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Néel-VBS phase boundary of the extended J1- J2 model with biquadratic interaction

Yoshihiro Nishiyama (����)
Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

(Received 28 September 2011; published 4 January 2012)

The J1-J2 model with the biquadratic (plaquette-four-spin) interaction was simulated with the numerical
diagonalization method. Some limiting cases of this model have been investigated thoroughly. Taking advantage
of the extended parameter space, we survey the phase boundary separating the Néel and valence-bond-solid
phases. According to the deconfined-criticality scenario, the singularity of this phase boundary is continuous,
accompanied with unconventional critical indices. Diagonalizing the finite-size cluster with N � 36 spins, we
observe a signature of continuous phase transition. Our tentative estimate for the correlation-length critical
exponent is ν = 1.1(3). In order to elucidate a nonlocal character of criticality, we evaluated the Roomany-Wyld
β function around the critical point.
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I. INTRODUCTION

The deconfined criticality1–3 has been arousing much at-
tention recently.4 Naively,2 the (ground-state) phase transition
separating the Néel and valence-bond-solid (VBS) phases is
discontinuous because the adjacent phases possess distinc-
tive order parameters, such as the sublattice magnetization
and the dimer-coverage pattern. However, according to the
deconfined-criticality scenario, the transition is continuous,
accompanied with novel critical indices;5–11 afterward, we
make an overview on recent computer-simulation studies.

In this paper, we investigate an extended version of the
J1-J2 model12–14 [see Eq. (1)] by means of the numerical
diagonalization method for the cluster with N � 36 spins.
The extension of the parameter space (J2,Q) permits us
to investigate the above-mentioned criticality from a global
viewpoint. A schematic phase diagram is presented in Fig. 1;
details are explicated afterward. As mentioned above, the
critical branch (dashed line) is our concern.

The Hamiltonian of the J1-J2 model with the biquadratic
interaction Q is given by

H = J1

∑

〈ij〉
Si · Sj + J2

∑

〈〈ij〉〉
Si · Sj − Q

∑

[ijkl]

[(Si · Sj − 1/4)

× (Sk · Sl − 1/4) + (Si · Sl − 1/4)(Sj · Sk − 1/4)]. (1)

Here the quantum spin-1/2 operators {Si} are placed at each
square-lattice point i. The summations,

∑
〈ij〉,

∑
〈〈ij〉〉, and∑

[ijkl], run over all possible nearest-neighbor pairs 〈ij 〉,
next-nearest-neighbor pairs 〈〈ij 〉〉, and plaquette spins [ijkl],
respectively; here the arrangement of indices [ijkl] around a
plaquette (�) is i

j�l
k . The parameters J1, J2, and Q are the

corresponding coupling constants. Hereafter, we consider J1

as the unit of energy; namely, we set J1 = 1. Both frustration
and biquadratic interactions, J2 and Q, stabilize the VBS
phase.

In some limiting cases (subspaces), namely, either Q =
0 or J2 = 0, the Hamiltonian (1) has been investigated
extensively already. The case of Q = 0, namely, the J1-
J2 model,15 has been analyzed with the series-expansion
method15–18 and the numerical diagonalization method.18–22

(The quantum Monte Carlo method is inapplicable to such a
frustrated magnetism because of the negative-sign problem.)

The Néel, VBS, and collinear phases appear15 successively
in the regimes J2/J1 � 0.4, 0.4 � J2/J1 � 0.6, and 0.6 �
J2/J1, respectively. The singularity23 at J2/J1 ≈ 0.4 (0.6)
is continuous (discontinuous16). On the one hand, the case
of J2 = 0, namely, the J -Q model24,25 (J1-Q model in
our notation), admits the use of the quantum Monte Carlo
method. The Néel phase turns into the VBS phase at a
considerably large biquadratic interaction Q/J ≈ 25.24 This
fact indicates that the antiferromagnetic order at J2 = 0 is
considerably robust against Q. Nevertheless, the large-scale
quantum Monte Carlo simulation admits detailed analyses of
criticality. The correlation-length critical exponent is estimated
as ν = 0.78(3) (Ref. 24) and ν = 0.68(4) (Ref. 25). According
to Ref. 26, logarithmic scaling corrections prevent us from
taking the thermodynamic limit reliably. Possibly because of
this difficulty, it is still controversial whether the singularity
is continuous or belongs to a discontinuous one accompanied
with an appreciable latent heat27–34 (see Ref. 16 as well). Last,
it has to be mentioned that there have been reported a number of
intriguing extensions, such as the third-neighbor interaction,35

internal symmetry enlargement,36 and spatial anisotropy.37–39

The dimer model40,41 is also a clue to the study of deconfined
criticality.

