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Tuning magnetic relaxation by oblique deposition
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Oblique deposition conditions of Si were used to create a periodic compositional defect matrix in
Fe3Si/MgO(001) thin films. The modified growth conditions provoke shadow effects, which lead to a two-magnon
scattering channel with twofold symmetry in the film plane. Its axis is controlled by the sample orientation
with respect to the Si evaporator. Angular-dependent ferromagnetic resonance data reveal an enhanced
magnetic-relaxation rate induced by the dipolar interactions originating from these artificially created defect
structures, while magnetic anisotropy is shown to be influenced negligibly. Experimental results agree well with
the developed theoretical approach allowing one to distinguish different relaxation channels.
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I. INTRODUCTION

The control of spin relaxation is essential for spintronic and
spin-torque applications, since the relaxation rate determines
the speed at which the magnetization can be reversed. The
ability to tailor magnetic relaxation offers opportunities to
adjust the stability of magnetization under the influence of rf
fields and to tune the critical current for magnetic reversal in
spin-torque devices.1 The spin relaxation is usually discussed
in terms of intrinsic and extrinsic processes. The intrinsic
ones are referred to as Gilbert damping that can be adjusted
by changing the spin-orbit coupling (e.g., by modifying
the ferromagnetic material using nonmagnetic dopants).2 In
principle, the Gilbert damping is anisotropic due to the
spin-orbit interaction and has to be treated as a tensorial
quantity.3 However, in 3d-based metallic ferromagnets, this
anisotropy has been shown to average out.4 Consequently, the
Gilbert parameter acts as an adjustable, isotropic contribution
to the overall relaxation. To tailor the overall relaxation
with respect to relaxation intensity and anisotropic behavior
(i.e., preferential directions), extrinsic processes need to be
considered. In thin films, the latter are dominated by the
two-magnon scattering processes.5 Here, the uniform magnons
with wave vector k = 0 and energy h̄ω can be scattered by an
effective scattering field into degenerate final-state magnons
having the same energy h̄ω, but a nonzero wave vector k �= 0.
This process opens up an additional relaxation channel for the
ferromagnetic spin system. It has been shown that the effective
scattering field can be created by magnetic roughness6 or
by defects at film interfaces.7–11 For spin-torque applications,
sharp, epitaxial interfaces are usually essential. Therefore, a
method of tailoring the two-magnon process by modifying
the film volume, leaving the interfaces intact, is a great
advantage.

In this paper, we use oblique angle deposition of Si to
incorporate defects within the volume of Fe3Si/MgO(001)
epitaxial thin films. The effective scattering field, which
results directly from the defect matrix, induces a two-magnon
scattering channel with twofold symmetry, whose preferential
direction can be chosen by the deposition angle during film
growth and whose scattering rate � ∼ 0.2 GHz is comparable

to the Gilbert damping in the X band. This two-magnon
scattering process is likely to be of fundamental interest in the
framework of tailoring spin relaxation for applications (e.g., in
spin valves) and can be well described by the theory presented
below.

The Fe3Si alloy is a promising material for spintronics
and spin-torque applications due to its high spin polarization
(43% at T = 0 K)12 and small Gilbert parameter, G ∼
0.05 GHz.13 In epitaxial Fe3Si/MgO(001) thin films grown
by molecular beam epitaxy (MBE), two-magnon scattering
processes are natively present. In the X band, their intensity
is of the same order of magnitude as the Gilbert damping.
In these films, the two-magnon scattering exhibits fourfold
symmetry in the film plane with its maxima parallel to the
〈100〉Fe3Si principal crystallographic directions. Its origin has
been identified as resulting from crystalline defects of the
alloy.13 The mechanism that leads to two-magnon scattering,
however, has not been explained so far.11 In this paper, we
have extended the theory of Arias and Mills7 to describe the
in-plane dependence of the scattering process that in turn is
reflected by anisotropic angular dependence of the linewidth
of the ferromagnetic resonance (FMR) signal. We use the
extension to clearly extract and quantitatively fit the fourfold
two-magnon contribution. We will show that the additional
twofold contribution can be controlled by creating chemical
disorder with a symmetry axis along any given in-plane
direction and thus independently of the fourfold contribution.

