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Spin accumulation at ferromagnet/nonmagnetic material interfaces
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Many proposed and realized spintronic devices involve spin injection and accumulation at an interface between
a ferromagnet and a nonmagnetic material. We examine the electric field, voltage profile, charge distribution, spin
fluxes, and spin accumulation at such an interface. We include the effects of both screening and spin scattering.
We also include both the spin-dependent chemical potentials μ↑,↓ and the effective magnetic field �H ∗ that is zero
in equilibrium. For a Co/Cu interface, we find that the spin accumulation in the copper is an order of magnitude
larger when both chemical potential and effective magnetic field are included. We also show that screening
contributes to the spin accumulation in the ferromagnet; this contribution can be significant.
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I. INTRODUCTION

Although electronic current has been studied since the early
19th century, spin current has been studied only much more
recently. In particular, spin transport across interfaces between
metals and ferromagnets has been an important topic since the
discovery of giant magnetoresistance (GMR),1,2 the principle
behind the predominant method of reading stored data. The
magnetic read head of a hard drive contains a thin nonmagnetic
layer sandwiched between two ferromagnetic layers.

A theory for spin current and electrical potential at a
metal/ferromagnet interface is given by Johnson and Silsbee3

(JS); an appendix of that work is devoted to electric currents
crossing such interfaces, and it considers the effect of the
interfaces on spin fluxes and on electrical voltage. Detailed
theories for electrical currents crossing metal/ferromagnet
multilayers (that is, series of interfaces) are given by Valet
and Fert4 (VF), which includes solutions for the electric
field and spin fluxes, and by Hershfield and Zhao5 (HZ).
However, none of these theories considers semiconductors,
and each makes a different assumption, not made by the
present work, about some part of the magnetoelectrochemical
potential (first defined by JS and discussed in detail below).
JS neglect the chemical potentials μ↑ and μ↓, HZ neglect the
effective magnetic field6 �H ∗ (discussed below), and VF take
the chemical potential to be spin independent.

The present work revisits the problem of spin transport
across the interface between a nonmagnetic material (NM)
and a ferromagnet (FM), and calculates the electric field,
voltage, charge density, spin fluxes, and spin accumulation.
The results also apply to FM/FM and NM/NM interfaces. We
show that inclusion of both �H ∗ and μ↑ and μ↓ are necessary
to predict the spin accumulation near the interface. For copper,
neglecting either contribution decreases the spin accumulation
by about a factor of 10. Further, this work includes the surface
screening mode (called the charge mode by HZ), neglected by
JS and VF, and ultimately neglected by HZ, which for large
screening lengths (semiconductors) plays an important role
in determining the spin current and the spin accumulation.
Including the screening mode permits the electric field and
potential to be continuous across the interface. Previous works
allow the field and potential to be discontinuous. Reference 7,
which extends VF by calculating the spin accumulation when

the nonmagnetic material is semiconducting, also neglects
screening.8

Section II briefly discusses the equations that govern spin-
dependent transport in solids. Section III finds the deviations
from equilibrium due to the screening mode, the spin-diffusion
mode, and a bulk response associated with the applied electric
current. Section IV discusses the bulk and boundary conditions
at an isolated interface. Section V compares the assumptions
of the present work to those of previous theories. Section VI
gives the electric field, voltage, charge density, spin fluxes,
and spin accumulation near a Co/Cu interface. Section VII
provides a brief summary and conclusion. Appendix A shows
detailed calculations for the spin-diffusion mode, the results
of which are given in Sec. III, and Appendix B explicitly gives
the boundary conditions discussed in Sec. IV.

II. TRANSPORT EQUATIONS

We use superscripts I and II or NM and FM to denote
adjacent materials. When developing bulk equations that apply
separately within each material, we omit the superscript, and
reintroduce it when discussing materials in contact (or when
discussing properties specific to a FM or a NM).

A. Fundamental relations

Within each material, the number and current densities n↑,↓
and j↑,↓i

are related by9,10

∂tn↑ + ∂ij↑i
= S, ∂tn↓ + ∂ij↓i

= −S. (1)

Here S is the rate at which down-spins flip to up-spins. We
consider the total electric current density J = −ejtot to be a
known uniform constant, and continuous across an interface.
For current along x across an isolated interface (in the yz

plane) between materials I and II, we have jtot = j
(I)
↑x

+ j
(I)
↓x

=
j

(II)
↑x

+ j
(II)
↓x

.

We take M̂ , the direction of the magnetization �M , to be
fixed. Since the electron g factor is negative, for majority
carriers defined to have up-spins, then M̂ is aligned with the
down-spins.
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We take μ̄ to be the magnetoelectrochemical potential,
defined for up- and down-spin electrons as3,10

μ̄↑ = μ↑ − eφ + gμB

2
μ0 �H ∗ · M̂, (2)

μ̄↓ = μ↓ − eφ − gμB

2
μ0 �H ∗ · M̂, (3)

where μ↑ and μ↓ are the respective chemical potentials of up-
and down-spin carriers, e > 0 is the magnitude of the electron
charge, φ is the electrical potential, g is the dimensionless g

factor (with |g| ≈ 2 for electrons), μB is the Bohr magneton
(with units of J/T), and μ0 is the permeability of free space11

(with units of N/A2). In the simplest case, �H ∗ is the difference
of the external field �H0 and the uniform exchange field
�Hint (with �Hint ‖ M̂). More generally, in addition to �H0 we

must include the magnetic dipole field �Hdip, the crystalline
anisotropy field �Han, and the nonuniform exchange field �Hex

(proportional to ∇2 �M):12

�H ∗ = �H0 + �Hdip + �Han + �Hex − �Hint. (4)

We have �H ∗ = �0 in equilibrium.13 For this to hold, with �M0

the equilibrium magnetization we have �Hint ∼ �M − �M0 [see
Eq. (40) of Ref. 3], so that in equilibrium �Hint = 0 for both
ferromagnets and nonmagnetic materials. With this definition,
the up- and down-spin chemical potentials implicitly depend
on the exchange interaction (and thus are spin dependent),
because modifying the exchange interaction while maintaining
equilibrium does not change �Hint or �H ∗.