In this paper, taking advantage of the extended parameter
space (J2,Q) (see Fig. 1), we survey the critical branch in
detail. Scanning the parameter space, we found that around an
intermediate regime Q = 0.2, the finite-size-scaling behavior
improves significantly. Around this optimal regime, we carry
out finite-size-scaling analyses.

The rest of this paper is organized as follows. In Sec. II, we
present the simulation results. Technical details are explicated.
In Sec. III, we address the summary and discussions.

II. NUMERICAL RESULTS

In this section, we present the numerical results for the
J1-J2-Q model, Eq. (1). We employ the exact-diagonalization
method for the cluster with N (= L2) � 62 spins. Our aim is
to clarify the nature of the phase boundary separating the Néel
and VBS phases. For that purpose, we scrutinize the excitation
gap,

�E = E[(0,π),0,+,+,+] − E[(0,0),0,+,+,+]. (2)
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FIG. 1. A schematic (ground-state) phase diagram for the J1-J2-
Q model (1) is presented. The solid (dashed) line stands for the phase
boundary with discontinuous (continuous) character. We investigate
the phase boundary separating the Néel and VBS phases. Details
of the multicritical point and the VBS-collinear phase boundary are
uncertain.

Here the variable Eα denotes the ground-state energy within
the sector (subspace) specified by the set of quantum numbers,
α = (�k,Sz,±,±,±). These quantum numbers (�k,Sz,±,±,±)
are associated with the symmetry groups, such as translation
along the rectangular edges, internal-spin z-axis rotation (total-
spin conservation along the z axis), internal-spin inversion
(Sz

i ↔ −Sz
i ), θ = π lattice rotation, and lattice inversion,

respectively. These symmetry groups commute mutually
because we restrict ourselves to the sector with kx = 0 and
Sz = 0. The excitation gap, Eq. (2), opens (closes) for the Néel
(VBS) phase in the thermodynamic limit. (The degeneracy in
the VBS phase corresponds to the translationally invariant
dimer-coverage patterns.) The excitation branch (2) does not
correspond to the first energy gap: There appear numerous low-
lying excitations due to the spontaneous symmetry breaking in
both Néel and VBS phases. Here, aiming to discriminate these
phases clearly, we look into an excitation branch (2), which is
a key ingredient of the finite-size-scaling analysis.

A. Survey of the phase boundary between the VBS
and Néel phases

In Fig. 2, we plot the scaled energy gap L�E for Q = 0.2,
various J2, and N = 4, 16, and 36. Here the variable L(= √

N )
denotes the linear dimension of the cluster. The intersection
point of the curves indicates the location of the critical point.
We see that a transition occurs at J2 ≈ 0.3.

In order to estimate the transition point precisely, in Fig. 3,
we plot the approximate critical point J2c(L1,L2) for 2/(L1 +
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FIG. 2. The scaled energy gap L�E is plotted for the next-
nearest-neighbor interaction J2 and the system size L = 2 (pluses),
4 (crosses), and 6 (stars). The biquadratic interaction is fixed to
Q = 0.2. The data indicate an onset of continuous phase transition
around J2 ≈ 0.3.

L2) with 2 � L1 < L2 � 6; the parameters are the same as
those of Fig. 2. Here the approximate critical point J2c(L1,L2)
denotes a scale-invariant point with respect to a pair of system
sizes (L1,L2). Namely, it satisfies the relation

L1�E(L1)|J2=J2c(L1,L2) = L2�E(L2)|J2=J2c(L1,L2). (3)

The least-squares fit to the data of Fig. 3 yields an estimate
J2c = 0.273(12) in the thermodynamic limit L → ∞. Replac-
ing the abscissa scale with 1/L2, we obtain an alternative
estimate J2c = 0.3095(91). The discrepancy between these
estimates, ≈3.7 × 10−2, appears to dominate the unsystematic
(statistical) error, ≈10−2. Considering the former as an
indicator of the error margin, we estimate the transition point
J2c = 0.273(37).