II. THEORY

Following Arias and Mills formalism7,14,15 based on the
linear response theory, it is possible to construct a generalized
dynamic susceptibility, whose denominator includes informa-
tion about the FMR frequency and FMR linewidth. This theory
includes intrinsic and extrinsic damping mechanisms, and the
FMR linewidth associated with both damping mechanisms can
be written as

�B = �Bintr + �Bextr = αω

γ�
+ �

γ�
. (1)
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Note that to obtain the peak-to-peak linewidth, we need to
multiply �B by a factor 2/

√
3. In the above equation, α is the

dimensionless Gilbert damping parameter (intrinsic damping),
� is the two-magnon scattering rate (extrinsic damping), γ is
the spectroscopic splitting factor including the g factor via γ =
μBg/h̄, ω is the microwave frequency, and � is the dragging
function generally given by

� = 1

γ 2[Wx + Wy]

d
(
ω2

FMR

)
dBext

. (2)

The dragging of the magnetization has to be taken into account
due to the fact that in the FMR experiment, the microwave
frequency is fixed as the eigenfrequency of the microwave
cavity, while the external magnetic field Bext is swept, and the
vectors of the magnetization and external magnetic field may
be nonparallel. In our case, the resonance frequency obeys
the relation ω2

FMR = γ 2WxWy , and, therefore, the dragging
function becomes

� = 1

Wx + Wy

(
dWx

dBext
Wy + dWy

dBext
Wx

)
, (3)

where Wx and Wy are the stiffness fields that are for the system
considered in this paper:

Wx = Bext cos(φ − φB) + Buniax cos[2(φuniax − φ)]

+Bcryst cos[4(φ〈100〉 − φ)] (4)

and

Wy = Bext cos(φ − φB) + B⊥ + Buniax cos2(φuniax − φ)

+Bcryst{cos[4(φ〈100〉 − φ)] + 3}/4. (5)

Here Buniax, Bcryst, and B⊥ are the uniaxial, the magnetocrys-
talline, and the effective perpendicular anisotropy fields; the
latter, sometimes referred to as B⊥ = μ0Meff , represents the
shape anisotropy (depending on the saturation magnetization
via μ0Ms) and out-of-plane anisotropy fields (including the
surface anisotropy contribution). φ〈100〉 is the 〈100〉 axis of
Fe3Si, and φuniax is the angle of hard axis of the uniaxial
anisotropy in the film plane. φ represents the direction of
the magnetization. Since in Fe3Si the in-plane anisotropy is
relatively weak, this direction corresponds to the direction of
the external magnetic field, φ ≈ φB , to a good approximation.

While, in Fe3Si, the Gilbert damping is isotropic,13 the
extrinsic two-magnon scattering process is anisotropic in the
film plane. The Arias-Mills theory7,14,15 allows one to include
these extrinsic relaxation processes, represented by � in
Eq. (1), which depend mainly on the specific form of the array
of defects in the film, since the latter mediates the scattering of
the uniform magnons into the nonuniform final-state magnons.
In this paper, we consider two kinds of defects structures: (i)
The first is an array of crystalline defects building rectangular
structures that are randomly distributed over the film plane
and oriented parallel to the in-plane principal crystallographic
axes of Fe3Si (〈100〉 and 〈110〉). To model the scattering field
arising from these defects, the theory from Refs. 7 and 14 that
considers rectangular “bump” defects is employed and further
developed. (ii) The second type is an array of defects in the
film plane in the form of periodic stripes with slightly different
saturation magnetization [Fig. 1(a)], causing dipolar fields
among the defects to induce a two-magnon scattering channel.

Si

FIG. 1. (Color online) (a) Sketch of the film deposition geom-
etry. Oblique deposition of Si causes stripelike defects with the
symmetry axis perpendicular to the projection of the Si flow β.
(b)–(d) 40 nm Fe3Si/MgO(001) FMR data at 9.3 GHz. (b) In-plane
angular dependence of FMR resonance fields, revealing the fourfold
crystalline anisotropy K

||
4 and the small uniaxial anisotropy K

||
2 .

(c) FMR linewidth: The native fourfold contribution �fourfold caused
by crystalline defects is superimposed by the twofold contribution
�twofold. The maximum of the latter one is parallel to the hard axis of
the uniaxial anisotropy and corresponds to the in-plane projection of
the Si flow: φtwofold = φuniax = β. (d) Linewidth of the sample no. 1,
for which the axis β was set close to the 〈100〉 direction.

