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Collective spin-wave excitations in a two-dimensional array of coupled magnetic nanodots
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A general theory of collective spin-wave excitations in a two-dimensional array of magnetic nanodots coupled
by magnetodipolar interaction is developed. The theory allows one to analytically calculate spectra, damping
rates, excitation efficiencies, and other characteristics of spin waves in both periodic and aperiodic ground
states of an array. It is demonstrated that all the properties of collective spin waves in an array existing in any
spatially periodic ground state (e.g., ferromagnetic or chessboard antiferromagnetic) are determined by the same
state-independent array’s demagnetization tensor F̂k, which is determined by the spin-wave wave vector k, the
size and shape of the array’s elements (nanodots), and the geometry of the array’s lattice. The applications of the
developed general theory are illustrated on particular examples: (i) spin waves in ferromagnetic and chessboard
antiferromagnetic states of a square array, and (ii) localized spin-wave excitations associated with an isolated
“defect” in a uniform ferromagnetic ground state of a square array.
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I. INTRODUCTION

Recent advances in the fabrication of patterned magnetic
media open a possibility to create large arrays of inter-
acting submicrometer-sized magnetic dots. Such dot arrays
are promising candidates for applications not only as bit-
patterned magnetic storage media,1 but, also, as magnonic
crystals—artificial structures with periodic variation of mag-
netic properties. During the past decade the concept of artificial
magnonic crystals becomes increasingly popular because these
periodic structures have interesting and useful new properties
that cannot be achieved in conventional magnetic media. In
particular, it has been demonstrated experimentally2–6 that
periodic patterning of a ferromagnetic film leads to a strong
modification of the spin-wave spectra and may result in the
formation of frequency zones where spin-wave propagation
is prohibited. The widths and positions of frequency zones
where spin-wave propagation is allowed and prohibited can be
controlled by changing the geometric and magnetic parameters
of artificial magnonic crystals.

It is important to mention, that the properties of collective
spin-wave excitations in artificial magnonic crystals formed
by arrays of interacting magnetic nanodots can, in principle,
be controlled dynamically by dynamical modification of the
ground state of the magnetic dot array. It should be noted, that
in the absence of an external bias magnetic field the ground
state of an individual magnetic nanodot is at least doubly
degenerate, because the magnetic energy of the dot is an even
function of the dot magnetization. Therefore, there are many
possible static configurations in an array of dots under the same
external conditions. The magnetodipolar interaction between
dots removes the degeneracy of different configurations,
leading to the instability of most of them. Nonetheless, even
in a relatively simple array of dots, having perpendicular
anisotropy, there may be several stable static configurations
(ground states) separated by energy barriers. Besides two
relatively simple ground states, such as ferromagnetic (when
all the magnetic moments are parallel to each other) and

chessboard antiferromagnetic (when the magnetic moments
of the neighboring dots have opposite directions), there can
exist periodic ground states with larger spatial periods (for
details see, e.g., Ref. 7). Moreover, a periodic ground state can
have point defects or an array can be divided into domains,
thus forming states that are nonperiodic (see examples in
Fig. 1). Also, in the case of a dot array formed by magnetic
dots that are in-plane isotropic (in that case the ground state
of an isolated dot is infinitely degenerate) the ground state
of an array could be much more complicated.8–10 Recently,
it has been demonstrated experimentally that it is possible
to control the ground state, and, therefore, the microwave
spin-wave properties of an artificial magnonic crystal by
gradually changing an external parameter (e.g., the bias
magnetic field).11,12

The theoretical investigations of collective spin-wave ex-
citations in arrays of interacting magnetic dots are rather
complicated due to the long-range nature of magnetodipolar
interaction existing between individual dots. Small dot arrays,
consisting of not more than ten dots, were investigated
using micromagnetic modeling in the cases of dots having
rectangular13,14 and cylindrical2,15 shapes. The arrays of long
magnetic stripes were analyzed using the method of tensorial
Green’s functions.3,16 In the framework of this method the
problem is reduced to a system of integral equations that
were solved numerically. With some modifications, the same
method was applied to calculate the spin-wave spectrum of the
array of interacting rectangular dots.5 Alternatively, collective
spin-wave excitations of an array of interacting magnetic
elements can be treated as a linear combination of eigenmodes
of an isolated magnetic dot. Using this approach, the spin-wave
spectra in arrays of spherical magnetic elements17–19 and
rectangular20 magnetic dots in a saturated state, and arrays of
cylindrical dots in a vortex state21 were calculated. The lowest
(gyrotropic) collective mode of an array of dots in a vortex
ground state was analyzed using the well-known Thiele’s
equation in Ref. 22. An approximate analytical theory of a
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FIG. 1. (Color online) Examples of periodic (upper frames) and
aperiodic (lower frames) ground states of an array of magnetic
nanodots. Different colors represent different magnetization direction
(for the antiferromagnetic state—the directions are opposite).

spin-wave spectrum in infinite periodic arrays of magnetic dots
in ferromagnetic and chessboard antiferromagnetic ground
states was developed in Refs. 23 and 24 using the Holstein-
Primakoff transformation. Within this analytical approach,
individual magnetic dots were approximated by pointlike
magnetic dipoles. A variant of a similar analytic theory that
uses multipole expansion of the dot variable magnetization
was developed in Ref. 25.

In our current paper we present a general analytic method
that allows one to calculate spin-wave spectra in an arbitrary
array of interacting magnetic dots. Although we assume that
the magnetization of each individual dot in the array is spatially
uniform (“macrospin” approximation), in contrast with the
“point-dipole” approximation of Refs. 23 and 24 we take
into account real shape-dependent demagnetization fields of
individual dots. Of course, the macrospin approximation for
the magnetization of individual dots limits the applicability
of our dynamic calculations to the case of collective branches
of spin-wave spectrum of the array, formed by quasiuniform
modes of dots. These branches are expected to be dominant in
the microwave response of an array and, therefore, are the most
interesting branches from a practical point of view. Our method
of calculation of the dipolar interaction between the dots is
general and can also be used in the case of spatially nonuniform
dot magnetization. In contrast with all the previously used
theories, the general analytic approach developed below is
applicable to both finite-size and infinite periodic arrays of
magnetic dots. In the framework of this analytic approach it is
possible to develop a perturbation theory, which allows one to
calculate damping rates of the collective spin-wave modes and
to build a theory of excitation of these modes by an external
microwave magnetic field.

We would like to stress that the analytic understanding
of the spectra of collective spin-wave modes in arrays of
interacting magnetic dots is not only necessary for the practical
applications of magnonic crystals based on these arrays, but
also provides information about the stability of the array
ground states: usually, when a magnetic order is approaching a
critical value for an external parameter (e.g., interdot distance
or applied field), one of the collective modes is softening
and its frequency vanishes. Therefore, information about the
spin-wave spectra is vital for the development of bit-patterned
magnetic memory devices.

In the following we restrict our attention to the case
of identical magnetic dots, although the developed method
is general and can be used in more complicated cases.
Also, after formulating the general equations describing the
magnetodipolar interactions in a dot array of an arbitrary
geometry we consider in more detail the case of a simple
array lattice where a unit cell contains only one magnetic dot.

The paper has the following structure. In Sec. II we
introduce a mutual demagnetization tensor N̂(r) (Refs. 26
and 27) to describe the magnetodipolar interaction between the
magnetic nanodots forming the array. In Sec. III we present a
general formalism for the description of collective spin-wave
excitations in an arbitrary array of magnetic nanodots. The
results of this section are general and can be applied, without
restrictions, to an arbitrary array of magnetic dots in an
arbitrary ground state. Several examples of application of
this general formalism are presented in Sec. IV. In particular,
we calculate the spectrum of spin waves in a square array
of magnetic nanodots (in both ferromagnetic and chessboard
antiferromagnetic ground states) and the spectrum of localized
spin-wave excitations associated with an isolated “defect” in a
periodic ground state of a dot array. Finally, a summary of the
obtained results and conclusions are presented in Sec. V.