By irreversible thermodynamics (see, for example, the
general treatments in Refs. 14–16, or the spin-related treat-
ments of Refs. 9 and 10), the non-negativity of the rate of
entropy production implies that the fluxes can be written in
terms of thermodynamic forces, i.e., gradients of intensive
thermodynamic quantities. Thus,

j↑i
= −σ↑

e2
∂iμ̄↑ − L↑↓∂iμ̄↓, (5)

j↓i
= −L↓↑∂iμ̄↑ − σ↓

e2
∂iμ̄↓, (6)

where σ↑ and σ↓ are the respective electrical conductivities
of electrons of up- and down-spin, and the coefficients
L↓↑ = L↑↓ by the Onsager principle. We have implicitly
neglected temperature gradients, which can also contribute
to spin fluxes.17–20 Neglecting the off-diagonal coefficients
L↓↑ = L↑↓, we have

j↑i
= −σ↑

e2
∂iμ̄↑, j↓i

= −σ↓
e2

∂iμ̄↓. (7)

The non-negativity of the rate of entropy production
gives9,10

S = −α(μ̄↑ − μ̄↓). (8)

Here α � 0 (with units of a density of states per second) is
related to a characteristic spin-flip time (or, equivalently, to a
characteristic spin-flip length).

We are interested in steady-state solutions, so that ∂tn↑ =
0 = ∂tn↓. Taking the gradient of Eq. (7) and employing

Eqs. (1) and (8) then gives two coupled differential equations
for μ̄↑ and μ̄↓:

−σ↑
e2

∂2
i μ̄↑ = −α(μ̄↑ − μ̄↓), (9)

−σ↓
e2

∂2
i μ̄↓ = α(μ̄↑ − μ̄↓). (10)

On applying appropriate boundary conditions, Eqs. (9) and
(10) give μ̄↑ and μ̄↓.

B. Linearized relations

We are interested not only in μ̄↑ and μ̄↓, but also in n↑
and n↓—in particular, the difference of their deviations from
equilibrium δn↑ − δn↓, i.e., the spin accumulation (which
is proportional to the “out-of-equilibrium magnetization” or
“nonequilibrium magnetization” discussed by VF and HZ).
Near equilibrium, we can linearize the deviations (denoted by
δ) from equilibrium of the chemical and magnetic contribu-
tions to the magnetoelectrochemical potentials: the chemical
potential deviations can be written as

δμ↑ = ∂μ↑
∂n↑

δn↑, δμ↓ = ∂μ↓
∂n↓

δn↓, (11)

and the deviation in the effective magnetic field at fixed �H0

can be written as

δ �H ∗ · M̂ = μ0δ �M
χ

· M̂ = μ0μB

χ
(δn↑ − δn↓), (12)

where χ is the magnetic susceptibility for an isotropic material
(defined by χij = χδij ). Thus Eqs. (2) and (3) give

δμ̄(↑,↓) = δn(↑,↓)

N(↑,↓)
− eδφ ± (δn↑ − δn↓)

2Nχ

, (13)

where we define

N↑ ≡ ∂n↑
∂μ↑

, N↓ ≡ ∂n↓
∂μ↓

, Nχ ≡ χ

gμ2
Bμ0

, (14)

each of which has units of a density of states.
There are thus three unknowns (δn↑, δn↓, and δφ).

Equations (9) and (10) give two coupled differential equations,
and Gauss’s law provides a third:

∂2
i δφ = e

ε0ε
(δn↑ + δn↓). (15)

For the bulk response and each of the surface modes, we must
find δn↑, δn↓, and δφ.

III. STATIC BULK RESPONSE AND SURFACE MODES

We now study the static bulk response and surface modes of
the system. For brevity we write surface solutions to have the
form e−x/	 where 	 is some length, although for the material
on the left side of the interface one should use ex (because the
deviations must decay as x → −∞). In general, each surface
solution has the form e±(xint−x)/	 where xint is the position of
the interface, but we take the interface to be at xint = 0.

The electric field �E and voltage φ are continuous every-
where. (We call these “Maxwell conditions.”) To ensure this,
we include the surface screening mode. JS, VF, and HZ neglect
screening and do not satisfy these conditions.
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We first discuss the bulk response associated with the
electric current, which has a simpler structure than the surface
modes associated with screening and with spin diffusion.

A. Bulk response (dc)

We consider a system with a uniform constant electric
current. The (bulk) response associated with this current,
which can be thought of as a “dc mode” (dc), is characterized
by a constant uniform electric field (which in principle differs
for each material). We define this field as

δ �Edc ≡ E0dc x̂, (16)

where E0dc is a constant determined by applying boundary
conditions. The potential associated with this mode is

δφdc = −E0dcx + V0dc , (17)

where V0dc is another constant (with units of V) determined
by applying boundary conditions. By Gauss’s law there is no
overall (bulk or surface) charge associated with this mode, as
expected. Further,

δμ̄↑dc
= δμ̄↓dc

= −eδφdc = eE0dcx − eV0dc . (18)

Equation (7) gives

j↑dc
= −σ↑E0dc

e
, j↓dc

= −σ↓E0dc

e
. (19)

Because σ↑ does not necessarily equal σ↓ (e.g., as for
ferromagnets), there may be a nonzero spin current associated
with the dc mode.