We carried out similar analyses for various values of Q.
The results are shown in Fig. 4. The error margin is suppressed
around an intermediate regime Q ∼ 0.1. As a matter of fact,
in Fig. 5, we show that the scaling behavior becomes optimal
around Q ≈ 0.2. (Such a redundancy is a benefit of the
parameter-space extension.) On the contrary, the error margins
get enhanced around the multicritical point as well as in the
large-Q regime.
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FIG. 3. The approximate critical point J2c(L1,L2) (3) is plotted
for 2/(L1 + L2) with 2 � L1 < L2 � 6. The parameters are the same
as those of Fig. 2. The least-squares fit to these data yields J2c =
0.273(12) in the thermodynamic limit. A possible systematic error is
considered in the text.
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FIG. 4. The phase boundary between the Néel and VBS phases
(critical branch) is presented.

As mentioned in the Introduction, the limiting cases,
Q = 0 and J2 = 0, have been studied extensively.15,24 In
Ref. 15, The transition point (J2,Q) ≈ (0.4,0) was reported.
This result agrees with ours. On the contrary, the tran-
sition point24 (J2,Q) ≈ (0,25) is not reproduced by the
present approach. This discrepancy may be attributed to the
logarithmic corrections26 inherent in the subspace J2 = 0;
these corrections prevent us from taking the thermodynamic
limit reliably. Around Q ≈ 0, there arise pronounced scal-
ing corrections, which cannot be appreciated properly; this
regime would not be accessible by the numerical diago-
nalization method. As a matter of fact, the Q-driven VBS
state is so unstable that a considerably weak antiferro-
magnetic interaction J1 = 0.04 destroys VBS immediately.
This difficulty is remedied by the inclusion of the magnetic
frustration J2, which appears to stabilize VBS significantly
(Fig. 4), and recovers an applicability of the diagonalization
method.

Last, we make a comment. The present simulation cannot
rule out a possibility of the discontinuous phase transition.
Even in such a case, the phase boundary determined through
the criterion, Eq. (3), makes sense, although the value of L�E

at the transition point no longer converges to a universal value
(critical amplitude).

B. Correlation-length critical exponent

In this section, we estimate the correlation-length critical
exponent ν. In Fig. 5, we plot the approximate critical exponent

ν(L1,L2) = ln(L1/L2)

ln{∂J [L1�E(L1)]/∂J [L2�E(L2)]}|J2=J2c(L1,L2)

(4)

for 2/(L1 + L2) and 2 � L1 < L2 � 6. The parameters are
the same as those of Fig. 2. The least-squares fit to these
data yields ν = 1.094(26) in the thermodynamic limit. In
order to appreciate possible systematic errors, we made an
alternative extrapolation with the 1/L2 abscissa scale. Thereby,
we arrive at ν = 1.087(14). In this (optimal) parameter space,
Q = 0.2, the systematic error (deviation between different
abscissa scales) appears to be negligible. On the one hand, at
Q = 0.3, we estimated ν = 0.901(21) and 0.988(17) through
the 1/L and 1/L2 extrapolation schemes, respectively. The
discrepancy (systematic error) appears to be enhanced by
the scaling (possibly, logarithmic26) corrections. At Q = 0.1,
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FIG. 5. The approximate critical exponent ν(L1,L2) (4) is plotted
for 2/(L1 + L2) with 2 � L1 < L2 � 6. The parameters are the same
as those of Fig. 2. The least-squares fit to these data yields ν =
1.094(26) in the thermodynamic limit. A possible systematic error is
considered in the text.

via the 1/L and 1/L2 extrapolation schemes, we arrive at
ν = 1.316(87) and 1.198(55), respectively. Both systematic
and unsystematic errors get enhanced in the proximity to the
multicritical point. Considering these deviations of various
characters as an indicator of the error margin, we estimate the
critical exponent as

ν = 1.1(3). (5)

The validity of the scaling analysis is considered in the next
section.