II. MUTUAL DIPOLAR INTERACTION
OF MAGNETIC DOTS

Let us consider magnetodipolar interaction between two
magnetic dots separated by the distance r = rj − rk . The
averaged magnetodipolar field created by the dot located at
the position rk (position vector of the dot center) and acting
on the dot at the position rj can be written as26,27

Bjk = −μ0 N̂(rj − rk) · Mk, (2.1)

where μ0 is the vacuum permeability, Mk is the magnetization
vector of the kth dot, and N̂(r) is the mutual demagnetization
tensor which depends on the size and shape of the dots and the
interdot separation r = rj − rk . In the case r = 0 the tensor
N̂(0) coincides with the usual self-demagnetization tensor of
the dot.

In a general case, tensor N̂(r) can be expressed as the
following inverse Fourier transform:26

Nαβ(rj − rk) = 1

Vj

∫
Dj (κ)D∗

k (κ)
κακβ

κ2
eiκ ·(rj −rk ) d3κ

(2π )3
,

(2.2)

where α,β ∈ {x,y,z} are the Cartesian vector components, Vj

is the volume of the j th dot, integration is carried out over
the whole three-dimensional κ space, and the so-called “shape
amplitude”26 of the dot is defined as

Dj (κ) =
∫

Vj

e−iκ·r d3r. (2.3)

In our current paper we are interested in a specific case when
the interacting dots are identical and lie in the same x-y plane.
Under this restriction, the z component of the separation vector
r = rj − rk is identically zero. In such a case it is convenient
to represent the wave-vector κ as a sum of the in-plane wave
vector k = kxex + kyey (where eα is the unit vector in the
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α direction) and a perpendicular (to the dot plane) wave
vector κz: κ = k + κzez. Performing integration over the
perpendicular wave vector κz, one can represent the mutual
demagnetization tensor N̂(r) as a two-dimensional Fourier
transformation,

N̂(r) =
∫

N̂ ke
ik·r d2k

(2π )2
, (2.4)

where N̂ k is the two-dimensional Fourier image of the
demagnetization tensor N̂(r). Integration over the κz can be
performed analytically in the case of “planar” dots having
constant height h along the z axis, and the tensor N̂ k takes the
form

N̂ k = |σk|2
S

⎛
⎜⎜⎝

k2
x

k2 f (kh) kxky

k2 f (kh) 0
kxky

k2 f (kh)
k2
y

k2 f (kh) 0

0 0 1 − f (kh)

⎞
⎟⎟⎠ .

(2.5)

Here

f (kh) = 1 − 1 − exp(−kh)

kh
, (2.6)

S is the area of the dot, and σk is the Fourier image of the dot’s
shape in the x-y plane,

σk =
∫

S

e−ik·r d2r, (2.7)

where integration goes over the area S of the dot.
In particular, for a circular dot of the radius R we get

S = πR2, σk = S
2J1(kR)

kR
, (2.8a)

where J1(x) is the Bessel function of the first order. For an
elliptical dot having semiaxes a and b (along the x and y axes,
respectively) we get

S = πab, σk = S
2J1

(√
k2
xa

2 + k2
yb

2
)

√
k2
xa

2 + k2
yb

2
, (2.8b)

and for a rectangular dot having sizes lx and ly we obtain

S = lx ly, σk = S
sin(kxlx/2)

kxlx/2

sin(kyly/2)

kyly/2
. (2.8c)

As will be shown below, the Fourier image of the mutual
demagnetization tensor N̂ k can be directly used for the
computationally efficient evaluation of the spin-wave spectra
in spatially periodic arrays of magnetic dots.

It is evident from the definitions of the tensors N̂(r) and N̂ k

that they are both real valued and symmetrical with respect to
transposition of vector indices and spatial inversion. Namely,

N̂(r) = N̂
∗
(r) = N̂

T
(r) = N̂(−r) (2.9a)

and

N̂ k = N̂
∗
k = N̂

T

k = N̂−k. (2.9b)

These symmetry relations are important for some of the
properties of collective spin excitations in an array of inter-
acting nanodots coupled by magnetodipolar interaction. In

addition, one can show that Tr[N̂(0)] = 1 and Tr[N̂(r)] = 0
for nonoverlapping dots.27

Finally, we note that, using the demagnetization tensor
N̂(r), the dipolar energy of the array can be written in the
following compact form:

Wdip = μ0V

2

∑
j,k

Mj · N̂(rj − rk) · Mk. (2.10)

Note, that a similar approach can also be used to study
dipolar interaction between dots having nonuniform profiles
of either static and/or dynamic magnetization. In such a case,
instead of a single demagnetization tensor, Eq. (2.5), it is
necessary to find separate static-static, dynamic-dynamic, and
static-dynamic demagnetization tensors, where the Fourier
image σk of the dot’s shape in Eq. (2.5) is replaced by the
Fourier images of the nonuniform spatial profiles of either a
static dot magnetization or a particular nonuniform spin-wave
mode (static or dynamic cell functions).

III. GENERAL THEORY OF COLLECTIVE
SPIN-WAVE EXCITATIONS

A. Principal equations

We consider below a two-dimensional array of identical
magnetic dots lying in the x-y plane (see Fig. 2). The dots
are arranged in a spatially periodic lattice with basis vectors
a1 and a2. The location of a dot in the array is determined by
the two-dimensional integer index j = (j1,j2), and the two-
dimensional position vector of the j th dot (more precisely, the
position vector of the center of the j th dot) is given by

rj = j1a1 + j2a2. (3.1)

The area of the unit cell of the lattice is equal to

S0 = ez · (a1 × a2). (3.2)

We assume that the basis vectors ai are ordered in such a way
that the area of the unit cell S0 defined by Eq. (3.2) is positive.

We also assume that the sizes of the interacting magnetic
dots are sufficiently small, so that the magnetic state within
each dot can be considered to be spatially uniform (i.e., we
can use a macrospin approximation for the magnetization in all
individual dots). In this case the state of each dot is completely
described by one magnetization vector Mj ≡ Mj (t) of a
constant magnitude (|Mj | = Ms), where Ms is the saturation
magnetization.

We would like to note that the macrospin approximation
for the dynamic magnetization of the dot is not an essential

x

y

a1
a2

FIG. 2. (Color online) Sketch of the considered array of interact-
ing magnetic dots. The dots lie in the common x-y plane and form a
periodic lattice with the basis vectors a1 and a2.
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feature of our theoretical approach and can be relaxed if one
uses the actual profile of a spin-wave mode existing in each
individual magnetic dot when the calculation of the dot’s shape
amplitude, Eq. (2.3), is performed. This correction will modify
the form of the demagnetization tensor N̂(r), but will not affect
any other calculation results.

Below we consider the case when the dot array is placed
in the uniform external bias magnetic field Be and individual
dots are mutually coupled only by the magnetodipolar inter-
action. For simplicity, we will not consider crystallographic
anisotropy—it can be taken into account simply by the
renormalization of the self-demagnetization tensor N̂(0). The
influence of damping and other weak perturbations will be
considered in Sec. III C in the framework of the general
perturbation theory.

Under the above-formulated approximations, the dynamics
of the dots’ magnetization vectors Mj is described by the
Landau-Lifshits equation

d Mj

dt
= γ (Beff,j × Mj ), (3.3)

where γ ≈ 2π · 28 GHz/T is the modulus of the gyromagnetic
ratio for electron spin, and the effective magnetic field Beff,j

consisting of the external bias field and magnetodipolar field
created by other dots is given by

Beff,j = Be − μ0

∑
k

N̂(rj − rk) · Mk. (3.4)

The total magnetic energy of the array under our assumptions
has the form

W = −V
∑

j

Be · Mj + μ0V

2

∑
j,k

Mj · N̂(rj − rk) · Mk.