To model such dipolar fields, a stripelike stepped modulation
of the film surface is taken as the basis of the calculations. We
consider the dipolar fields calculated within this picture to be
comparable to the fields emerging from defects in the form of
variation of the chemical composition constrained to the film
volume.
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We will show that the two-magnon scattering channel
originating from these defect structures differs substantially
when the applied field is rotated within the film plane. The
derivation of the contributions to the linewidth of these
relaxation channels is too lengthy to detail here and will be
presented in a forthcoming paper.16

For the first kind of defect structure, the linewidth associated
to the array of randomly located defects of rectangular shape
(fourfold symmetry) can be obtained by calculating the energy
difference attributed to the defect array with respect to the spin-
wave Hamiltonian of the perfect film. We obtain the scattering
rate of the two-magnon scattering7,14,15 as

�fourfold = 8γ b2B2
defpac(gxWy + gyWx)2φc

πD(Wx + Wy)2
, (6)

gx = (a−1 − c−1) cos[2(ζ − φ)], (7)

gy = (a−1 − c−1) cos2(ζ − φ) − a−1, (8)

φc = arcsin
√

Wx/Wy. (9)

Here, p is the fraction of the surface covered by defects
with effective lateral dimensions a and c.7,14,15 D is the
exchange stiffness, which has been evaluated from spin-wave
resonance measurements at high frequencies, b is the effective
height of the defects, and Bdef is the interface anisotropy
field of the defects. This mechanism results in an in-plane
angular dependence of the relaxation channel with a fourfold
symmetry. Since there are two sets of rectangular defects,
oriented along 〈100〉 and 〈110〉 (these axes are denoted as
ζ ), respectively, two relaxation channels, both with fourfold
symmetry but rotated by 45◦ with respect to each other, occur.
Their superposition reveals a fourfold symmetry again. The
overall two-magnon scattering rate is parameterized by the
maximal scattering rate of these relaxation channels, termed
�max

〈100〉 and �max
〈110〉.

For the second kind of defect structure, the theoretical
analysis of the linewidth associated to the relaxation channel
induced by the dipolar fields among stripelike defects is rather
extensive and will be presented elsewhere.16 Basically, we
write the magnetization of the stripe defects in the following
way:

Mz′ (z′) = Ms cos(φ − φtwofold)
∞∑

n=−∞
�

(
z′ −

{
na0 − w

2

})

×�

({
na0 + w

2

}
− z′

)
, (10)

where z′ is the normal to the stripes within the film plane, and
φtwofold denotes the angle of this axis, therefore, (φ − φtwofold)
is the in-plane angle between the magnetization and z′. Also,
a0 is the periodicity, w is the width, and h is the height of the
stripes, and �(x) represents the Heaviside θ function, which
is equal to 0 for x < 0 and 1 for x > 0. The next step is to
calculate the dipole field produced by the above magnetization,
which reads

hz′(z′) = −4hg0Ms cos(φ − φtwofold)

×
∞∑

n=1

sin

(
ng0w

2

)
cos(ng0z

′)e−ng0|d−y|, (11)

where g0 = 2π/a0, d is the film thickness, and y is the
coordinate normal to the film. Now one can obtain the dipole
energy associated to the stripes and write down the matrix
elements of the two-magnon scattering matrix,7,14 that is

Vxx(k′,k) = −hg0 cos2(φ − φtwofold)
∞∑

n=1

sin

(
ng0w

2

)

× 1 − e−ng0d

ng0d
(δk′,k+gn

+ δk′,k−gn
), (12)

where gn = ng0ẑ, and k is a wave vector confined in the plane
of the film. The remaining matrix elements are Vyy(k′,k) =
Vxx(k′,k), and Vxy(k′,k) = Vyx(k′,k) = 0 . The next task is
to work out the elements of the proper self-energy. We begin
with Eqs. (36) and (37) of Ref. 7 and then generate an effective
Dyson-like equation to the second order in Vαβ . This process
allows us to obtain a complete set of response functions
from which we can extract information about the two-magnon
linewidth and frequency shift with origin in the stray fields
produced at the edges of the stripes. As explained in detail
in a forthcoming paper,16 the imaginary part of the response
function Sxx is given by

SIm
xx = γMs

γWy(�0 + F Im) − αω
(
ω2

FMR − ω2
)

(
ω2

FMR − ω2
)2 + (�0 + F Im)2

, (13)

where �0 = αωγ (Wx + Wy) represents the Gilbert damping
contribution, and

F Im = 2g2
0h

2γ 2M2
s cos4(φ − φtwofold)