B. Screening mode ( Q)

One solution to Eqs. (9), (10), and (15) has δμ̄↑ = 0 =
δμ̄↓ so that j↑ = 0 = j↓. This mode is therefore entirely
static (neither spin current nor charge current), corresponding
to electric screening and characterized only by charge and
potential gradients. We therefore designate it the “screening
mode,” and following Ref. 5 we use the subscript Q (for
charge) to denote its properties.21

Note that for metals the screening mode is not well de-
scribed by the present type of theory, but is instead associated
with Friedel oscillations.22–24 The following treatment of
screening is more appropriate for doped semiconductors.

By Eq. (13), setting δμ̄↑Q
− δμ̄↓Q

= 0 − 0 = 0 relates the
up- and down-spin concentrations,

N↓(N↑ + Nχ )δn↑Q
= N↑(N↓ + Nχ )δn↓Q

, (20)

and setting δμ̄↑Q
+ δμ̄↓Q

= 0 + 0 = 0 gives

δφQ = 1

2e

(
δn↑Q

N↑
+ δn↓Q

N↓

)
. (21)

Define

Nα ≡ N↑ + N↓ + 2Nχ, (22)

with units of a density of states. Substitution of Eq. (20) into
Eq. (21) then yields

N↑(N↓ + Nχ )δφQ = Nα

2e
δn↑Q

. (23)

Substitution of Eqs. (20) and (23) into Gauss’s law, Eq. (15),
then gives

Nα∂2
i δn↑Q

= 2e2

ε0ε
[N↑(N↓ + Nχ ) + N↓(N↑ + Nχ )]δn↑Q

. (24)

With the definitions

	2
Q ≡ ε0ε

2e2

Nα

N2
β

, (25)

N2
β ≡ 2N↑N↓ + Nχ (N↑ + N↓), (26)

Eq. (24) can be written as

∂2
i δn↑Q

= 1

	2
Q

δn↑Q
. (27)

For χ → ∞ and ε → 1, Eq. (25) gives 	2
Q = ε0/[e2(N↑ +

N↓)], which agrees with Ref. 5.
We now define the quantity V0Q

such that

δn↑Q
≡ 2e

N↑
Nα

(N↓ + Nχ )V0Q
e−x/	Q, (28)

which satisfies Eq. (27). Then Eq. (20) gives

δn↓Q
= 2e

N↓
Nα

(N↑ + Nχ )V0Q
e−x/	Q, (29)

δρQ = −e(δn↑Q
+ δn↓Q

)

= −2e2
N2

β

Nα

V0Q
e−x/	Q = −ε0ε

	2
Q

V0Q
e−x/	Q, (30)

and Eq. (21) gives

δφQ = V0Q
e−x/	Q . (31)

The screening mode can lead to a nonzero spin accumula-
tion, defined by

�nσ ≡ δn↑ − δn↓. (32)

Equations (28) and (29) give

�nσQ
= 2

Nχ

Nα

(N↑ − N↓)eV0Q
e−x/	Q, (33)

which is nonzero in a ferromagnet, where N↑ 
= N↓.

C. Spin mode (S)

The second solution to Eqs. (9), (10), and (15) is more
complicated than the screening mode. It is characterized
by a nonzero spin current jσ ≡ j↑ − j↓ 
= 0. We therefore
designate it the “spin mode,” and use the subscript S to denote
it.5 (The reader is thus warned that S refers to spin, not to
screening.)

We now give the solution for the characteristic length,
the spin concentrations, the electrical potential, and the spin
accumulation associated with this mode. The details of the
analysis are given in Appendix A.

Define the up- and down-spin associated lengths 	↑S
and

	↓S
, which satisfy

	2
↑S

≡ σ↑
αe2

, 	2
↓S

≡ σ↓
αe2

. (34)

The decay length associated with the spin mode, variously
called the “spin-flip” or “spin-diffusion” length, 	sf , is then
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given by25,26

1

	2
sf

= 1

	2
↑S

+ 1

	2
↓S

. (35)

We also define

NS ≡ ε0ε

e2	2
sf

, C ≡ 	2
sf

	2
↑S

− 	2
sf

	2
↓S

, (36)

where NS has units of a density of states and C is dimen-
sionless. With V0S

a constant to be determined by boundary
conditions, the deviations in the electrical potential and up-
and down-spin concentrations are then given by

δφS =
[
Nχ (N↑ − N↓) + CN2

β

NSNα − 2N2
β

]
V0S

e−x/	sf ≡ ξV0S
e−x/	sf ,

(37)

δn↑S
= N↑eV0S

e−x/	sf

×
{−2NχN↓ + NS[Nχ + C(N↓ + Nχ )]

NSNα − 2N2
β

}
, (38)

δn↓S
= N↓eV0S

e−x/	sf

×
{

2NχN↑ + NS[−Nχ + C(N↑ + Nχ )]

NSNα − 2N2
β

}
. (39)

For a nonmagnetic material, the dimensionless coefficient
ξ → 0.