(3.5)

B. General formalism for collective spin-wave excitations
in the dot array

Magnetization of the j th dot in a stationary ground state
can be written as Mj = Msμj , where μj is a unit vector in
the direction of the dot static magnetization. Vectors μj are
determined from the system of equations

Bjμj = Be − μ0Ms

∑
k

N̂(rj − rk) · μk, (3.6)

where Bj is the intrinsic scalar magnetic field acting on the
j th dot.

To find the dynamical equations describing small (linear)
magnetization excitations of the dot array, we shall use the
following ansatz for the dot magnetization:

Mj = Ms(μj + mj ) + O(|mj |2), (3.7)

where mj is the small dimensionless deviation of the magneti-
zation of the j th dot from the static equilibrium (ground) state
described by the vector μj . The condition of conservation of
the length of magnetization vector Mj in each dot requires the
orthogonality of vectors μj and mj ,

μj · mj = 0. (3.8)

Substituting Eq. (3.7) for Mj in Eq. (3.3), using Eqs. (3.6)
and (3.8), and keeping only the terms that are linear in mj , one
obtains the following dynamical equations for mj :

dmj

dt
= μj ×

∑
k

�̂jk · mk. (3.9)

Here the tensor operator �̂jk is defined by the equation

�̂jk = γBjδjk Î + γμ0Ms N̂(rj − rk), (3.10)

where δjk is the Kronecker delta (δjk = 1 for j = k and δjk =
0 otherwise) and Î is the identity matrix. It is clear that the
tensor operator �̂jk is self-adjoint (in the sense �̂jk = �̂

T

kj ), is

symmetric with respect to spatial inversion (�̂jk = �̂kj ), and
has the dimension of frequency.

Note, that the changes to the magnetic energy due to the
spin-wave excitations mj can also be expressed through the
tensor �̂jk:

	W = MsV

2γ

∑
j,k

mj · �̂jk · mk. (3.11)

The spin-wave frequencies ων and the profiles of collective
spin-wave modes mν,j can be found as eigenvalues and
eigenvectors of Eq. (3.9), respectively:

−iωνmν,j = μj ×
∑

k

�̂jk · mν,k. (3.12)

Here ν is an index or set of indices used to enumerate different
spin-wave modes.

The main properties of the collective spin-wave excitations
of the array of dots follow from the properties of the eigenvalue
problem, Eq. (3.12), and from the fact that the tensor �̂jk is
real and self-adjoint. In particular, it can be shown that the
eigenvectors mν,j satisfy the following relation:

(ω∗
ν ′ − ων)

∑
j

m∗
ν ′,j · μj × mν,j = 0, (3.13)

where the superscript ∗ denotes complex conjugation. Then,
for ν ′ = ν, the eigenvalues are real, ω∗

ν = ων , unless
∑

j m∗
ν,j ·

μj × mν,j = 0. The latter condition can be satisfied only if
the stationary configuration μj (ground state) corresponds to
a saddle point of the magnetic energy W , Eq. (3.5). Such
magnetization states are unstable, so they cannot be realized in
practice, and we will not consider them below. Then, Eq. (3.13)
means that the frequencies of collective spin-wave eigenmodes
are real, and different eigenmodes mν,j are orthogonal in the
sense ∑

j

m∗
ν ′,j · μj × mν,j = −iAνδν,ν ′ , (3.14)

where Aν are real constants dependent on the normalization
of the eigenvectors mν,j . We would like to stress that
the orthogonality condition, Eq. (3.14), holds even for the
nonuniform ground states of the array, i.e., when different dots
have different equilibrium directions of magnetization μj .
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Another orthogonality-type relation for spin-wave modes
mν,j is ∑

j,k

m∗
ν ′,j · �̂jk · mν,k = ωνAνδν,ν ′ . (3.15)

This property is useful in approximate calculations of the spin-
wave frequencies.28

Taking complex conjugate of Eq. (3.12) and using the
fact that the tensors �̂jk are real it is easy to show that,
if mν,j is an eigenvector with an eigenfrequency ων , then
m∗

ν,j is also an eigenvector with an eigenfrequency −ων . Such
double degeneracy of spin-wave eigenmodes arises from the
fact that the magnetization vectors mj are real quantities,
and their spectra contain both positive and negative frequency
components. Only half of the formal solutions of Eq. (3.12)
describe “physical” modes mν,j , while the rest of the solutions
are the formal “conjugated” modes m∗

ν,j that guarantee that the
vectors mj are real valued.

The physical modes mν,j have positive norms Aν > 0,
whereas the “conjugated” ones have negative norms −Aν .
This can be seen from the general eigenmode expansion of the
magnetization vectors mj (t):

mj (t) =
∑

ν

[mν,j cν(t) + c.c.]. (3.16)

Here cν(t) is the complex amplitude of the νth mode, the sum-
mation goes only over the physical spin-wave modes having
Aν > 0, and c.c. denotes complex conjugated terms (which
include all conjugated modes). Substituting the expansion,
Eq. (3.16), into the expression for energy, Eq. (3.11), and
using Eqs. (3.12) and (3.14) one can write 	W as

	W = MsV

γ

∑
ν

ωνAν |cν |2. (3.17)

If the equilibrium magnetization configuration μj corresponds
to a local minimum of magnetic energy, then 	W is positive-
definite, and the physical modes (Aν > 0) have positive
frequencies ων > 0. On the other hand, if we formally
consider dynamics near a maximum of magnetic energy, then
	W < 0 and the frequencies of the spin-wave modes will be
negative ων < 0, which corresponds to the precession of the
magnetization vector in the opposite direction. Thus, Eq. (3.17)
gives a convenient tool for the investigation of ground-state
stability—only the states having all the ων real and ωνAν > 0
are stable.

The general spin-wave formalism presented above can be
used for effective numerical calculations of the spin-wave
spectra in finite arrays of magnetic dots in an arbitrary ground
state. It follows from Eq. (3.12) that the problem of calculation
of the spin-wave spectrum of a dot array can be reduced to a
standard task of finding eigenvalues and eigenvectors of a
Hamiltonian matrix. In the case when the ground state of an
array is periodic (e.g., ferromagnetic or antiferromagnetic), the
theory can be further simplified and such cases are considered
in Secs. III D and III E.

C. Perturbation theory for spin-wave modes

Magnetic damping and other weak perturbative effects
neglected in Eq. (3.3) can be effectively considered in the

framework of a spin-wave perturbation theory. In a general
case, the perturbed equations for dot magnetization vectors
Mj (t) can be written as

d Mj

dt
= γ (Beff,j × Mj ) + γ (bj × Mj ), (3.18)

where bj is the effective field of the perturbation which
may depend both on time and the dot magnetizations Mk .
Considering only the linear processes, we can expand the
magnetization of each dot in a series of spin-wave eigenmodes:

Mj (t) = Ms

{
μj +

∑
ν

[mν,j cν(t) + c.c.]

}
. (3.19)

Here and below the summation over the index ν goes only
over the physical modes (Aν > 0). Substituting Eq. (3.19) for
Mj (t) in Eq. (3.18) and using the orthogonality properties
of spin-wave eigenmodes mν,j , one can obtain the perturbed
equations for the spin-wave amplitudes cν(t):

dcν

dt
= −iωνcν + iγ bν − iγ

∑
ν ′

(Sν,ν ′cν ′ + S̃ν,ν ′c∗
ν ′ ),

(3.20)

with the following coefficients:

bν = 1

Aν

∑
j

m∗
ν,j · bj , (3.21a)

Sν,ν ′ = 1

Aν

∑
j

(m∗
ν,j · mν ′,j )(μj · bj ), (3.21b)

S̃ν,ν ′ = 1

Aν

∑
j

(m∗
ν,j · m∗

ν ′,j )(μj · bj ). (3.21c)

In the case when the field bj of perturbation depends on the
magnetization vectors, one should retain in Eq. (3.20) only the
terms of the zeroth and first order in cν .

