. The magnetic field was applied along
its longest direction. The Ni50Mn36Co1Sn13 polycrystalline
sample with a mass of 49 mg had rectangular-like shape with
characteristic dimension of about 2 mm. Both the samples had
a flat side that was in the thermal contact with Peltier sensor of
the calorimeter. A small quantity of thermal conducting paste
was also used in order to improve the quality of the thermal
contact.

Magnetization curves were measured by a SQUID mag-
netometer (Quantum Design MPMS-SS). Magnetization

FIG. 2. (Color online) Schematic phase diagrams for materials
with direct (D) and inverse (I) magnetocaloric effect. The dashed
lines represents the hysteretic thresholds for the transition from A to
M and from M to A. The measuring protocols heat-remove (hr) and
cool-apply (ca) favor the magnetic-field-induced transformation in the
D materials, while the protocols heat-apply (ha) and cool-remove (cr)
favor the magnetic-field-induced transformation in the I materials.

M(Ha,T ) as a function of temperature was measured under
heating and cooling in the range of the martensitic phase
transition. The applied magnetic field values were in the range
0.1–2.0 T.

Calorimetric measurements were preformed by Peltier cell
calorimeter described in Ref. 15. We have measured the
specific heat cp(H,T ) at a constant applied magnetic field H

by temperature scanning experiments on heating and cooling,
as well as the entropy change �s(H,T ) due to the change of H

at a constant temperature T .15 The temperature is changed at
the rate of 50 mK s−1. The accuracy of our Peltier calorimetry
is ±0.2 K for temperature, ±3% for the specific heat and for
entropy, ±2% for dT /dH .

The isothermal experiments were performed employing
four different protocols that realize all possible combination
for the variation of the two variables in the (H,T ) plane. The
four possible combinations used for the measurements at a
constant temperature are as follows (see Fig. 2):

(i) heat-apply (ha): (h) heating up to T starting from a full
low-temperature (martensite) state at T− with the magnetic
field off (0,T− → T ); (a) applying the magnetic field at the
constant temperature T (0 → H,T ).

(ii) heat-remove (hr): (h) heating up to T starting from a
full low-temperature state at T− with the magnetic field on
(H,T− → T ); (r) removing the magnetic field at the constant
temperature T (H → 0,T ).

(iii) cool-apply (ca): (c) cooling down to T starting from a
full high-temperature (austenite) state at T+ with the magnetic
field off (0,T+ → T ); (a) apply the magnetic field at constant
temperature (0 → H,T ).

(iv) cool-remove (cr): (c) cooling down to T starting from
a full high-temperature state at T+ with the magnetic field
on (H,T+ → T ); (r) remove the magnetic field at constant
temperature (H → 0,T ).

In materials with the direct MCE, the sequences (hr) and
(ca) further advance the transformation, while (ha) and (cr)
reverse its sign. The opposite situation occurs in materials
with the inverse effect.

To find a relation between �s obtained by changing H or
changing T we model the phase transformation by taking the
difference between the Gibbs free energy of the two phases
gM − gA as the equivalent force, where the Gibbs free energy
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FIG. 3. (Color online) Magnetization of Ni53.3Mn20.1Ga26.6 single
crystal measured by changing temperature (heating and cooling)
under constant applied magnetic field. (Dotted lines) Model [Eq. (4)
and parameters in the text] for μ0H = 1 T.

of the martensite gM and the austenite gA are both dependent on
H and T .16 By representing the phase fraction of austenite xA

as a function of gM − gA, we obtain a hysteresis plot where all
the curves, measured by changing T at different H , rescale
on the same loop. To determine the internal branching of
hysteresis we also measured a set of partial transformations
by changing T up to a peak value Tp in the middle of the
transformation and then returning back.

III. EXPERIMENTAL RESULTS

The measured magnetization curves M(H,T ) are shown in
Figs. 3 and 4 under magnetic fields of 0.1, 1.0, and 2.0 T. The
change of magnetization with temperature, for 1.0 and 2.0 T,

FIG. 4. (Color online) Magnetization of Ni50Mn36Co1Sn13 mea-
sured by changing temperature (heating and cooling) under constant
applied magnetic field. (Dotted lines) Model [Eq. (4) and parameters
in the text] for μ0H = 1 T.
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FIG. 5. (Color online) Specific heat of Ni53.3Mn20.1Ga26.6 single
crystal from heating and cooling temperature scans at 0.0 T and 1.2
T of applied magnetic field. (Inset) The entropy s − s0, where s0 is
the entropy of M phase at Tt = 322.4 K. The dashed lines shows
the entropy levels in the full M or A states: sM = 1.48 × (T − Tt )
J kg−1K−1 and sA = 27.6 + 1.48 × (T − Tt ) J kg−1K−1.

reproduce well the change of magnetic order as expected from
the scheme of Fig. 1, while the low field (0.1 T) behavior of
the magnetization is influenced by the effect of demagnetizing
field.

