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Anomalous dynamical line shapes in a quantum magnet at finite temperature
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The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic
neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating
Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution
growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at
the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin
of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced
central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems
in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric
continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused
by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions
of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.
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I. INTRODUCTION

The behavior of quantum systems at finite temperature is of
great importance for real applications as well as fundamental
science. In spite of this, relatively few experimental studies
have been undertaken on quantum magnets. The standard
paradigm for temperature effects in a quantum system is
lifetime damping of the quasiparticles. This manifests as a
Lorentzian-type energy1–3 or wave vector (phase coherence)
broadening.4 Indeed, for one-dimensional systems, it has
been proposed that these linewidths display universality.5,6

To test the applicability of these ideas more widely, we
study a generic one-dimensional system of quasiparticles
subject to hard-core interactions (i.e., where more than one
quasiparticle cannot simultaneously occupy a site) in the
form of the gapped quantum magnet, Cu(NO3)2·2.5(D2O)
(copper nitrate), by use of inelastic neutron scattering. The
advantage of such a system for finite-temperature studies is
that while being flexible enough to be a useful description of
many real condensed-matter systems, it has a relatively simple
excitation spectrum: energy bands are arranged according
to the number of quasiparticles, separated by the energy
required to create an extra quasiparticle, and can be studied
in relative isolation providing that the bandwidth is small.
At low temperatures, compared to the band separation, we
can then explore the thermal development of scattering from
individual quasiparticle modes. Hence, in the following, we
can unambiguously identify different aspects of the interplay
of quantum and thermal fluctuations.

Our most important finding is the development with
increasing temperature of an asymmetric continuum of scat-
tering about the single-particle mode that differs strongly

from the Lorentzian broadening familiar from conventional
theories of thermal effects in magnets, a phenomenon that
occurs even though the lifetime broadening is an order of
magnitude smaller than the mode frequency. We propose
this behavior to be non-system-specific and applicable to
a broad range of low-dimensional systems with thermally
activated strong correlations. This asymmetric broadening has
been missed in previous work4,6 and shows the limitations
on the parameter regime in which universal behavior may
emerge. Notwithstanding the former remark, a more recent
approach7,8 does predict asymmetric line broadening for
one-dimensional systems described by gapped continuum
integrable field theories. The application of this approach
to systems that are not exactly solvable9,10 also predicts an
asymmetric broadening. It is then vital to see the degree to
which these theoretical predictions match the experimental
situation. Accordingly, we take the theory, suitably adapted
to the specific case of copper nitrate, and compare it to the
inelastic neutron-scattering results, finding qualitative and
quantitative agreement for temperatures smaller than the
gap. The theory takes the form of an expansion in particle
number, or, equivalently, temperature, and is therefore not
expected to be applicable at higher temperatures. Therefore,
we also compare to exact diagonalization results, which,
though limited to small system sizes, are not restricted to low
temperatures in the same fashion.

Furthermore, such systems will also display intraband
scattering at finite temperatures when there is a thermally
induced population of quasiparticles. Both the experiment
and theory described here are capable of accessing the
resulting low-frequency response, and we take advantage of
this situation to perform an additional test of their agreement.
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Probing the aforementioned system of hard-core quasiparti-
cles with neutrons requires it to be manifested as some form of
spin system. The alternating Heisenberg chain (AHC) of spin-
1/2 moments with strong alternation constitutes such a system.
The AHC is described by the Hamiltonian H = ∑

i JSi,1 ·
Si,2 + J ′Si,2 · Si+1,1, where J and J ′ are antiferromagnetic
exchange constants, with J > J ′ and alternation parameter
α defined as J ′/J (here, strong alternation corresponds to
small α). The AHC has been an important paradigm in
quantum magnetism for a long time.11–13 Recently, it has
attracted the attention of the quantum information community
as an example for detecting and quantifying entanglement in
solids,14 as well as encoding and transporting qubits.15

In the AHC, the dominant antiferromagnetic exchange
interaction (J ) between two neighboring sites (separated
by distance ρ and with chain repeat distance d) couples
the spins into pairs, or “dimers,” whose ground state is a
singlet 1/

√
2{|↑↓〉 − |↓↑〉}. The dimer excited states are a

spin-1 triplet with quantum numbers Sz = 1,0,−1. To first
approximation, the global ground state of the chain is a product
of dimer singlets. However, the interdimer exchange (J ′)
admixes a small amount (of the order

√
3α/8) of polarized

dimer pairs with total spin s = 0 as ground-state fluctuations
[Fig. 1(e)]. The elementary excitations are a triplet of spin-1
states, or magnons. These are momentum k Bloch states
obtained by exciting one dimer singlet to a triplet state.
The interdimer coupling allows the excitation to hop from
dimer to dimer along the chain, as illustrated in Fig. 1(f).
To the lowest order in J ′, this one-magnon dispersion is
ω(k) = J − (J ′/2) cos(kd).16 The AHC then provides an
excellent example of a one-dimensional system of hard-core
quasiparticles if α is small.

Copper nitrate closely realizes the AHC, the Cu2+ ions have
spin-1/2 moments, and the dominant exchange couplings are
J = 0.443 ± 0.002 meV and α = 0.227 ± 0.005. For these
parameters, the magnon bandwidth is small compared to
the gap. This parameter range is complementary to the one
analyzed in recent studies.4,6 Crucially the smallness of J ′/J
leads to a clear separation in energy between single-magnon
excitations and two-magnon excitations, even at high temper-
atures. This allows for a detailed experimental investigation of
the corresponding features in the dynamic response for a wide
range of temperatures. Copper nitrate then is a particularly
attractive material for studying the crossover in the dynamics
between the low-temperature regime dominated by quantum
fluctuations and the high-temperature phase characterized by
thermal fluctuations.