The general equation (3.20) allows one to analyze the
influence of any type of small perturbations on the spin waves
in a dot array.

As an example of such perturbative analysis we consider
below two practically important cases: weak damping of
collective spin-wave modes and their excitation by an external
microwave magnetic field. In the former case, the perturbation
field that is created by the Gilbert damping has the form bj =
−(αG/γMs)d Mj /dt , where αG is the Gilbert damping param-
eter. Taking into account that dcν/dt = −iωνcν + O(αG), one
can derive the following first-order perturbative equation for
the spin-wave amplitudes:

dcν

dt
= −iωνcν −

∑
ν ′

�ν,ν ′cν ′ . (3.22)

Here

�ν,ν ′ = αGων ′

(
1

Aν

∑
j

m∗
ν,j · mν ′,j

)
. (3.23)

If there is no frequency degeneracy among the spin-wave
modes, Eq. (3.22) is simplified to the usual form of equa-
tion describing damped oscillations with the damping rate
�ν = �ν,ν . In a degenerate case, one should also take into
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account the off-diagonal terms ν ′ �= ν for proper description
of the magnetic damping. As one can see from Eq. (3.23),
the difference between the damping rate �ν and αGων is
determined by the ellipticity of the excited spin-wave mode.

The direct excitation of spin waves by an external mi-
crowave field is described by the perturbation terms bj =
(be,j e

−iωt + c.c.). With the account of magnetic damping
(assuming a nondegenerate case) the dynamic equations for
cν can be written as

dcν

dt
= −iωνcν − �νcν + iγ be,νe

−iωt , (3.24)

where

be,ν = 1

Aν

∑
j

m∗
ν,j · be,j . (3.25)

Then, the stationary amplitude of the νth mode is given by

cν = γ be,ν

ων − ω − i�ν

. (3.26)

Using the above expressions, one can easily calculate
the microwave absorbtion spectra of an array of interacting
magnetic dots. In particular, in a practically important case
of a spatially uniform external microwave field, be,j = be, the
microwave power absorbed by the dot array is given by

P = ωV Nd

μ0
b∗

e · χ̂ ′′(ω) · be, (3.27)

where Nd is the number of dots in the array and the effective
array permeability tensor χ̂ (ω) = χ̂ ′(ω) + iχ̂ ′′(ω) is given by

χ̂ (ω) = γμ0Ms

∑
ν

χ̂ ν

(ων − ω) − i�ν

, (3.28a)

χ̂ ν = 1

NdAν

∑
j,k

m∗
ν,j ⊗ mν,k. (3.28b)

where ⊗ indicates direct Cartesian product of vectors.
Thus, all the practically important characteristics of an array

of magnetic dots can be easily found provided one knows the
frequencies ων of the collective spin-wave eigenmodes and the
corresponding eigenmode profiles mν,j .

D. Collective spin waves of an array
in a ferromagnetic ground state

When the ground state of an infinite array of magnetic dots
is ferromagnetic, the equilibrium directions of magnetization
of all dots are identical, μj = μ. Therefore, the internal fields
in all the dots are the same, Bj = B, and are determined by

Bμ = Be − μ0Ms

∑
r ∈L

N̂(r) · μ. (3.29)

Here L denotes the lattice of the dot array:

L = {n1a1 + n2a2 | n1 ∈ Z, n2 ∈ Z}. (3.30)

The spin-wave modes in the periodic ferromagnetic ground
state of an array have the form of plane waves:

mj = mke
ik·rj , (3.31)

and can be characterized by their wave vectors k. The wave
vector k lies within the first Brillouin zone of the array’s lattice.

Substituting Eq. (3.31) for mj in Eq. (3.12) we get a simple
(and effectively two-dimensional) eigenvalue problem for mk

and ωk:

−iωkmk = μ × �̂k · mk, (3.32)

where

�̂k = γB Î + γμ0Ms F̂k, F̂k =
∑
r ∈L

N̂(r)e−ik·r . (3.33)

Using a well-known expression that relates the sums over
the direct and reciprocal lattices,29

∑
r ∈L

e−ik·r = (2π )2

S0

∑
K ∈L∗

δ(k + K ), (3.34)

one can rewrite the tensor F̂k in the form

F̂k = 1

S0

∑
K ∈L∗

N̂ k+K , (3.35)

where L∗ denotes the reciprocal lattice

L∗ = {n1k1 + n2k2 | n1 ∈ Z, n2 ∈ Z}, (3.36)

that is formed by the two basis wave vectors

k1 = −
(

2π

S0

)
ez × a2, k2 =

(
2π

S0

)
ez × a1. (3.37)

Here S0 is the area of the unit cell of the direct lattice L [see
Eq. (3.2)].

The tensor F̂k possesses all the symmetries of the tensor
N̂ k. In addition, it is periodic with the periods of the reciprocal
lattice, F̂k = F̂k+k1 = F̂k+k2 , and has a unit trace, Tr(F̂k) =
1. In the case of planar magnetic dots, for which the xz and yz

components of the tensor N̂ k vanish [see Eq. (2.5)], there are
only three independent components of the tensor F̂k (e.g., xx,
xy, and yy components).

The expression for the tensor F̂k, Eq. (3.35), is especially
convenient in practical calculations since the Fourier image N̂ k

of the mutual demagnetization tensor can be found analytically
[see Eq. (2.5)] in all the practically important cases. With the
help of Eq. (3.35), calculations of the spin-wave spectra of
an array of magnetic dots (with account of finite size and
real shape of individual dots) are no more difficult than the
calculations in models where individual dots are approximated
as “point dipoles.”23,24

Equation (3.32) is identical to the equation for a single
macrospin with the effective demagnetization tensor F̂k.
Choosing a coordinate system (x ′y ′z′), in which the direction
of the equilibrium magnetization μ coincides with the z′ axes,
the spin-wave frequency ωk of the collective spin-wave mode
in the array can be written as

ω2
k = (

γB + ωMF
(x ′x ′)
k

)(
γB + ωMF

(y ′y ′)
k

) − (
ωMF

(x ′y ′)
k

)2
,

(3.38)

where ωM = γμ0Ms . Note, also, that the equilibrium condi-
tion, Eq. (3.29), can be written as

Bμ = Be − μ0Ms F̂0 · μ. (3.39)
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(a)

(b) (c)

a1

a2

ã1

ã2

p

k1

k2

k1

k2
p

˜

˜

FIG. 3. (Color online) Example of a complex periodic ground
state of a magnetic dot array, the so-called noncollinear antiferro-
magnetic state (Ref. 8). (a) Equilibrium magnetization distribution
forming a periodic superlattice SL. The light gray area shows a unit
cell of the superlattice SL, which is P = 4 times larger than the
unit cell of the fundamental lattice L (dark gray area). (b) Direct
lattice L (small gray circles) formed by the basis vectors a1,a2 and
the superlattice SL (large red circles) formed by the vectors ã1,ã2.
The lattice L is P = 4 times denser than the superlattice SL and
can be restored by translating the superlattice SL using shift vectors
δp (green arrows). (c) Reciprocal lattice L∗ (large gray circles) and
reciprocal superlattice SL∗ (small red circles) with basis vectors ki

and k̃i , respectively. The reciprocal superlatticeSL∗ is denser thanL∗

and is restored by translating L∗ using shift wave vectors κp (green
arrows).

Thus, the tensor F̂k, which we will call the fundamental tensor
of the array, contains all the necessary information to find
both the possible equilibrium ferromagnetic states and the
corresponding spectra of the collective spin-wave excitations.
As we will show in the following section, the fundamental
tensor F̂k contains, also, all the necessary information to find
the spin-wave spectra in an arbitrary periodic state of an array
of interacting magnetic dots.