×
∞∑

n=1

sin2

(
n
g0w

2

) (
1 − e−ng0d

ng0d

)2

×
[
γ 2

(
W 2

x + W 2
y

) + 2ω2
]
�(gn) − 2[ω2(gn) − ω2]�0

[ω2(gn) − ω2]2 + �(gn)2

is the contribution from the stripe defects. Here,

�(k) = αωγ

[
Wx + Wy

− 4πMs

(
1 − 1 − e−kd

kd

)
cos2 φk + 2Dk2

]
, (14)

where φk is the angle between the wave vector and the magne-
tization. Finally, the two-magnon scattering rate activated by
the dipolar fields emerging from stripelike defects is given by

�twofold = F Im

γ (Wx + Wy)
≈ �max

twofold cos4(φ − φtwofold), (15)

since the function F Im defined above is approximately pro-
portional to cos4(φ − φtwofold). In the following, the scattering
rate is parameterized by its intensity �max

twofold and the axis of
maximal scattering rate φtwofold.

III. EXPERIMENT

In order to open up an additional spin-relaxation channel,
we modified the growth conditions by tilting the Si evaporator
in the MBE chamber, whereas the orientation of the Fe evapo-
rator was left unchanged. Thus, the Si flow enters the substrate
plane under an oblique angle of approximately 15◦ with respect

014420-3



I. BARSUKOV et al. PHYSICAL REVIEW B 85, 014420 (2012)

to the film normal. The projection of the Si flow on the film
plane is referred to as axis β in the following. Such growth
conditions are known to provoke so-called shadow effects.17–21

Although Fe3Si grows on MgO(001) without forming distinct
islands from a film thickness of 7 ML,22 the film surface still
exhibits roughness on the atomic scale during film growth,
which acts as a barrier for the oblique deposition of Si. This in
turn leads to a slight, spatial variation of Si concentration,
forming a defect matrix of varying chemical composition,
which has a pseudorandom distribution but nevertheless a
twofold, stripelike symmetry. Despite the modified growth
process, our structural investigation by means of conversion
electron Mössbauer spectroscopy (CEMS) revealed no change
of the prevalence of the D03 structure—in particular, the short-
range ordering parameters are similar to those of the films
grown by nonoblique deposition. Several Fe3Si/MgO(001)
films were grown as described in Ref. 13, and the in-plane
direction of the Si flow was controlled.

Furthermore, to evaluate the structural consequences of the
oblique deposition, we conducted investigations on the sample
morphology. The topography of the MgO(001) substrate prior
to deposition, as well as of the film itself, was evaluated
by means of atomic force microscopy (AFM), which did
not show any anisotropy of these interfaces. By means of a
focused ion beam (FIB), cross-section lamellae parallel and
perpendicular to the projection of the Si flow were produced.
They were further studied by high-resolution transmission
electron microscopy (HRTEM) and energy-dispersive x-ray
spectroscopy (EDX). The results of these measurements are
discussed below in relation to the magnetic investigations.

IV. RESULTS AND DISCUSSION

Using the saturation magnetization Ms = 0.96(8) ×
106 A/m measured by SQUID magnetometry,13 the in-plane
angular dependence of the FMR fields, measured at 9.3 GHz
and shown in Fig. 1(b), has been fitted.23 The effective
perpendicular anisotropy field is B⊥ ≈ 1 T. The in-plane
magnetocrystalline anisotropy constant is found to be K

||
4 ≈

(3.3–4.3) ×103 J/m3. The in-plane uniaxial anisotropy con-
stant is small [compare the twofold and fourfold contributions
in Fig. 1(b)] and amounts to K

||
2 ≈ (0.1–0.5) ×103 J/m3.

Except for this small uniaxial anisotropy, a comparison
with anisotropy values of the samples grown by nonoblique
deposition reveals that the modified growth conditions do not
considerably change the static magnetic parameters. However,
there is a correlation of the in-plane uniaxial anisotropy K

||
2 and

the sample preparation. The hard axis φuniax of K
||
2 is aligned

parallel to the in-plane projection of the Si flow β. Indeed,
stripelike defects caused by the shadow effect are known to
induce such magnetic anisotropy in thin films by means of the
dipolar interactions among the defects.21,24 The low value of
K

||
2 suggests a low density of these defects.
The FMR linewidth allows one to access the relaxation

processes in the sample. As shown in Fig. 1(c), the in-plane
angular dependence exhibits a behavior remarkably different
from that of a regular film grown with a nontilted Si evaporator
shown in Ref. 13. While it has the same fourfold symmetry
typical for Fe3Si/MgO(001) films, it also is superimposed by

an additional twofold contribution. The latter is significantly
large, being of the same order of magnitude as the fourfold
contribution and the Gilbert contribution.