The spin mode leads to a nonzero spin accumulation;
Eqs. (38) and (39) give

�nσS
= eNχV0S

e−x/	sf

×
{−4N↑N↓ + NS[N↑ + N↓ + C(N↑ − N↓)]

NSNα − 2N2
β

}
,

(40)

so that �nσS
is nonzero for both ferromagnets and nonmag-

netic materials. For the latter, Eq. (40) simplifies to

�n(NM)
σS

= N↑NχeV0S

N↑ + Nχ

e−x/	sf . (41)

The spin-carrier currents associated with the spin mode are
given by

δj↑S
= −δj↓S

=
(

σ↑σ↓
σ↑ + σ↓

)
V0S

e	sf
e−x/	sf . (42)

The total electric current −eδjtot = −e(δj↑ + δj↓) = 0 for the
spin mode, but there is a nonzero spin current δjσ ≡ δj↑ − δj↓,
given by

δjσS
= 2

(
σ↑σ↓

σ↑ + σ↓

)
V0S

e	sf
e−x/	sf . (43)

D. Description near interface

A full description of the region near an interface involves the
combination of both surface modes (S and Q) derived above,
and the bulk constant current (dc) mode. For the potential,
electric field, and charge density near an interface located at
x = xint, from Eqs. (37), (A14), (30), (31), (16), and (17) we

have, with four unknowns per material (E0dc , V0dc , V0Q
, and

V0S
) to be determined by boundary conditions,

δφ = ξV0S
e±(x−xint)/	sf + V0Q

e±(x−xint)/	Q

−E0dc (x − xint) + V0dc , (44)

δE = ∓ξV0S

	sf
e±(x−xint)/	sf ∓ V0Q

	Q

e±(x−xint)/	Q + E0dc , (45)

δρ = −ε0ε

(
ξV0S

	2
sf

e±(x−xint)/	sf + V0Q

	2
Q

e±(x−xint)/	Q

)
. (46)

The top (bottom) sign corresponds to the material on the left
(right) of the interface.

The contributions to the total electric current from the
surface modes is zero, as expected, so that Eq. (19) gives
the electric current to be everywhere given by

J = −ejtot = −(σ↑ + σ↓)E0dc . (47)

The spin mode does contribute to the nonconserved spin-up,
spin-down, and total spin currents, which, combining Eqs. (42)
and (19), are given by

j↑ = −σ↑E0dc

e
+

(
σ↑σ↓

σ↑ + σ↓

)
V0S

e	sf
e±(x−xint)/	sf , (48)

j↓ = −σ↓
e

E0dc −
(

σ↑σ↓
σ↑ + σ↓

)
V0S

e	sf
e±(x−xint)/	sf , (49)

jσ = −
(

σ↑ − σ↓
e

)
E0dc +

(
2σ↑σ↓

σ↑ + σ↓

)
V0S

e	sf
e±(x−xint)/	sf .

(50)

There is no contribution from V0Q
because there are no carrier

currents associated with the charge mode.
For the spin accumulation, Eqs. (41), (40), and (33) yield

�nσ = eNχξV0S
e±(x−xint)/	sf

×
{−4N↑N↓ + NS[N↑ + N↓ + C(N↑ − N↓)]

Nχ (N↑ − N↓) + CN2
β

}

+ 2e
Nχ

Nα

(N↑ − N↓)V0Q
e±(x−xint)/	Q . (51)

For a nonmagnetic material this simplifies to

�n(NM)
σ = N↑NχeV0S

N↑ + Nχ

e±(x−xint)/	sf . (52)

IV. BOUNDARY AND BULK CONDITIONS

For an isolated interface at xint = 0 (see Fig. 1) between
materials I (at x < 0) and II (at x > 0), in general there are
eight unknowns (E0dc , V0dc , V0Q

, and V0S
for each of materials

I and II). There are eight conditions:27

(i), (ii) the potential φ and field �E are continuous across the
interface—Maxwell conditions;

(iii) the electric current −e(j↑ + j↓) is continuous across
the interface—charge conservation;

(iv) the spin current is assumed continuous across the
interface [although we take both up- and down-spin currents
to be continuous, this is only a single condition since
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FIG. 1. An isolated interface between a ferromagnet (dark gray,
at x < 0) and a nonmagnetic material (light gray, at x > 0). This
work considers an electric current density J x̂, and magnetization of
the FM along ±ẑ.

condition (iii) constrains their sum]—assumption of no surface
spin scattering.

(v), (vi) the up- and down-spin currents across the in-
terface are directly proportional to the discontinuity in up-
and down-spin magnetoelectrochemical potential across the
interface3,9,10,28—irreversible thermodynamics;

(vii) the total electric current −e(j↑ + j↓) is a known
constant; and

(viii) there is an arbitrary constant voltage (which we define
by setting the voltage V

(II)
0dc

≡ 0).
Conditions (i)–(vi) are boundary conditions and (vii) and

(viii) are bulk conditions. They are explicitly calculated in
Appendix B. For a multilayer (a series of k interfaces between
k + 1 materials), each additional interface adds another of each
of the boundary conditions (i)–(vi), so that in general there are
6k + 2 conditions.

V. COMPARISON TO PREVIOUS THEORIES

As noted above, the theories of JS, VF, and HZ neglect
the screening mode, and therefore cannot have field and
potential continuity at the interface. Further, JS neglects the
chemical potentials μ↑ and μ↓ and HZ neglects the internal
magnetic field �H ∗. The discrepancy between predicted spin
accumulation, found below, particularly in a nonmagnetic
material, demonstrates that inclusion of all parts of the
magnetoelectrochemical potential is essential for calculating
the spin accumulation in a nonmagnetic material, even to
within an order of magnitude. For comparison of Eq. (41) to the
spin accumulation predicted for these other works, W = HZ
and W = JS, we define the dimensionless factor ζW as[

�n(NM)
σS

]
W

= ζW�n(NM)
σS

. (53)

Note that ζW = 1 for the present work. We show below that if
one of ζHZ or ζJS is near unity (and therefore agrees with the
present work), then the other diverges, so that at least one of
the assumptions gives results that significantly disagree with
the present work.