E. Collective spin-wave modes of a dot array
in a complex periodic ground state

An important class of stationary configurations in an infinite
magnetic dot array is formed by periodic nonferromagnetic
states [see examples in Figs. 1 and 3(a)]. In such a state
the equilibrium magnetizations μj of individual dots form
a periodic “superlattice” with basis vectors

ã1 = s11a1 + s12a2, ã2 = s21a1 + s22a2, (3.40)

where sii ′ are integer numbers. Note, that although the choice
of four numbers sii ′ completely defines the superlattice, the
same superlattice corresponds to many possible choices of
sii ′ . The superlattice is not simple, i.e., its unit cell contains
P > 1 dots (i.e., the area of the unit cell of the superlattice is
PS0), where

P = s11s22 − s12s21. (3.41)

We assume that P defined by Eq. (3.41) is a positive number,
which can always be achieved by proper ordering of the basis
vectors ãi .

We will denote the superlattice formed by the basis vectors,
Eq. (3.40), as SL. Note, that the superlattice SL is a subset
of the fundamental lattice L. In fact, one can define P shift
vectors δp ∈ L, p ∈ [1,P ] in such a way, that the union of the
superlattices SL shifted by δp equals L [see Fig. 3(b)],

L =
⋃
p

{r + δp | r ∈ SL}. (3.42)

The reciprocal superlattice, SL∗, is formed using the basis
vectors

k̃1 = −
(

2π

PS0

)
ez × ã2 =

(
s22

P

)
k1 −

(
s21

P

)
k2, (3.43)

k̃2 =
(

2π

PS0

)
ez × ã1 =

(
s11

P

)
k2 −

(
s12

P

)
k1. (3.44)

The reciprocal superlattice is P times “denser” than the
fundamental reciprocal lattice L∗ [see Fig. 3(c)], i.e., the area
of its unit cell is P times smaller and is equal to (2π )2/(PS0).
Correspondingly, the equation that is inverse to Eq. (3.42)
holds for reciprocal lattices. Namely, one can choose P shift
wave vectors κp ∈ SL∗, p ∈ [1,P ], such that

SL∗ =
⋃
p

{k + κp | k ∈ L∗}. (3.45)

The choice of the shift vectors δp and κp is not unique.
Besides the freedom in the order of enumeration of the shift
vectors, the real-space vectors δp are defined to the accuracy
of the superlattice vector SL, whereas the wave vectors κp can
be shifted by an arbitrary vector of the fundamental reciprocal
lattice L∗.

Each dot at the position jp belongs to a certain p ∈ [1,P ]
superlattice [in the sense of Eq. (3.42)]. The equilibrium
directions of the magnetizations μj and internal fields Bj

depend only on the index p,

μjp
= μp, Bjp

= Bp. (3.46)

Then, the general equilibrium condition, Eq. (3.6), reduces to
P vector equations,

Bpμp = Be − μ0Ms

∑
q

Ĝ0(δpq) · μq, (3.47)

where

δpq = δp − δq (3.48)

and

Ĝ0(δ) =
∑

r ∈SL
N̂(r + δ). (3.49)

The meaning of the subscript 0 will be explained below.
The linear spin-wave excitations in a superlattice have the

form of plane waves and can be written as

mjp
= mk,peik·rjp , (3.50)

where the wave vector k belongs to the first Brillouin zone of
the reciprocal superlattice SL∗. Using the ansatz, Eq. (3.50),
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in Eq. (3.12) one can obtain a finite-dimensional eigenvalue
problem for ωk and mk,p:

−iωkmk,p = μp ×
∑

q

�̂k,pq · mk,q . (3.51)

Here

�̂k,pq = γBpδpq Î + γμ0Ms Ĝk(δpq), (3.52)

where

Ĝk(δ) =
∑

r ∈SL
N̂(r + δ)e−ik·(r+δ). (3.53)

As one can see, for k = 0 the definition, Eq. (3.53), coincides
with Eq. (3.49). Changing the summation from the direct SL
to the reciprocal SL∗ lattice [see Eq. (3.34)], one gets

Ĝk(δ) = 1

PS0

∑
K ∈SL∗

N̂ k+K ei K ·δ. (3.54)

The tensor Ĝk(δ) is symmetric with respect to the trans-
position of the vector indices (Ĝ

T

k = Ĝk) but, in general, is
neither real nor symmetric in respect to inversion. Instead, one
can prove the following general symmetry properties of this
tensor:

Ĝk(δ) = Ĝ
∗
−k(δ) = Ĝ

∗
k(−δ) = Ĝ−k(−δ). (3.55)

In addition, Ĝk+kS
(δ) = Ĝk(δ)e−ikS ·δ for any reciprocal wave

vector kS ∈ SL∗.
Using Eq. (3.45), we can rewrite in Eq. (3.55) the sum

over the reciprocal superlattice SL∗ as P sums over the
fundamental reciprocal lattice L∗:

Ĝk(δ) = 1

PS0

∑
p

∑
K ∈L∗

N̂ k+κp+K ei(κp+K )·δ. (3.56)

Note, that δpq = δp − δq in Eq. (3.53) belongs to the funda-
mental lattice and, respectively,

ei K ·δpq = 1, (3.57)

for any wave vector K ∈ L∗. This fact allows one to rewrite
Ĝk(δ) in the following final form:

Ĝk(δ) = 1

P

∑
p

F̂k+κp
eiκp ·δ. (3.58)

It is useful to note that eiκp ·δ is a P th-order root of 1, i.e.,
κp · δ = 2πn/P , where n is an integer number.

The tensor Ĝk(δ) describes both static [see Eq. (3.47)] and
dynamic [Eqs. (3.51) and (3.52)] properties of the magnetic dot
array in a complex periodic state. Equation (3.58) represents
this tensor as a finite sum (P terms) of the fundamental tensors
F̂k calculated at different points of the wave-vector space.
Thus, the fundamental tensor F̂k allows one to analytically
describe all the properties of any periodic ground state of a
magnetic dot array.

For a fixed value of the wave vector k, the eigenvalue
problem, Eq. (3.51), is a 2P -dimensional linear system of
equations. It has 2P solutions, which can be enumerated
using a discrete index λ. As usual, one half of the solutions
corresponds to physical modes having positive norms Ak,λ >

0, while the other half are formal conjugated modes with

Ak,λ < 0, so the spin-wave spectrum contains P branches.
In analyzing the properties of spin-wave modes in an infinite
array [e.g., Eqs. (3.14) and (3.23)], the infinite sum over the dot
index j can be replaced by the finite sum over the superlattice
index p. For instance, the orthogonality condition, Eq. (3.14),
will have the following form:∑

p

m∗
k,λ,p · μp × mk,λ,p = −iAk,λδλ,λ′ , (3.59)

whereas the damping rate �k,λ is given by

�k,λ = αGωk,λ

(
1

Ak,λ

∑
p

m∗
k,λ,p · mk,λ,p

)
. (3.60)

The absorption spectra are, also, described by Eqs. (3.27) and
(3.28), where the summation over the dots is replaced by the
summation over the superlattices and only the modes with zero
wave vector k = 0 are taken into account.

IV. EXAMPLES: APPLICATIONS OF THE GENERAL
THEORY IN SEVERAL PARTICULAR CASES

In this section the above-described general formalism will
be used for the calculation of the spectra of collective spin-
wave modes in several particular cases. We will consider an
array of circular cylindrical magnetic dots having radius R and
height h [see Fig. 4(a)] arranged in a square lattice with the
lattice constant a [see Fig. 4(b)]. We will focus mainly on the
case of “long” cylinders (h > 2R), when, in the absence of the
bias magnetic field, the equilibrium magnetization direction μ

is directed along the dot’s axis of symmetry [see Fig. 4(a)].