The specific heat cp(H,T ) measured on heating and cooling
temperature scans with and without applied magnetic field
H is shown for the Ni-Mn-Ga and Ni-Mn-Co-Sn samples in
Figs. 5 and 6, respectively. The value of the magnetic field was
selected in order to have that the ratio of the peak temperature
shift over the temperature hysteresis is approximately the
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FIG. 6. (Color online) Specific heat of Ni50Mn36Co1Sn13 from
heating and cooling temperature scans at 0.0 and 1.6 T of applied
magnetic field. (Inset) The entropy s − s0 where s0 is the entropy
of M phase at Tt = 287.5 K. The dashed lines shows the entropy
levels in the full M or A states: sM = 1.57 × (T − Tt ) J kg−1K−1 and
sA = 30.7 + 1.55 × (T − Tt ) J kg−1K−1.
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same for both samples. Specific heat demonstrates that the
peaks corresponding to the martensitic phase transforma-
tion superimposed to the baseline specific heat: cp � 470
J kg−1 K−1 for Ni-Mn-Ga and cp � 450 J kg−1 K−1 for Ni-
Mn-Co-Sn. In both samples the peaks have a noisy character
that is mostly repeatable in different measurements. This
effect is a consequence of the fact that the martensitic phase
transformation proceeds through a sequence of avalanches.20

Ni53.3Mn20.1Ga26.6 transforms from M to A on heating at
325.0 K and from A to M on cooling at 319.8 K (5.2 K
of hysteresis width). The conventional transition temperature
given by the average of the two value is Tt = 322.4 K. The
magnetic field shifts the transition temperature at the rate
dT /d(μ0H ) = 0.7 K T−1. The entropy computed as in Ref. 15
is shown in the inset of Fig. 5, where s0 is the entropy value on
heating at Tt . The entropy change at the transition temperature
is sA − sM = 27.6 J kg−1 K−1, in good agreement with data
available in the literature for similar alloys.11

Ni50Mn36Co1Sn13 transforms on heating from M to A at
295.3 K and on cooling from A to M at 279.7 K (15.6 K
of hysteresis width). The conventional transition temperature,
given by the average of the two is Tt = 287.5 K. With
an applied magnetic field the phase transition temperatures
decrease by −1.25 K T−1 because the magnetic field stabilizes
the high-temperature phase (ferromagnetic austenite). The
entropy, shown in the inset of Fig. 6, with the reference s0

being the entropy value at Tt , gives a difference sA − sM =
30.7 J kg−1 K−1.

The relative vertical position of the entropy at zero and
at a given magnetic field H is determined by performing
isothermal measurements of the entropy change �s(H,T0) =
s(H,T0) − s(0,T0) at a reference temperature outside the
transition region. The magnetic-field-induced entropy change
�s(H,T ) shown in Fig. 7 and Fig. 8 as full lines is obtained
by subtracting the entropy curves at different magnetic
fields �s(H,T ) = s(H,T ) − s(0,T ) separately on heating and
cooling. The entropy change is characterized by high peaks
at the transition temperatures, which is in agreement with
previously published data (see, e.g., Ref. 9). To determine the
reversibility or irreversibility of �s in the transition region, we
performed direct isothermal measurements by the application
of the magnetic field on four measuring protocols in the (H,T )
plane as described in Sec. II (see Fig. 2).