A. Neglecting �H∗ and the screening mode

Neglecting the last term (proportional to �H ∗ · M̂) in
Eq. (13), as in HZ,5 is equivalent to taking χ → ∞
(and therefore Nχ → ∞) in the present results. Under this
assumption, Nα → 2Nχ and N2

β → Nχ (N↑ + N↓). Equations
(37)–(39) then simplify to

δφHZ
S =

[
N↑ − N↓ + C(N↑ + N↓)

2(NS − N↑ − N↓)

]
V0S

e−x/	sf , (54)

TABLE I. Bulk and interfacial properties of cobalt and copper,
and well-known constants. Here, A is the area of the interface, and R

is the spin-dependent interface resistance.

Quantity Value Units Ref.

σ Co
↑ 2.47 × 107 �−1 m−1 30

σ Co
↓ 0.913 × 107 �−1 m−1 30

σ Cu
↓ , σ Cu

↑ 8.35 × 107 �−1 m−1 30

	Co
sf 59 × 10−9 m 30

	Cu
sf 450 × 10−9 m 30

NCo
↑ 5.10 × 1046 J−1 m−3 30

NCo
↓ 19.7 × 1046 J−1 m−3 30

NCu
↑ , NCu

↓ 3.89 × 1046 J−1 m−3 30

AR
Cu/Co
↑ 0.31 × 10−15 � m2 31a

AR
Cu/Co
↓ 2.31 × 10−15 � m2 31a

χCo ≈ 100 29b

χCu −0.932 × 10−5 32
μB 9.27 × 10−24 J T−1

μ0 4π × 10−7 N A−2

ε0 8.85 × 10−12 A s V−1 m−1

e 1.6 × 10−19 C
g ≈ 2

aValue is for the (100) orientation.
bThe susceptibility of cobalt is field dependent, with 70 � χCo � 250
(see Table 2.2 of Ref. 29); we take an intermediate value.

δnHZ
↑S

= N↑eV0S
e−x/	sf

[−2N↓ + NS(1 + C)

2(NS − N↑ − N↓)

]
, (55)

δnHZ
↓S

= N↓eV0S
e−x/	sf

[
2N↑ + NS(−1 + C)

2(NS − N↑ − N↓)

]
. (56)

HZ neglect the screening mode, so the spin-diffusion mode is
the only surface mode, and it gives a spin accumulation of

�nHZ
σ = eV0S

e−x/	sf

×
{−4N↑N↓ + NS[N↑ + N↓ + C(N↑ − N↓)]

2(NS − N↑ − N↓)

}
.

(57)

A direct comparison can be made to the results of the present
work in the nonmagnetic material. With ζW defined by Eq. (53),
we have

ζHZ = (1 + N↑/Nχ ). (58)

Using Tables I and II, we find ζHZ ≈ 0.0986 for Cu. (Cu
is a diamagnet, therefore it has Nχ < 0; for a paramagnet,
where Nχ > 0, the underestimation of spin accumulation
for the HZ assumptions is less striking, although it remains
significant.) For the ferromagnet, the spin accumulation due
to the screening mode is neglected, and the spin accumulation
due to the spin mode agrees with the present work to within the
precision of the present calculations. Hence, the assumptions
made by HZ seem appropriate for ferromagnets but not for
nonmagnetic materials.
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TABLE II. Bulk and interfacial properties of cobalt and copper,
calculated from the results of the present work (and Table I). Here α

is found from Eq. (A4).

Quantity Value Units

σ Cu ≡ σ Cu
↑ + σ Cu

↓ 16.7 × 107 �−1 m−1

g↑ 3.23 × 1015 �−1 m−2

g↓ 0.433 × 1015 �−1 m−2

NCo
χ 4.63 × 1053 J−1 m−3

NCu
χ −4.32 × 1046 J−1 m−3

NCo
S 9.93 × 1040 J−1 m−3

NCu
S 1.71 × 1039 J−1 m−3

NCo
α 9.26 × 1053 J−1 m−3

NCu
α −0.851 × 1046 J−1 m−3

NCo2

β 1.15 × 10101 J−2 m−6

NCu2

β −3.31 × 1092 J−2 m−6

αCo 74.8 × 1057 J−1 m−3 s−1

αCu 8.05 × 1057 J−1 m−3 s−1

	Co
↑S

114 × 10−9 m

	Co
↓S

69.0 × 10−9 m

	Cu
↑S

,	Cu
↓S

636 × 10−9 m

	Co
Q 0.0373 × 10−9 m

	Cu
Q 0.0667 × 10−9 m

CCo −0.460
CCu 0
ξCo 0.524
ξCu 0

B. Neglecting μ↑, μ↓, and the screening mode

JS neglects the chemical potentials μ↑ and μ↓ in Eq. (13),
which is equivalent to taking N↑,↓ → ∞ in the present work.
It also neglects the screening mode. Various properties of the
spin mode are now calculated under these assumptions.

Equation (37) gives

δφJS
S = −C

2
V0S

e−x/	sf . (59)

Further, Eqs. (38) and (39) give

δnJS
↑S

=
(

Nχ

2
− CNS

4

)
eV0S

e−x/	sf , (60)

δnJS
↑S

= −
(

Nχ

2
+ CNS

4

)
eV0S

e−x/	sf , (61)

so that the spin accumulation is given by

�nJS
σ = NχeV0S

e−x/	sf . (62)

A direct comparison can be made to the results of the present
work in the nonmagnetic material. With ζW defined by Eq. (53),
we have

ζJS = (1 + Nχ/N↑). (63)

Using Tables I and II, we find ζJS ≈ −0.109 for Cu. Thus, the
JS assumptions seem inappropriate for determining the spin
accumulation in nonmagnetic materials, particularly those that
are diamagnetic.