A. Ferromagnetic state of the magnetic dot array

First, we consider a “perpendicular” ferromagnetic (FM)
ground state of the array, in which equilibrium directions of
magnetizations of all the dots are aligned along the z axis,
μ = ez. Note, that the area of the unit cell of the square lattice
is S0 = a2 and the basis wave vectors of the reciprocal lattice
[see Eq. (3.37)] are given by

k1 = 2π

a
ex , k2 = 2π

a
ey . (4.1)

This allows us to directly calculate the fundamental tensor F̂k

using Eq. (3.35). The spin-wave spectrum in the FM state
is described by the general equation (3.38). Note, that in
the considered case (μ = ez) the primed coordinate system
(x ′y ′z′) in Eq. (3.38) coincides with the unprimed one (xyz).

(b) (c)

a

(a)

a
2 /a

kx

ky

Γ X

M

2 /a2R

hµ

FIG. 4. (Color online) (a) Geometry of the nanodots. (b) Square
lattice of the array. (c) Reciprocal lattice (gray circles) of the
array. Dashed line—boundary of the first Brillouin zone in the
ferromagnetic state. Green arrows show the contour � → X →
M → � of the spectrum plot in Fig. 5.
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km

µ

single dot

a/R=6

a/R=4.1

FIG. 5. (Color online) Spectra of collective spin waves of a square
array of cylindrical magnetic dots (aspect ratio is h/R = 5) in a
FM ground state without external magnetic field. The contour � →
X → M → � is shown in Fig. 4(c). Open circles—calculations using
Eq. (3.38) with account of the real shape of the nanodots; solid lines—
calculations in point-dipole approximation (Ref. 24). The lower pair
of curves corresponds to the array’s lattice constant a = 4.1R and
the upper pair to a = 6R. The upper dashed line shows the resonance
frequency of a single dot. Inset: vector structure of the dynamical
magnetization mk of a spin wave with wave vector k.

The calculated spectra of collective spin waves in a
magnetic dot array in the perpendicular FM ground state in
the absence of the external field are shown in Fig. 5 by open
circles [for definition of the symmetric points �, X, and M

of the first Brillouin zone, see Fig. 4(c)]. Solid lines in Fig. 5
show, for comparison, spin-wave spectra for an array of point
dipoles24 having the same magnetic moment per dot.

As one can see from Fig. 5, for relatively large separation
a between the dots the spectrum is monotonic in the whole
Brillouin zone. For a smaller separation, the spectrum becomes
nonmonotonic—a local frequency minimum appears at k =
{π/a,0} (point X). With further reduction of the separation a

the frequency in the X point becomes complex, and the FM
state loses stability. This corresponds to the transition into a
chessboard antiferromagnetic state. The corresponding region
of stability of the FM ground state will be shown in Sec. IV C.

It can also be seen from Fig. 5 that the spin-wave spectra
of the array calculated in the model of point dipoles24 are
qualitatively similar to the spectra calculated with account of
real shape of the magnetic dots (compare solid lines and open
circles in Fig. 5). At the same time, the two models agree
quantitatively only for rather large separations a, when the
dynamic dipolar coupling (proportional to the width of the
spin-wave band) is weak. In particular, the point-dipole model
substantially underestimates the region of stability of the FM
state. Thus, although the point-dipole model can be used for
a qualitative analysis of spin-wave spectra in magnetic arrays,
the quantitatively correct calculations require account of the
real shape of the dots.

The excitations mk of the array in the FM state are
plane waves with right elliptic polarization (only in the two

symmetric points � and M the polarization is circular). The
major axis of the polarization ellipse is perpendicular to
the wave vector k (see inset in Fig. 5). In accordance with
Eq. (3.60), this ellipticity causes the increase in the spin-wave
damping rate, but our calculations showed that these changes
are rather small—the difference between �k and αGωk exceeds
10% only in a small region near the boundary of stability of
the FM state.

Using Eq. (3.38) and noting that the off-diagonal compo-
nents of the tensor F̂k vanish at k = 0, one can derive a simple
expression for the ferromagnetic resonance (FMR) frequency
of the square dot array in a perpendicular bias field Be = Beez:

ωFMR = γBe + ωM

(
F

(xx)
0 − F

(zz)
0

)
. (4.2)

In the long-wavelength limit k → 0 the spin-wave spectrum
is isotropic and has nonanalytic peculiarity (which means that
the spin waves have a finite group velocity at k → 0). The
long-wavelength approximation of the dispersion relation ωk

can be easily derived by noting that in Eq. (3.35) only the term
N̂ k has a nonanalytic behavior near k = 0, whereas all the
other terms N̂ k+K are regular in k and can be expanded in a
Taylor series. The terms in N̂ k+K that are linear in k vanish
after summation over the reciprocal lattice, and the dispersion
relation for small k can be written in a simple form:

ωk ≈ ωFMR + ωM

πhR2

4a2
|k| + O[(ka)2]. (4.3)

By comparing this expression with the dispersion equation for
the magnetostatic waves propagating in a normally magnetized
thin film30 written in a long-wavelength limit one can conclude
that the group velocity in both cases is exactly the same,
provided that magnetic moments per unit area in both cases
(πR2hMs/a

2 for our case and Msh for the film) are equal.

B. Chessboard antiferromagnetic state of a magnetic dot array

As an example of a complex periodic ground state, we
consider a chessboard antiferromegnetic (CAFM) ground
state, in which the equilibrium magnetizations of the nearest
neighbors are opposite [see Fig. 6(a)],

μj = (−1)jx+jy ez. (4.4)

The CAFM state is the true ground state for a square array of
magnetic dots with perpendicular anisotropy (without applied
field), i.e., it corresponds to the global energy minimum of the
array.7

For the CAFM ground state, the basis vectors of the
superlattice SL can be chosen as [see Fig. 6(a)]

ã1 = a1 − a2, ã2 = a1 + a2. (4.5)

In terms of Eq. (3.40), this corresponds to the choice
s11 = s21 = s22 = 1, s12 = −1. The number of independent
superlattices is, clearly,

P = s11s22 − s12s22 = 2. (4.6)

The basis wave vectors of the reciprocal superlattice SL∗ are
given by [see Eq. (3.43)]

k̃1 = (k1 − k2)/2, k̃2 = (k1 + k2)/2. (4.7)
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a2

(a) (b)

a1 2 /a

kx

ky

X

M
2 /a

Γ

ã2

ã1

FIG. 6. (Color online) (a) Square array of magnetic dots in a
CAFM ground state. Empty and filled circles represent the dots
with opposite directions of the equilibrium magnetization μj = ±ez.
(b) Reciprocal lattice L∗ (larger open circles) and reciprocal superlat-
ticeSL∗ (smaller filled circles). The solid (dashed) lines in the middle
show the boundaries of the first Brillouin zone for the reciprocal
fundamental lattice (reciprocal superlattice). The solid arrows in the
middle show the contour � → X → M → � of the spectrum plot in
Fig. 7.

The reciprocal superlattice SL∗ is shown in Fig. 6(b) in
comparison with the fundamental reciprocal lattice L∗. The
area of the first Brillouin zone of the superlattice SL∗ is P = 2
times smaller than the area of the first Brillouin zone of the
fundamental lattice L∗.

The shift vectors δp and wave vectors κp can be chosen as

δ1 = 0, δ2 = a1, (4.8a)

κ1 = 0, κ2 ≡ κ = (k1 + k2)/2. (4.8b)

One can check by direct substitution that Eqs. (3.42) and
(3.45) are satisfied with this choice of δp and κp.

Noting that e±ia1·κ = −1, one can simplify expressions for
the interaction tensors Ĝk(δpq) [see Eq. (3.58)] to

Ĝk(0) = 1
2 (F̂k + F̂k+κ ), (4.9a)

Ĝk(±a1) = 1
2 (F̂k − F̂k+κ ). (4.9b)

The tensors Ĝk(0) and Ĝk(±a1) describe, respectively, the
self-interaction of the superlattices (p = q = 1 or p = q = 2)
and the interaction between the different superlattices (p = 1,
q = 2 or p = 2, q = 1).