The measured isothermal entropy change �s(H,T ) is
shown in Fig. 7 for Ni-Mn-Ga and Fig. 8 for Ni-Mn-
Co-Sn, respectively. In the figures, open symbols refer to
measurements performed by the protocols advancing the
transformation while full symbols are used for the protocols
reversing the transformation. For Ni-Mn-Ga with the direct
effect (D), the measurements with the protocols (hr) and (ca)
reproduce the peak of the entropy change measured under
heating and cooling, respectively. For Ni-Mn-Co-Sn with the
inverse effect (I), this occurs for the (ha) and (cr) protocols.
The entropy change determined on the protocols advancing
the transformation (open symbol) is irreversible, i.e., it is
obtained only the first time the magnetic field is changed
(see the inset in Fig. 7). In order to achieve again the same
�s value one has to reset the experiment to the initial T− or
T+ temperature and reapply the proper protocol. The entropy
change obtained for the protocols reversing the transformation
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FIG. 7. (Color online) Entropy change of Ni53.3Mn20.1Ga26.6

single crystal as a function of temperature. (Lines) Calculation from
the differences between the experimental entropy curves (Fig. 5).
(Points) Results of isothermal measurements for the heating (squares)
and cooling (circles) protocols. (Inset) An isothermal measurement
where the sample was heated up to T = 326 K in a magnetic field
of μ0H = 1.2 T, H was removed (hr), and then H was applied
and removed again. The latter process resulted in a reversible minor
hysteresis loop.

is found to be reversible, i.e., it is reproduced if the magnetic
field is further changed back and forth (inset in Fig. 7),
however, the �s value is much smaller than the previous
case. An interpretation of this big difference can be given by
observing that (i) the protocols that advance the transformation
drive the system along the saturation hysteresis loop of its
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FIG. 8. (Color online) Entropy change of Ni50Mn36Co1Sn13 as
a function of temperature. (Lines) Calculation from the differences
between the experimental entropy curves (Fig. 6). (Points) Results
of isothermal measurements for the heating (circles) and cooling
(squares) protocols. (Inset) The same curve in a wider temperature
range with the peak of MCE of at Curie temperature of austenite
TcA

= 321 K.
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phase transformation while (ii) the protocols that reverse
the transformation drive the system along a return hysteresis
branch. Once the system is along a return branch a closed
reversible minor loop is traced and the change in the phase
fraction is much less than along the irreversible saturation
loop. This effect depends on the amplitude of the driving force
and on the width of the hysteresis of the phase transformation.
The amplitude of the hysteresis in terms of magnetic field
can be roughly evaluated as �Hhyst = �Thyst/(dT /dH ) by
considering the phase diagram of Fig. 2.10 It is μ0�Hhyst � 7 T
for the Ni-Mn-Ga single crystal and μ0Hhyst � 12 T for the
Ni-Mn-Co-Sn sample. However, with respect to Ref. 10, to
understand the degree of the reversibility and irreversibility,
we represent, by using a model, the phase transformation as
a function of an equivalent driving force that summarizes the
action of the magnetic field, H , and the temperature, T .

IV. MODEL

We consider the phase transition between the martensite
(M) phase and the austenite phase (A) driven by either
the temperature T or the applied magnetic field H . At
thermodynamic equilibrium the system would select the state
where the Gibbs free energy is minimum. Then, in presence
of two phases M and A with different magnetic properties
and Gibbs free energies gM and gA, respectively, the sign
of the difference gM − gA dictates which phase is stable:
if gM − gA < 0, then the M phase is stable, whereas if
gM − gA > 0, then the A phase is stable. When hysteresis
is present, the system transforms from one phase to the other
only if the difference between the energies overcomes a certain
threshold value gc, i.e., from A to M when gM − gA < −gc

and from M to A when gM − gA > gc. In the presence of a
continuous phase transition characterized by a smooth change
of the austenite phase fraction xA and a distribution of threshold
values, the difference gM − gA plays the role of a driving
force for the transformation summarizing the action of the
temperature and the applied magnetic field.13,16 The hysteresis
behavior of a phase transformation can then be represented as
the phase fraction xA versus the driving force gM − gA.