Note that Eqs. (58) and (63) preclude simultaneously having
ζJS ≈ 1 and ζHZ ≈ 1.

VI. Co/Cu INTERFACE

For an isolated interface (as in Fig. 1), Appendix B uses
each of the above conditions to find an explicit equation for
the eight unknowns and writes the unknowns in terms of
dimensionless variables. We now present numerical results
for the spin fluxes (see Fig. 2), voltage, electric field, charge
density, and spin accumulation, for a cobalt/copper interface,
with material parameters given by Tables I and II.

Figures 3(a)–3(c) show that, outside of a screening length
	Q of the interface, the electrical potential, field, and charge
nearly coincide for the present work and HZ, with JS showing
discrepancies near the interface in the ferromagnet (x < 0).
However, the present work significantly differs from JS and HZ
within a screening length of the interface, as seen in Figs. 3(d)–
3(f). Figures 3(d) and 3(e) show, for the present work, the
continuity of the electrical potential and field at the interface.
They also show, for HZ and JS, the discontinuities in the
potential and field [due to scale, these field discontinuities are
more obvious in Fig. 3(b) than in Fig. 3(e)]. Figure 3(f) shows,
for the present work, the charge density due to screening.
For physical consistency, �E and φ must be continuous at the
interface, so that HZ and JS must have both an infinitesimally
thin charge layer and an infinitesimally thin dipole layer at the
interface.

We conclude that outside of the charge screening length
	Q (which is very short for metals), the present work and HZ
are equally valid for calculating electrical potential, field, and
charge, but JS differs significantly.

Figure 4 shows the spin accumulation for the present work,
HZ, and JS. In the nonmagnetic material (x > 0), as shown
analytically in Eqs. (58) and (63), Fig. 4(a) shows that both HZ
and JS differ from the present work by an order of magnitude,
with JS having the opposite sign. Figure 4(b) shows that the
spin accumulation in the ferromagnet (x < 0) differs for the
present work and HZ; outside of this length, Fig. 4(a) shows
that they coincide. However, the spin accumulation for JS
is six orders of magnitude larger (and not shown). This is
because JS, by assuming that ∂μ↑,↓/∂n↑,↓ = 0, effectively
takes N↑,↓ → ∞ so that N↑,↓ � Nχ , whereas Tables I and II
show that the opposite is true for cobalt.

FIG. 2. The spin-up and spin-down carrier fluxes δj↑ and δj↓, and
the total flux δjtot and spin flux δjσ , given by Eqs. (47)–(50), with the
(uniform) total flux normalized to unity, near an interface between
cobalt (x < 0) and copper (x > 0) vs x (in nm). The gray dotted line
marks 0.5, that is, half of the total current.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. The dimensionless electrical potential, field, and charge
density [given by Eqs. (44)–(46)] in arbitrary units near an interface
between cobalt (x < 0) and copper (x > 0) vs x (in nm). Within
1 μm [(a)–(c)], and within 1 nm [(d)–(f)], of the interface. Solid
line, present work; dashed line, JS; dotted line, HZ. HZ coincides
closely with the present work except within a screening length of the
interface. JS gives somewhat different results in the cobalt within a
spin-diffusion length of the interface.

VII. SUMMARY AND CONCLUSION

Using irreversible thermodynamics, we predict the spin
accumulation at an interface between two materials when
electric current is driven across the interface. Although we
have numerically studied a FM/NM interface, the theory also
applies to FM/FM and NM/NM interfaces.

We find that both the chemical potentials and the effective
magnetic field must be included to predict the spin accumu-
lation in a nonmagnetic material—in fact, for Cu the spin
accumulation changes by an order of magnitude on neglect
of either contribution. However, for ferromagnets, neglecting
the effective magnetic field may be appropriate—numerically
the results are essentially unchanged for Co near a Co/Cu
interface.

(a)

(b)

FIG. 4. The dimensionless spin accumulation, given by Eqs. (51)
and (52), in arbitrary units near an interface between cobalt (x < 0)
and copper (x > 0) vs x (in nm). The spin accumulation is shown
within approximately (a) 1 μm and (b) 1 nm of the interface. Solid
line, present work; dashed line, JS; dotted line, HZ. In the FM (x < 0),
HZ nearly coincides with the present work (deviating only within
the charge-screening length of the interface; see inset), and the JS-
predicted spin accumulation is several orders of magnitude larger
and not shown. In the NM, neither approximation predicts a spin
accumulation similar to the present work.

By including the screening surface mode neglected in
previous works, we find an additional term in the spin
accumulation for ferromagnets. For Co near a Co/Cu interface,
this term decreases the spin accumulation by ∼10% within a
charge-screening length of the interface. Although this length
is on the order of 1–10 Å for metals (a length scale negli-
gible in the present macroscopic theory), for ferromagnetic
semiconductors this length scale should be much larger. Note
that spin injection from a ferromagnetic semiconductor into a
nonmagnetic material has been observed by Refs. 33 and 34.
To test this spin accumulation due to screening, one may apply
a small current to an interface between, say, Ga(Mn)As and Cu.
Using the magneto-optical Kerr effect, one may measure the
magnetization (and spin polarization) at the surface. We expect
there to be two nonequilibrium magnetization contributions
near the surface: one that decays over the spin-diffusion length
	sf and one that decays over the screening length 	Q associated
with screening. The latter effect should be more prominent in
ferromagnetic semiconductors.
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APPENDIX A: DETAILS OF THE SPIN MODE

The details of the solution for the spin mode, whose results
are presented in Sec. III C, are now given.