Using Eqs. (3.47) and (4.9), the effective fields B1,2 acting
on superlattices can be written as

B1,2 = ±Be − μ0MsF
(zz)
κ . (4.10)

Here, the first p = 1 superlattice has the equilibrium mag-
netization direction in the +z direction, i.e., μ1 = ez and
μ2 = −ez.

Then, the eigenvalue problem, Eq. (3.51), is simplified to

∓iωkmp = ez ×
(

γBp + ωM

2
[F̂k + F̂k+κ ]

)
mp

+ ωM

2
ez × [F̂k − F̂k+κ ]mq, (4.11)

where p,q = 1,2, q �= p. The characteristic equation of the
system (4.11) is, in fact, biquadratic, having two pairs of con-
jugated solutions (two physical branches and two conjugated
ones). In the most important case k = 0 (only such modes
can be excited by a spatially uniform microwave field) both
tensors F̂k and F̂k+κ become diagonal, which allows one to
derive a simple explicit expression for the FMR frequencies

k
m1 m2

µ1 µ2

k m1
m2

µ1 µ2

FIG. 7. (Color online) Spectra of collective spin waves of a
square array of cylindrical magnetic dots (aspect ratio is h/R = 5)
in a CAFM ground state without external magnetic field. The solid
(red) lines correspond to the lattice constant a = 2.5R, while the
blue dashed lines correspond to a = 5R. Insets: vector structures of
dynamical magnetization mp of the high-frequency (upper inset) and
low-frequency (lower inset) spin-wave branches.

of the square array in the CAFM ground state:

ωFMR = ωM

√(
F

(xx)
κ − F

(zz)
κ

)(
F

(xx)
0 − F

(zz)
κ

) ± γBe.

(4.12)

It should be noted that another possible antiferromag-
netic state—a stripe antiferromagnetic state (SAFM), μj =
(−1)jx ez—can be analyzed in an absolutely analogous way
[in particular, the FMR frequencies are given by the same
Eq. (4.12)]. The only substantial difference with the case of a
CAFM ground state is that for the SAFM state κ = k1/2.

The two (low-frequency and high-frequency) spin-wave
branches of the CAFM state calculated in the absence of
the bias magnetic field (Be = 0) are shown in Fig. 7. The
branches are degenerate at two points of the Brillouin zone
(� and X points). The degeneracy at � point (k = 0) is
connected with 90◦ rotational symmetry of the square lattice
and will be absent, for example, in an array having rectangular
lattice or elliptical shape of the dots. The degeneracy at the
X point (k = κ/2 = {π/(2a),π/(2a)}) is of a more general
nature. Using the general symmetry properties of the tensor
F̂k one can prove that F̂κ/2+κ = F̂−κ/2 = F̂κ/2. Then, the
system of equations (4.11) splits into two identical independent
equations. In other words, at this point the two sublattices do
not interact with each other. Thus, the degeneracy at k = κ/2
will be present in arrays having an arbitrary oblique lattice in
zero bias magnetic field. The application of a perpendicular
bias field Be, of course, removes the degeneracy of the
spin-wave branches, as evident from Eq. (4.12).

The lower spin-wave branch has a local minimum in the
M point (see Fig. 7). With decreasing aspect ratio h/R of the
dots or decreasing lattice constant a the spin-wave frequency
at this point monotonically decreases. When it reaches zero,
the CAFM state loses its stability, and the array switches to a
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collinear antiferromagnetic in-plane state (for details and exact
definitions, see Ref. 8).

The vector structure of the spin-wave modes in the CAFM
ground state is shown in the insets in Fig. 7. The magnetic
moments of the neighboring dots (having opposite directions
of the static magnetization) rotate in opposite directions
following the similar elliptic trajectories. For the low-
frequency branch, the major axis of the precession ellipse
is perpendicular to the wave vector k, whereas for the high-
frequency branch it changes from the parallel to k near the
center of the Brillouin zone to the perpendicular one near its
edges (see inset in Fig. 7). The sum of eigenvectors m1 and
m2 forms a linearly polarized wave with polarization parallel
(perpendicular) to k for the high-frequency (low-frequency)
spin-wave branch.

Similar to the situation in the FM ground state, the spin-
wave damping in the CAFM state is close to αGωk except for a
rather small region near the boundary of stability of the CAFM
state. Note, that, in general, due to the existence of off-diagonal
terms in Eq. (3.22) damping can cause splitting of frequencies
of the spin-wave modes at the degenerate points. However,
in the above-considered case the degenerate spin waves are
orthogonal to each other, and the off-diagonal damping terms
vanish, �ν,ν ′ = 0 for ν �= ν ′.

C. Multistability and possibility of dynamic control
of the array’s ground states

It was discussed above that FM and CAFM ground states
of the magnetic dot array remain stable within certain intervals
of variation of the dot aspect ratio h/R and the dimensionless
array lattice constant a/R and lose their stability outside
of these intervals. The stability diagram of ground states
calculated for an array of identical cylindrical dots coupled
by magnetodipole interaction is shown in Fig. 8. Obviously,
for infinitely large interdot separation a both FM and CAFM
ground states are stable if the dot aspect ratio exceeds a critical
value h/R > βcr ≈ 1.81, at which the ground states of a single
dot with an in-plane and out-of-plane magnetization have the
same energy.31 If the dot aspect ratio is smaller than this critical
value, the static magnetization of an individual dot will be
lying in the dot plane, and an “in-plane” ground state of a
dot array will be realized. When the interdot distance a/R is
decreasing the critical aspect ratio h/R increases for both FM
and CAFM ground states, but with a different slope, and, in the
case of a very dense array, where dots are practically touching
each other (a/R → 2), only the CAFM ground state remains
stable.

At the same time, there is a large interval of the dot’s
and array’s parameters where both FM and CAFM ground
states of the array are stable simultaneously. The properties
of spin-wave excitations in these two ground states of the
array are substantially different. In particular, these states have
different frequencies of the FMR, which may be important for
the practical applications of magnetic dot arrays.

Our estimations have shown that in a dot array having pa-
rameters that are not too close to the boundaries of the ground
state stability the difference between the FMR frequencies in
the FM and CAFM ground states can substantially exceed
the FMR linewidth in the dot material and, therefore, the

FIG. 8. (Color online) Regions of stability of different ground
states of a magnetic dot array in zero applied field: above the solid
blue line both the FM and the CAFM ground states are stable;
below the solid blue line, but above the dashed red line only the
CAFM ground state is stable; below the dashed red line both FM
and CAFM states are unstable and array switches to a state with
in-plane direction of the dot static magnetization. Black dot indicates
the point at which the absorption spectra shown in the inset were
calculated. Inset: normalized spin-wave absorption spectra of the
array of permalloy cylindrical dots in the FM (solid blue curve)
and CAFM (dashed red curve) ground states. Parameters: a/R = 4,
h/R = 5, ωM/2π ≈ 30 GHz, αG = 0.01, polarization of the exciting
microwave field—linear in the array’s plane.

different microwave absorption lines in the FM and CAFM
states could be observed experimentally. In particular, for
an array of permalloy dots with the aspect ratio h/R = 5,
interdot separation a/R = 4, static magnetization μ0Ms =
1.07 T (ωM/2π ≈ 30 GHz), and Gilbert damping parameter
αG = 0.01 the difference between the FMR frequencies in the
FM and CAFM ground states can be of the order of 0.1ωM

(about 3 GHz) when the FMR frequencies themselves are of
the order of (0.2–0.3) ωM and the FMR linewidth does not
exceed 50 MHz (see inset of Fig. 8). It is clear from Fig. 8 that
the microwave absorbtion spectra in the FM and CAFM states
of the array of Py dots have well-defined, distinct peaks that
are easy to detect in a standard microwave experiment.