To test this representation for our systems, we introduce the
Gibbs free energy for each single phase i (M, A) given as

gi(H,T ) = fi(T ) − μ0

∫ H

0
Mi(H,T )dH. (1)

The first term on the right-hand side, fi(T ), depends only on
temperature. For temperatures around the transition tempera-
ture Tt it can be expressed by a second-order power expansion
in (T − Tt ):,

fi(T ) = −s0i
(T − Tt ) − 1

2bi(T − Tt )2, (2)

where bi is the specific entropy coefficient. The second term on
the right-hand side is directly related to the magnetization of
the pure phases. In order to have analytic expressions for gi in
the phase coexistence state, we choose a simplified description
of the magnetization Mi(H,T ) of each single phase. We
assume for M(H,T ) the behavior as shown in Fig. 9. For
H < H0i

the linear law

Mi(H,T ) = χ0i
μ0H (3)

FIG. 9. (Color online) Magnetization measured outside the
transition region. (Left) Ni53.3Mn20.1Ga26.6 single crystal; (right)
Ni50Mn36Co1Sn13. (Dotted lines) Model [Eq. (4) and parameters in
the text] for μ0H = 1 T.

represents the effect of the demagnetizing field and the pres-
ence of magnetic anisotropy. We then expect the coefficient
χ0i

to be almost independent of temperature. In the case of
demagnetizing field the coefficient is χ0i

= v/Nd , where Nd

is the demagnetizing factor and v is the specific volume. For
H > H0i

the expression:

Mi(H,T ) = M1i
(T ) + χ1i

(T )μ0H, (4)

where both M1i
and χ1i

depend on temperature, is a simplified
description of a ferromagnet close to the Curie point. The
threshold field H0i

is defined as μ0H0i
= M1i

/(χ0i
− χ1i

). H0i

represents the typical field at which, in the single phases, there
is a change in the magnetization process. For H < H0i

the
magnetization process is related to magnetostatic energy and
magnetic anisotropy, while for H > H0i

it is connected to
the approach to magnetic saturation. The coefficient of the
simplified expression for Mi(H,T ) of Eqs. (3) and (4), will be
determined by the fit to the measured magnetization outside
the transition region. The Gibbs free energy is

gi(H,T ) = f0i
(T ) − 1

2μ0χ0i
H 2 (5)

for H < H0i
and

gi(H,T ) = f0i
(T ) − μ0M1i

H − 1
2μ0χ1i

H 2 + 1
2μ0M1i

H0i

(6)

for H > H0i
. The corresponding entropy for each phase is

given by si = −∂gi/∂T . By taking dχ0i
/dT = 0 we have

si = s0i
+ bi(T − Tt ) (7)

for H < H0i
and

si = s0i
+ bi(T − Tt ) + dM1i

dT
μ0(H − H0i

)

+ 1

2

dχ1i

dT
μ0

(
H 2 − H 2

0i

)
(8)

for H > H0i
. The parameters in Eqs. (7)–(8) can be determined

by fit of the corresponding laws to the measured entropy and
magnetization on both samples. By linear fit of the measured
entropy (inset of Figs. 5 and 6) for H = 0 we obtain sM =
1.48 × (T − Tt ), sA = 27.6 + 1.48 × (T − Tt ) for Ni-Mn-Ga
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∇

FIG. 10. Hysteresis of the phase transition of Ni53.3Mn20.1Ga26.6

single crystal represented as the phase fraction of austenite xA as
a function of the energy difference gM − gA. Deduced from the
experimental s(H,T ) curves.

and sM = 1.57 × (T − Tt ), sA = 30.7 + 1.55 × (T − Tt ) for
Ni-Mn-Co-Sn. From the fit of Eqs. (3) and (4) to the data
M(H,T ) outside the transition region, as shown in Fig. 9,
we obtain the following: χ0M

= 200, M1M
= 53 − 0.2 ×

(T − Tt ), χ1M
= 2.8 and χ0A

= 500, M1A
= 33 − 0.6 × (T −

Tt ) − 0.025 × (T − Tt )2, χ−1
1A

= 0.35 − 0.01 × (T − Tt ) for
Ni-Mn-Ga and χ0M

= 220, M1M
= 0 − 0.2 × (T − Tt ), χ1M

=
3.7 and χ0A

= 220, M1A
= 48.5 − 0.7 × (T − Tt ) − 0.005 ×

(T − Tt )2, χ−1
1A

= 0.41 − 0.0085 × (T − Tt ) for Ni-Mn-Co-
Sn. In the previous expressions the entropy s is measured
in J kg−1K−1, the magnetization M in Am2 kg−1 and the
susceptibility χ in Am2 kg−1 T−1. We also verified that the
same values of the parameters, used in Eq. (8), well describe
the measured magnetic-field-induced entropy change of Figs. 7
and 8, out of the transition region.