For a quantitative evaluation of the relaxation pro-
cesses, several contributions to the FMR linewidth must be
considered.5,13 First, any line broadening due to the finite
conductivity, exchange-conductivity effect, and nonanalytical
line broadening caused by surface anisotropy has been calcu-
lated using the theory of Frait and Fraitová25 and found to be
negligible.13 Therefore, the linewidth can be referred to as

�B = �Binh + �Bintr + �Bextr. (16)

While �Bintr and �Bextr have been introduced in the theoretical
section [Eq. (1)], the inhomogeneous line broadening �Binh

needs to be accounted for due to the spatial variation of internal
fields in the real samples that leads to a superposition of
slightly shifted absorption peaks. In Fe3Si/MgO(001) epitaxial
films, this contribution is dominated by a slight in-plane
misalignment of the crystallites’ axes in the film plane. As
explained in Ref. 13, this contribution is proportional to the first
derivative of the FMR fields with respect to the in-plane angle
∂Bres/∂φB and to an effective misalignment of the crystallites
�φinh. This contribution is small (<0.5 × 10−3 T) and can be
separated from other contributions due to its specific angular
dependence. The values of �φinh < 0.5◦ lie in the same range
as those of the samples grown by nonoblique deposition. We
conclude that the inhomogeneity of the sample is not affected
by the modified growth conditions with the oblique deposition
angle used here.

Due to the anisotropy fields, the direction of magnetization
and of the external field may differ. This causes dragging
effects, which result in an increase of the linewidth. To account
for these effects, a factor of 1/�15 must be applied to the
intrinsic and extrinsic damping contributions [see Eq. (1)]. The
dragging function � according to Eq. (3) has been calculated;
it is very close to 1 for the samples discussed in this paper, so
that the contribution of the dragging effects to the linewidth is
smaller than 1% and therefore neglected in what follows.

As discussed above, the contribution from the Gilbert
damping αω/γ is isotropic.4 In particular for Fe3Si/MgO(001)
thin films, this isotropy has been proven experimentally.13

To fit the experimental linewidth, we use the contributions
of the inhomogeneous line broadening, the Gilbert damping,
and both two-magnon relaxation channels �fourfold along 〈100〉
and 〈110〉 and �twofold described in the theoretical section. As
shown in Figs. 1(c) and 1(d) for two different samples, the
linewidth can be fitted well. The in-plane angular dependences
of the different contributions to the linewidth are characteristic
and can therefore be separated. To verify the results, however,
additional in-plane angle-dependent FMR measurements at
higher frequencies have been performed, and the data were
fitted with the same set of parameters (similar to the procedure
described in Ref. 13). We obtain the parameters �max

〈100〉, �max
〈110〉,

�max
twofold, and φtwofold, which are collected in Table I. We find no

significant change of the Gilbert parameter due to the modified
growth conditions, which is in accordance with the fact that
the short-range order measured by CEMS is not affected by
the oblique deposition.
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TABLE I. Static and dynamic magnetic parameters (at X band) of Fe3Si/MgO(001) prepared under different growth conditions. The error
bar amounts to <10% of the anisotropy constants, ∼30% of �max

ζ , <10% of �max
twofold, and <5◦ of φtwofold.

Sample, Si deposition, and K||
4 K||

2 �max
〈100〉 �max

〈110〉 �max
twofold φtwofold

film thickness (103 J/m3) (103 J/m3) (107 Hz) (107 Hz) (107 Hz) (deg)

No. 1 oblique, 40 nm 4.0 0.2 51 13 20 49
No. 2 oblique, 40 nm 3.8 0.5 58 30 33 74
No. 3 oblique, 40 nm, not annealed 2.7 0.25 269 95 33 74
No. 4 oblique, 10 nm 4.3 <0.1 52 14 10 48
No. 5 normal, 40 nm (from Ref. 13) 3.3 53 26

As shown in Table I, the modified growth conditions also
do not affect the fourfold two-magnon scattering process
�fourfold. Its intensity is comparable with results presented in
Ref. 13. A comparison of the results of samples no. 1 and
no. 3 (see Table I) reveals that despite the modified growth,
the �fourfold intensity—correlating to the number of crystalline
defects—can be decreased by means of sample annealing.