It is important to note that in the parameter region where
both ground states of an array are stable it is possible to switch
the array between the ground states by applying an external
bias magnetic field. The switching to the ferromagnetic ground
state is trivial—one needs to apply a sufficiently large bias
field that is perpendicular to the dot plane. The switching
to the antiferromagnetic ground state is more complicated,
but the fact that the CAFM state corresponds to the global
energy minimum of the array, helps to understand how this
switching can be performed. If, for example, we would bring
the dot array existing in the FM state to an unstable state
with maximum energy (where all the dot magnetizations are
oriented in-plane) by applying a sufficiently large in-plane bias
magnetic field and then removing it, the most probable final
ground state of the array will be chessboard antiferromagnetic.
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The determination of the exact parameters (such as amplitude
and duration) of the in-plane magnetic field pulse that would
guarantee switching from the FM to the CAFM ground state
represents an independent nontrivial problem that is beyond
the scope of the current work.

D. Localized spin-wave modes caused by a local defect
in a periodic array of magnetic dots

The above-discussed ideal periodic ground states of a
magnetic dot array cannot be realized in practice, since, first
of all, any real experimental array is finite in size. Also, many

(a)

(b)

(c)

FIG. 9. (Color online) Spin-wave absorption spectra (a) and mode
structure [(b) and (c)] in a magnetic dot array in a FM ground
state having one defect per 11 × 11 dots. Dot aspect ratio h/R = 5;
lattice constant a/R = 4. (a) Solid curve—absorption spectrum for
the microwave signal having right in-plane polarization [i.e., be =
(b cos ωt,b sin ωt,0)]. The main peak at ω = 0.095ωM corresponds
to the FMR frequency of the array. Dashed curve—absorption
spectrum for the signal having left in-plane polarization. The peak at
ω = 0.4ωM corresponds to the localized defect spin-wave mode. Gray
area—region of existence of spin-wave modes in a perfect (without
defect) dot array. (b),(c) Spatial profiles of the localized (ω = 0.4ωM )
and FMR (ω = 0.095ωM ) spin-wave modes in the dot array with a
defect.

types of local defects, such as a domain wall, presence in the
array of a dot having a different size, or an absence of the
dot at one of the regular dot locations can exist in the array.
However, if the density of local defects is sufficiently small,
the global properties of the array may stay almost the same
as in the perfect periodic case. In such a case of relatively
“rare” defects one may expect only a weak change in the main
spin-wave spectra of the array compared to the spectra of a
“rigorously periodic” array, but also, the appearance in this
spectrum of novel localized spin-wave modes associated with
the existence of a particular defect.

To illustrate this idea and, also, to demonstrate the power
of the above-developed general analytic approach we will
consider below one particular type of a local defect, namely,
when one of the dots in the array existing in the FM ground
state has the magnetization direction that is opposite to the
magnetization direction of all the other dots in the array. In
other words, the eigenvalue problem, Eq. (3.51), will be solved
with all the dot magnetizations except one directed as μj = ez,
and the remaining “defective” dot has static magnetization
μjd

= −ez. To avoid the influence of the edge effects, we
will use the periodic boundary condition in the array (so,
formally, a periodic ground state with a periodic local defect
will be considered). For a sufficiently large distance between
the defects (�10 a for typical dot parameters) the interaction
between them is negligible and this approach accurately
imitates a single isolated defect in an infinite array.

The spin-wave absorption spectra and the mode structure in
a dot array in the FM ground state with an isolated defect are
shown in Fig. 9. As one can see from Fig. 9, the presence of
an isolated defect (dot with opposite magnetization direction)
in the FM dot array only weakly changes the spectrum of
the fundamental spin-wave modes in the array: the mode’s
frequencies simply increase slightly. These changes are mainly
caused by the static demagnetization field of the defect. Also,
the defect creates a certain spatial nonuniformity in the profiles
of the fundamental modes [an example of such a profile for
the mode with k = 0 is shown in Fig. 9(c)]. Due to this defect-
related spatial nonuniformity the uniform spin waves with
nonzero wave vectors could be excited by a uniform microwave
field with right polarization (the natural polarization for the
state without defects).

Obviously, the magnetization of a defect dot precesses in
the direction which is opposite to the precession direction
of all the other dots. Thus, the eigenmode associated with
the defect can be effectively excited by the left-polarized
microwave field. This defect mode is strongly localized near
the defect, and the amplitude of this mode (mostly related to the
amplitude of precession of magnetization |mj | in the defect
dot) decreases exponentially with the distance from the defect
[see Fig. 9(b)]. Because of the larger value of the internal
field near the defect the frequency of the defect mode lies
higher than the main (fundamental) spectrum. The ratio of the
intensities of the defect mode (excited by the left-polarized
microwave field) and the fundamental mode (excited the by
right-polarized microwave field) is approximately equal to the
relative density of defects in the dot array. Also, the spatially
uniform left-polarized microwave field excites modes with
k �= 0 with rather low amplitudes, because the overlap integral
between the field and the profiles of these modes is small
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and the polarization of the modes is elliptical. Obviously, the
fundamental mode with k = 0 and right circular polarization
cannot be excited by such a microwave field.

Thus, if the external microwave signal is spatially uniform
and has right circular polarization the absorption properties
of the dot array in respect to this signal are not substantially
influenced by the presence of a localized defect. At the same
time, measurements of the absorption spectrum for the left-
polarized microwave magnetic field can be used as an effective
characterization tool to find the density and types of different
defects in a dot array.

V. CONCLUSIONS

The general formalism developed in our current paper
allows one to investigate theoretically linear magnetization
dynamics in an arbitrary array of magnetic dots coupled
by magnetodipolar interaction. In the calculations presented
above we restricted ourselves to the case of identical magnetic
dots and used a macrospin approximation for the magnetiza-
tion of individual dots. Thus, our calculations cover only the
collective spin-wave modes of the array formed by spatially
uniform modes of the individual dots when these dots have
spatially uniform static magnetization (ground state). Both
these restrictions can be relaxed by using the exact spatially
nonuniform profile of spin-wave modes of individual dots in
calculations of the demagnetization tensor and by introducing
more than one effective demagnetization tensor N̂ .

Since the calculations of the spin-wave spectra in finite and
infinite periodic arrays of magnetic dots are formally identical,
the properties of resulting collective spin-wave modes of the
array are similar. In the latter case of a spatially periodic array
of magnetic dots we find the collective excitations of the dot
sublattices, and the role of the mutual demagnetization tensor
N̂(r) is played by the tensor F̂k. These tensors contain all the
necessary information about the array’s geometry. In a general
case the spectrum and the profiles of the spin-wave modes of
the array can be found from a standard eigenvalue problem.

A perturbation theory for the spin waves in the dot array was
also developed, and this theory allows one to investigate such

practically important phenomena as damping of spin-wave
modes and excitation of these modes by an external microwave
field. It was shown, that, in general case, the influence of
both dissipation and the external microwave field leads to the
interaction between different spin-wave modes of the array. In
particular, these perturbations could lead to the hybridization
and frequency splitting of frequency-degenerate modes. The
application of the perturbation theory also demonstrated that
the dissipation parameter of a particular mode is, usually,
proportional to the mode ellipticity, and is not exactly equal to
the Gilbert parameter αGω.

It has also been demonstrated that the spin-wave spectra in
the dot arrays existing in different initial ground states (e.g.,
FM and CAFM) can be substantially different. In particular,
such practically important characteristics of the array as the
FMR frequency and group velocity of spin waves having
small wave vectors k � π/a are significantly different for
FM and CAFM ground states of the array. In a wide range
of the array’s geometric parameters the difference in FMR
frequencies significantly exceeds the FMR linewidth in the
magnetic material of the dot. This important property of
the magnetic dot arrays opens the way for development
of dynamically reconfigurable magnonic crystals based on
magnetic dot arrays, where the ground state, and, therefore, the
microwave properties could be rapidly switched by application
of a pulse of an external bias magnetic field. It has also been
demonstrated that global microwave properties of magnetic
dot arrays are rather robust and the presence of isolated defects
in the array cannot significantly change the characteristics of
fundamental spin-wave modes of the array.
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