From the values of χ0i
the demagnetizing coefficient is

estimated to be Nd � 0.2 for Ni-Mn-Ga sample and Nd �
0.4 for Ni-Mn-Co-Sn sample, coherently with the shape of
the samples. The lower value of χ0M

with respect to χ0A
can

be attributed to the magnetic anisotropy of the martensitic
phase of Ni-Mn-Ga. The presence of magnetic anisotropy also
explains why MM < MA at the low field of 0.1 T of Fig. 3.

The phase fraction of the austenite phase, xA, is computed
from the measured entropy curves s(H,T ) by the equation

xA = s − sM

sA − sM

, (9)

where sA and sM are the entropies in the full A and M phases,
respectively, of Eq. (7). The hysteresis plots shown in Figs. 10
and 11 are the plot of xA as a function of gM − gA computed
by Eqs. (5) and (6):

gM − gA = −(
s0M

− s0A

)
(T − Tt ) − 1

2 (bM − bA)(T − Tt )2

−μ0
(
M1M

− M1A

)
H − 1

2μ0
(
χ1M

− χ1A

)
H 2

+ 1
2μ0

(
M1M

H0M
− M1A

H0A

)
. (10)

∇

FIG. 11. Hysteresis of the phase transition of Ni50Mn36Co1Sn13

represented as the phase fraction of austenite xA as a function of the
energy difference gM − gA. Deduced from the experimental s(H,T )
curves.

For the applied magnetic field of our experiments, we find
that the most important contributions to gM − gA is due to the
difference M1M

− M1A
which is proportional to the difference

in the spontaneous magnetization of the two phases. In the
xA versus gM − gA plot we obtain that the curves measured
without magnetic field (full lines) and with the magnetic field
H (dashed lines) well rescale one over the other by using all the
parameters determined by the magnetization measurements.
As far as the process can be considered time independent
or static, the presence of this rescaling proves the equivalent
action of T and H on the phase transformation.

V. RETURN BRANCHES AND ENTROPY CHANGE

To characterize the material behavior for all the preparation
protocols for which the transformation is reversed, hysteresis
has to be completed by the knowledge of the return branches
describing the internal behavior of the loop. For this aim, we
measured a set of internal partial transformation by changing
T . Temperature was changed at a constant rate of 50 mK s−1

up to the peak value Tp in the middle of the transformation
and then the sign of the rate of change was inverted. The time
taken by the control system to invert the rate of change is
about 60 s. According to the Peltier cell method described in
Ref. 15, the temperature of the sample T is lagging behind
the temperature of the thermal bath Tb, which is controlled by
the setup and kinetic corrections to the measured quantities
are needed. In the transient around the turning point at Tp

for the temperature of the thermal bath, the temperature of
the sample T is given by T = T0 + vP /ε, where vP is the
measured Peltier voltage and T0 is the temperature of the empty
reference cell. T0 is given by the numerical integration of the
equation τdT0/dt + T0 = Tb(t) and the parameters ε and τ

depend on the measuring cells and are determined according
to the method described in Ref. 15.
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In Figs. 10 and 11 the phase fraction of austenite phase xA

is plotted as a function gM − gA, as described in the previous
section. The internal branching of the hysteresis qualitatively
differ between the two samples. The return branches of Ni-
Mn-Co-Sn are rather flat, which indicates that the interphase
is rather blocked. In the return branches of Ni-Mn-Ga, after a
small flat region, the phase boundaries can move more easily
than in the case of Ni-Mn-Co-Sn. This difference can be related
to the absence of grain boundaries in the single crystal.

A feature presented in both the measurements is the
continuation of the phase transformation in the forward
direction for the period of time needed to invert the direction
of the temperature variation. This is seen as an almost
vertical slope or a rounding of the tip of the return branch.
The effect could be presumably attributed to an intrinsic
time relaxation effect associated to the thermal activation
of the structural and/or magnetic domains over their energy
barriers. A similar phenomenon at the return branches tip
was previously observed in the magnetization process of
magnetic materials characterized by small correlation regions
that can be thermally activated by spontaneous fluctuations.21

The comprehension of this effect merits, however, further
investigation.