Equations (9) and (10) give, with δ denoting deviations
from equilibrium,

∂2
i δμ̄↑S

= 1

	2
↑S

(
δμ̄↑S

− δμ̄↓S

)
, (A1)

∂2
i δμ̄↓S

= − 1

	2
↓S

(
δμ̄↑S

− δμ̄↓S

)
. (A2)

Subtracting Eq. (A2) from Eq. (A1) gives

∂2
i

(
δμ̄↑S

− δμ̄↓S

) = 1

	2
sf

(
δμ̄↑S

− δμ̄↓S

)
, (A3)

where 	sf is defined by Eq. (35). On neglecting δ �H ∗ · M̂ and
making the identification α → (N↑/τ↑↓) = (N↓/τ↓↑), Eq. (35)
agrees with Ref. 5. We use Eqs. (34) and (35) to find α, 	↑S

,
and 	↓S

in terms of 	sf , σ↑, and σ↓, since they are, in principle,
measurable:

α = σ↑σ↓
e2(σ↑ + σ↓)	2

sf

, (A4)

	↑S
= 	sf

√
σ↑ + σ↓

σ↓
, 	↓S

= 	sf

√
σ↑ + σ↓

σ↑
. (A5)

Solving Eq. (A3) gives

δμ̄↑S
− δμ̄↓S

= eV0S
e−x/	sf , (A6)

where V0S
, with units of electric potential, is unknown, to be

determined by boundary conditions. Since Eq. (A6) shows
the difference in up- and down-spin magnetoelectrochemical
potentials to decay over the length 	sf from an interface—
this length is called the spin-flip or spin-diffusion length (and
sometimes referred to as the “SDL”). The length 	sf may be
measurable by employing the magneto-optical Kerr effect35,36

or the inverse spin Hall effect,37 or may be derived using GMR
measurements and theory.38

Substitution of Eq. (A6) into Eqs. (A1) and (A2) yields

δμ̄↑S
= 	2

sf

	2
↑S

eV0S
e−x/	sf = σ↓

σ↑ + σ↓
eV0S

e−x/	sf , (A7)

δμ̄↓S
= − 	2

sf

	2
↓S

eV0S
e−x/	sf = − σ↑

σ↑ + σ↓
eV0S

e−x/	sf . (A8)

Equations (A7) and (A8) give δμ̄↑S
= −(	2

↓S
/	2

↑S
)δμ̄↓S

=
−(σ↓/σ↑)δμ̄↓S

, which agrees with Ref. 5. Substitution of
Eqs. (A7) and (A8) into Eq. (7) gives the up- and down-spin
carrier currents of Eq. (42).

We can now can write two independent relations between
δn↑S

, δn↓S
, and δφS . Equations (A6) and (13) give the

difference of the spin potentials to be

δμ̄↑S
− δμ̄↓S

=
(

N↑ + Nχ

NχN↑

)
δn↑S

−
(

N↓ + Nχ

NχN↓

)
δn↓S

= eV0S
e−x/	sf , (A9)

and Eqs. (A7), (A8), and (13) give the sum of the spin potentials
to be

δμ̄↑S
+ δμ̄↓S

= δn↑S

N↑
+ δn↓S

N↓
− 2eδφS = CeV0S

e−x/	sf .

(A10)

In conjunction with Gauss’s law, Eqs. (A9) and (A10) give
the concentrations and electrical potential in the spin mode.
Specifically, we use Eq. (A9) to relate δn↑S

to δn↓S
, then use

Eq. (A10) to relate δn↑S
to δφS . Thus Eq. (15) can be written

in terms of only δφS , which we solve.
Equation (A9) gives

δn↓S
=

[
N↓(N↑ + Nχ )

N↑(N↓ + Nχ )

]
δn↑S

−
(

NχN↓eV0S

N↓ + Nχ

)
e−x/	sf .

(A11)

Substituting Eq. (A11) into Eq. (A10) multiplied by
(N↑/Nα)(N↓ + Nχ ) gives

δn↑S
= N↑

Nα

eV0S
e−x/	sf [Nχ + C(N↓ + Nχ )]

+ 2e
N↑
Nα

(N↓ + Nχ )δφS. (A12)

Substitution of Eqs. (A11) and (A12) into Eq. (15) gives

∂2
x δφS = 2N2

β

NSNα	2
sf

×
{
δφS + V0S

2

[
Nχ

N2
β

(N↑ − N↓) + C

]
e−x/	sf

}
. (A13)

The solution for δφS is given above as Eq. (37).
Substituting Eq. (37) into Eqs. (A12) and (A11) gives the

up- and down-spin concentrations of Eqs. (38) and (39). Thus,
the charge distribution δρ = −e(δn↑ + δn↓) associated with
the spin mode is

δρS =
[
Nχ (N↑ − N↓) + CN2

β

NSNα − 2N2
β

]
NSe

2V0S
e−x/	sf , (A14)

which is nonzero in a ferromagnet. [This result can also be
obtained by using Eq. (37) and Gauss’s law.] Further, subtrac-
tion of Eq. (39) from Eq. (38) yields the spin accumulation of
Eq. (40).