C. Nonlocal behavior of the β function

In Fig. 6, we plot the β function βRW
L1L2

(J2) for Q = 0.2,
various J2, and (L1,L2) = (2,4) (pluses), (4,6) (crosses), and
(2,6) (stars). Here we calculated the β function with the
Roomany-Wyld formula,42

βRW
L1L2

(J2) = 1 + ln[�E(L1)/�E(L2)]/ ln(L1/L2)√
∂J2�E(L1)∂J2�E(L2)/�E(L1)/�E(L2)

,

(6)

for a pair of system sizes (L1,L2).
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FIG. 6. The beta function βRW
L1L2

(6) is plotted for Q = 0.2, various
J2, and (L1,L2) = (2,4) (pluses), (4,6) (crosses), and (2,6) (stars).
For a comparison, we present a theoretical prediction β = (0.273 −
J2)/1.1 (dotted line); see text for details. We see that the β function
follows the theoretical prediction for a wide range of J2.
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FIG. 7. The ground-state energy per unit cell Eg/N with N = 36
is presented for Q = 0.2 and various J2.

The β function elucidates the nonlocal character of the
criticality. In the vicinity of the critical point J2c, the β function
falls into a linearized formula,

β(J2) = 1

ν
(J2c − J2), (7)

with the correlation-length critical exponent ν. In Fig. 6, we
present the theoretical prediction β = (0.273 − J )/1.1 (dotted
line); here the critical parameters, J2c = 0.273 and ν = 1.1,
are as estimated in the preceding sections. The behavior
of βRW

L1L2
is consistent with the theoretical prediction for a

considerably wide range of J2, validating our treatment. In
particular, the linearity of βRW

L1L2
is remarkable, suggesting

that scaling corrections are eliminated satisfactorily, at least,
around Q = 0.2. Possibly, the J2-driven phase transition,
rather than the Q-driven transition, is reasonable in the sense
of the renormalization-group flow.

D. Ground-state energy: An indication of the VBS-collinear
phase transition

In Fig. 7, we present the ground-state energy per unit
cell Eg/N , with N = 36 for Q = 0.2 and various J2. From
Fig. 7, we observe a cusp-like anomaly around J2 ≈ 0.7.

This anomaly indicates the onset of the first-order phase
transition between the VBS and collinear phases. Making
similar analyses for various values of Q, we obtained a
schematic feature of the VBS-collinear phase boundary as
shown in Fig. 1. The character of the multicritical point is
unclear.

III. SUMMARY AND DISCUSSIONS

The phase diagram of the extended J1-J2 model with
the biquadratic interaction Q, Eq. (1), was investigated by
means of the numerical diagonalization method for N � 36.
Taking advantage of the extended parameter space (J2,Q),
we surveyed the critical branch separating the Néel and VBS
phases (Fig. 4) in particular. The finite-size corrections appear
to be suppressed around an intermediate regime Q ≈ 0.2.
Encouraged by this finding, we analyzed the criticality around
Q ≈ 0.2 with the finite-size-scaling method. As a result, we
estimate the correlation-length critical exponent ν = 1.1(3).
A nonlocal feature of the β function is accordant with the
theoretical prediction (Fig. 6), giving support to our treatment.

As a reference, we gave an overview of related studies.
For the J -Q model (square-lattice antiferromagnet with the
biquadratic interaction), the estimates ν = 0.78(3) (Ref. 24)
and ν = 0.68(4) (Ref. 25) were reported. As for the spatially
anisotropic spin systems, the exponents ν = 0.80(15) (Ref. 38)
and ν = 0.92(10) (Ref. 39) were obtained. These results
are to be compared with ν = 0.7112(5) (Ref. 43) for the
d = 3 Heisenberg universality class. Our result indicates a
tendency toward an enhancement for the correlation-length
critical exponent, as compared to that for the d = 3 Heisenberg
universality class.

According to Ref. 44, information on the deconfined
criticality can be drawn from the details of the multicritical
point. This viewpoint would provide evidence of whether the
criticality belongs to the deconfined criticality; at present, it
is not conclusive whether the Néel-VBS transition belongs to
the deconfined criticality. This problem will be addressed in a
future presentation.
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