VI. DISCUSSION

The knowledge of the hysteresis loop expressed by the
equivalent driving force permits to derive the amplitude of the
magnetic field needed to pass from one to the other of the
two hysteresis branches. The major hysteresis loops for the
two materials shown in Figs. 10 and 11 are well approximated
by the function xA = (1/2)[1 + tanh(�g ± gc)/g0] with gc =
75 J kg−1, g0 = 20 J kg−1 for Ni-Mn-Ga and gc = 240
J kg−1, g0 = 70 J kg−1 for Ni-Mn-Co-Sn, �g = gM − gA.
The width of the hysteresis loop is a measure of the typical
energy barriers associated with the processes of nucleation
and growth that ultimately depend on the elastic energy
accumulated at the interface between martensite and austenite
phases.22

The linear reversible permeabilities along the return
branches are approximately �xA = �g/grev with the parame-
ter for Ni-Mn-Ga initially grev = 1200 J kg−1 and in the middle
grev = 250 J kg−1 and for Ni-Mn-Co-Sn grev = 2 × 104 J kg−1.
The reversible permeability reflects the possibility to have
reversible motion of the interfaces once they are nucleated.

To evaluate the performance of the material as an heat
exchanger using the magnetocaloric effect at the first-order
phase transition, we compare the measured reversible entropy
change with the correspondent change of the phase fraction
along the return branches. An applied magnetic field variation
of 1.2 T for Ni-Mn-Ga corresponds to �g � 25 J kg−1 while a
variation of 1.6 T for Ni-Mn-Co-Sn to �g � 65 J kg−1 (see the
arrows in Figs. 10 and 11). With these numbers the variation of
the phase fraction along the return branches is �xA � 1.8 ×
10−2 for Ni-Mn-Ga and �xA � 3 × 10−3 for Ni-Mn-Co-Sn.
In a phase transition region the entropy is s = xAsA + xMsM

(xA + xM = 1) and its change is given by the sum of three
terms

�s = xA�sA + (1 − xA)�sM + (sA − sM )�xA. (11)

The first two terms are the magnetocaloric contribution of the
phases while the third is contribution of the phase transforma-
tion. The third term contributes as �s = 0.5 J kg−1 K−1 for
Ni-Mn-Ga and �s � 0.09 J kg−1 K−1 for Ni-Mn-Co-Sn. If
we compare these values with the measured reversible entropy
change it turns out that for Ni-Mn-Co-Sn the contribution of
phase transition is negligible and in Ni-Mn-Ga is appreciable
but less than the magnetocaloric contribution of the single
phases. The corresponding entropy change with the three
contributions is shown in Fig. 7 and in the inset of Fig. 8
as a dashed curve. It is evident that the behavior of the
reversible entropy change as a function of temperature is well
reproduced.

VII. CONCLUSION

In this work we have investigated the magnetocaloric effect
along the hysteresis in the phase transformation of Heusler
alloys of interest for room-temperature magnetic refrigeration.
Although the Heusler alloys have a large entropy change at the
magnetostructural transition, it is shown that the giant MCE
can be obtained only under the measuring protocols in which
the magnetic field further advance the transformation initiated
by the temperature change.10 This large MCE originates from
a contribution of the structural subsystem and is largely
irreversible for the typical magnetic fields available with
electromagnets.

We have introduced a model to represent the measured
entropy in terms of the phase fraction of the austenite xA as a
function of the driving force give by the difference between the
Gibbs free energy of the two phases gM − gA. This plot allows
us to rescale all data within a unified picture in which the
impact of both the magnetic field H and the temperature T on
the phase transformation with hysteresis can be understood. By
using the hysteresis loops and the return branches one can link
magnitude of the attainable entropy change to the hysteresis of
the phase transition. The hysteresis loops and return branches
give the possibility to predict behavior of the magnetic entropy
change on a variety of measurement protocols.

For the studied materials, Ni53.3Mn20.1Ga26.6 and
Ni50Mn36Co1Sn13, the full phase transition by the magnetic
field can occur only for elevated magnitudes of H . An
estimation based on the developed model indicates (i) both
the strength of the magnetic field necessary for the pass from
one hysteresis branch to the other, estimated as μ0Hhyst =
2gc/�M , is μ0Hhyst � 7 T for the Ni-Mn-Ga single crystal
and μ0Hhyst � 12 T for the Ni-Mn-Co-Sn, in agreement with
Ref. 10, and the contribution to the entropy change from
the internal hysteresis branching, which turns out to differ
somewhat between the two investigated samples. Our study,
however, indicates that interesting developments are expected
by the possibility of tuning the hysteresis in the structural phase
transition.23,24
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