APPENDIX B: BOUNDARY CONDITIONS FOR CURRENT
CROSSING AN ISOLATED INTERFACE

Boundary conditions (i)–(viii) for an isolated interface
(that is, one that is effectively an infinite distance from any
other interface) through which an electric current is passed
are discussed in Sec. VI. They are here found explicitly, in
numerical order.

Conditions (i), (ii): From Eqs. (44) and (45), continuity of
δφ and δE across the interface at xint = 0 gives

ξ (I)V
(I)

0S
+ V

(I)
0Q

+ V
(I)

0dc
= ξ (II)V

(II)
0S

+ V
(II)

0Q
+ V

(II)
0dc

, (B1)

−ξ (I)V
(I)

0S

	
(I)
sf

−
V

(I)
0Q

	
(I)
Q

+ E
(I)
0dc

= ξ (II)V
(II)

0S

	
(II)
S

+
V

(II)
0Q

	
(II)
Q

+ E
(II)
0dc

. (B2)

Recall that ξ = 0 for a nonmagnetic material.
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Condition (iii): From Eq. (47), continuity of the electric
current across the interface gives

(σ (I)
↑ + σ

(I)
↓ )E(I)

0dc
= (σ (II)

↑ + σ
(II)
↓ )E(II)

0dc
. (B3)

Condition (iv): Although the electric current is continuous
everywhere, in principle at the interface there may be spin
scattering, so that spin current is not continuous across the
interface. However, we neglect interfacial spin scattering (as
is typical in this type of theory). We thus take

j
(I)
↑ (0) ≡ j

(II)
↑ (0), j

(I)
↓ (0) ≡ j

(II)
↓ (0). (B4)

Using Eq. (48), the first of these can be written as

−σ
(I)
↑ E

(I)
0dc

+
(

σ
(I)
↑ σ

(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
V

(I)
0S

	
(I)
sf

= −σ
(II)
↑ E

(II)
0dc

+
(

σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

	
(II)
sf

. (B5)

As discussed above, the second relation given in Eq. (B4) is
then automatically satisfied by condition (iii), which constrain
the sums of the up- and down-spin currents.

Conditions (v), (vi): The spin currents across the interface
are given by3,9

j↑int = −g↑
e2

(�μ̄↑)int, (B6)

j↓int = −g↓
e2

(�μ̄↓)int, (B7)

where (�)int denotes the difference between the value just on
the right of the interface (x → 0+) and the value just on the
left (x → 0−). Since without the electric field associated with
the dc mode there is no steady-state current, the currents are
proportional to the differences in δμ̄ rather than μ̄. We now
find (�δμ̄)int for each mode and then substitute them into
Eqs. (B6) and (B7).

The charge mode has δμ̄↑Q
= 0 = δμ̄↓Q

, so by Eqs. (B6)
and (B7) it does not affect the current crossing the boundary.
At the x = xint = 0 interface, Eqs. (A7) and (A8) give

(�δμ̄↑S
)int

=
(

σ
(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
0S

−
(

σ
(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
0S

, (B8)

(�δμ̄↓S
)int

= −
(

σ
(II)
↑

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
0S

+
(

σ
(I)
↑

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
0S

. (B9)

At the interface, Eq. (17) gives(
�δμ̄↑dc

)
int = (

�δμ̄↓dc

)
int = −e

(
V

(II)
0dc

− V
(I)

0dc

)
. (B10)

Substitution of Eqs. (B8)–(B10) into Eqs. (B6) and (B7)
yields

j↑int = −g↑
e

[
σ

(II)
↓ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

− σ
(I)
↓ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

− (
V

(II)
0dc

− V
(I)

0dc

)]
,

(B11)

j↓int = −g↓
e

[
− σ

(II)
↑ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

+ σ
(I)
↑ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

− (
V

(II)
0dc

− V
(I)

0dc

)]
.

(B12)

We take

j↑int ≡ j
(II)
↑ (0), j↓int ≡ j

(II)
↓ (0). (B13)

By Eq. (B4) one may equivalently use j↑int ≡ j
(I)
↑ (0) and

j↑int ≡ j
(I)
↓ (0). Respective substitution of Eqs. (48) and (49)

into Eqs. (B11) and (B12) gives

j
(II)
↑ (0) = −σ

(II)
↑
e

E
(II)
0dc

+
(

σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

e	
(II)
sf

= −g↑
e

[
σ

(II)
↓ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

− σ
(I)
↓ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

− (
V

(II)
0dc

− V
(I)

0dc

)]
,

(B14)

j
(II)
↓ (0) = −σ

(II)
↓
e

E
(II)
0dc

−
(

σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
0S

e	
(II)
sf

= −g↓
e

[
− σ

(II)
↑ V

(II)
0S

σ
(II)
↑ + σ

(II)
↓

+ σ
(I)
↑ V

(I)
0S

σ
(I)
↑ + σ

(I)
↓

− (
V

(II)
0dc

− V
(I)

0dc

)]
.

(B15)

Condition (vii): The total electric current Japp is known,
so the total electric current in material I can be written using
Eq. (47) as

−(
σ

(II)
↑ + σ

(II)
↓

)
E

(II)
0dc

= Japp. (B16)

Equation (B3) then guarantees that the total current in material
I also equals Japp.

Condition (viii): There is an arbitrary constant potential.
We set

V
(II)

0dc
≡ 0. (B17)

The eight conditions explicitly given by Eqs. (B1)–
(B3), (B5), and (B14)–(B17) are general for an isolated
interface between any two materials I and II, and their
solution gives the eight unknowns E

(I,II)
0dc

, V
(I,II)

0dc
, V

(I,II)
0Q

,

and V
(I,II)

0S
.
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