Resorting to the elementary mechanisms provoking two-
magnon scattering in the framework of the theory of Arias
and Mills,7 the twofold in-plane scattering channel can only be
achieved by means of dipolar interactions among the scattering
centers. Such interactions are likely to be present due to the
shadow effects in films prepared by oblique deposition. The
uniaxial anisotropy K

||
2 supports this assumption due to its

dipolar origin.21 According to previous works on the structural
characterization of shadow effects,20,21 a periodic array of
stripe defects, such that two-magnon scattering is activated
by dipole fields with origin on the stripe edges,16 has been
considered. The axis of maximal scattering intensity is parallel
to the hard axis of the uniaxial anisotropy, φtwofold = φuniax,
and, in turn, is parallel to the in-plane projection of the Si flow
β, which shows a good agreement of theory and experiment.

The lateral scanning electron microscopy (SEM)-EDX
studies on the large length scale reveal that the relative variation
of chemical composition cannot be larger than 5%. In contrast
to the fact that annealing heals the crystalline defects and re-
duces the fourfold two-magnon scattering �fourfold, it seems not
to affect the twofold two-magnon scattering �twofold (compare
sample no. 3 with no. 1 or no. 2 in Table I). The distance
between the stripelike defects has to be much larger than the
interdiffusion length; for the latter, we can assume a value of at
least several tens of superlattices (0.567 nm) of Fe3Si. Also, the
HRTEM and EDX measurements on cross-section lamellae
did not show position-dependent variation of the crystalline
structure or variation of the chemical composition parallel and
perpendicular to the axis β on the length scale of 150 nm. It is
remarkable that the low density of stripelike defects causes
a negligible uniaxial anisotropy and does not affect other
static magnetic parameters, but induces a significantly large

twofold two-magnon scattering. This fact, we conclude, can
be of interest for application purposes. The reason must lie
in the periodicity of the defects. We calculated the optimal
value for averaged distances between the stripes to be on
the order of magnitude of a hundred nanometers. Note that a
further increase of the deposition angle would lead to stronger
shadow effects, which then would be easily detectable, as
studies in Refs. 20 and 21 show. However, in this case, several
strongly unsolicited effects would appear, such as increased
inhomogeneity of the sample, surface roughness, large uniaxial
anisotropy, and additional damping contributions.

V. CONCLUSIONS

In conclusion, we show that after explaining the nature of
the fourfold two-magnon process emerging from crystalline
defects, an additional twofold two-magnon process has been
shown to be related to the oblique deposition of Si. We identify
the dipolar interaction among a twofold low-density defect
matrix to be the mechanism for this scattering channel. Its axis
of maximal intensity is not associated with crystallographic
directions and can be chosen deliberately by orientation of
the sample with respect to the Si evaporator. The scattering
channel originates from defects in the film volume. The
method of oblique deposition may be applicable to other
systems consisting of two elements or more and can become of
interest for application insofar as the crystalline quality and the
static magnetic parameters are not influenced by the modified
growth conditions and, furthermore, the film interfaces are not
involved in this procedure.10
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4J. Seib, D. Steiauf, and M. Fähnle, Phys. Rev. B 79, 092418 (2009).

014420-5

http://dx.doi.org/10.1063/1.1781769
http://dx.doi.org/10.1103/PhysRevLett.98.117601
http://dx.doi.org/10.1103/PhysRevLett.98.117601
http://dx.doi.org/10.1103/PhysRevB.73.184427
http://dx.doi.org/10.1103/PhysRevB.79.092418


I. BARSUKOV et al. PHYSICAL REVIEW B 85, 014420 (2012)

5C. W. Haas and H. B. Callen, in Magnetism, Volume I, edited by
G. T. Rado and H. Suhl (Academic, New York, 1963).

6B. Hillebrands (private communication).
7R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).
8A. Azevedo, A. B. Oliveira, F. M. de Aguiar, and S. M. Rezende,
Phys. Rev. B 62, 5331 (2000).

9R. D. McMichael, D. J. Twisselmann, J. E. Bonevich, A. P. Chen,
and W. F. Egelhoff Jr., J. Appl. Phys. 91, 8647 (2002).

10G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004).
11I. Barsukov, R. Meckenstock, J. Lindner, M. Möller, C. Hassel,
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