Systems of one-dimensional hard-core bosons may also be
realized as spin ladders, when the ratio of exchange parameters
favors dimers forming on the rungs. Again, the hard-core
constraint of magnons not being able to simultaneously occupy
sites is enforced by the dimer units, which can only be in
an unoccupied (singlet) or occupied state (one of the three
triplet states). The thermal development of spectral weight
in these ladder systems has been studied,17,18 but the bond
operator approaches used did not yield information about the
linewidths, so that the results are somewhat complementary to
those presented here.

The plan of the paper is as follows. In Sec. II, we outline
the theoretical approach to calculating the finite-temperature

FIG. 1. (Color online) Excitation spectra of copper nitrate at
T = 0.12 K (∼0 K). (a) and (c) show background-subtracted two-
and one-magnon experimental data, respectively, while (b) and (d)
show the simulated T = 0 spectra. (e)–(g) presents schematically
the excitation spectrum in terms of the single-dimer states. The
(|G〉,|+1〉,|0〉, and |−1〉) open and filled circles represent unoccupied
and occupied states. (e) represents the ground state where a small
amount of the s = 0 two-magnon vacuum fluctuations mix with
the dimer singlet. (f) shows the one-magnon excitation, where a
singlet is promoted into a triplet and can then propagate along the
chain, maintaining its polarization. (g) describes the two-magnon
state where the s = 0 two-magnon fluctuations are excited; again
these particles can propagate, maintaining polarization.

response for the AHC. Section III covers the specifics of copper
nitrate as a manifestation of the AHC. In Sec. IV, we compare
the experimental results to the theoretical predictions. We also
compare the data with exact diagonalization results in Sec. V.
Finally, in Sec. VI, we make some concluding remarks.

II. THEORY

An intrinsic property of the magnon excitations in the AHC
is that they obey a hard-core constraint: each dimer site can
be occupied by at most one magnon at a time. In addition
to this hard-core repulsion, particles occupying neighboring

014402-2



ANOMALOUS DYNAMICAL LINESHAPES IN A QUANTUM . . . PHYSICAL REVIEW B 85, 014402 (2012)

sites interact with each other through the interdimer exchange
(J ′). This interaction only exists for nearest neighbors and
is absent for larger dimer separations. The nearest-neighbor
potential Vs is −J ′/2,−J ′/4,J ′/4 for pairs with combined
total spin s = 0,1,2, respectively, and provides an attraction
that has important effects on multiparticle states. There are two
types of solutions to the two-particle Schrödinger equation:19

The first has the form of a continuum of states, where k1 and
k2 are momenta of the magnons along the chain, with total
momentum along the chain Q = k1 + k2 and energy h̄ω =
h̄ω(k1) + h̄ω(k2). The scattering matrix (S matrix) describing
the interchange of two particles in a state with total spin
s is given by Ss

k1,k2, and the corresponding phase shift is
φs

k1,k2 = −(i/2) ln(Ss
k1,k2). We note that in general the S matrix

differs from the noninteracting hard-core value Ss
k1,k2 = −1,

but reduces to the latter in the limit of vanishing momenta.
The second solution to the two-particle Schrödinger equa-

tion has the form of an exponentially decaying bound mode,
which exists over all Q for s = 0 and around the nodes in the
continuum (Q ∼ π/d, where d is the chain repeat distance)
for s = 1. For s = 2, the mode occurs at energies above the
two-magnon continuum (“antibound mode”).

A. Temperature

A fundamental result of this paper is the observation of the
development of an asymmetric continuum with temperature.
In general, the calculation of dynamical correlation functions
at finite temperature is a highly nontrivial task. In Refs. 7
and 8 (and subsequently in Ref. 20), a method was developed
and coupled with the property of integrability in certain
one-dimensional systems to render the calculation tractable.
However, the method can be applied without appealing to
integrability if one is willing to work with approximate
expressions for matrix elements (controlled by some small
parameter, such as α). This has been done for both the AHC9

and a dimerized spin ladder.10 Other results for the dynamical
correlations in the AHC at finite temperature have relied on
exact diagonalization.21 Here we calculate the spin response
using the method described in Ref. 9, which is summarized
below for convenience.

In the limit α = 0 of decoupled dimers, the ground state for
periodic boundary conditions is a product of local singlets,

|0〉=
N/2∏
j=1

|0〉j =
N/2∏
j=1

1√
2

[|↑〉2j−1|↓〉2j − |↓〉2j−1|↑〉2j ]. (1)

We have taken the stronger exchange J as between sites j =
1,2 and the weaker J ′ between j = 2,3, and so on for the
rest of the chain. Single-particle excitations are obtained by
exciting one dimer to a triplet state, e.g.,

t+0 (m)|0〉m = 1√
2

[|↑〉2m−1|↓〉2m + |↓〉2m−1|↑〉2m].

To the lowest order in degenerate perturbation theory, an
excitation with Sz = σ and momentum p is then given by
(the repeat distance d is set to 2)

|p,σ 〉 =
√

2

N

N/2∑
m=1

ei2pmt+σ (m)|0〉. (2)

The energy of the one-particle states |p,α〉 is

ε(p) = J − J ′

2
cos(2p). (3)

By virtue of the periodic boundary conditions, the mo-
menta take the values p = 2πn/N, n = 0,1, . . . N/2 − 1.
The leading-order expressions in degenerate perturbation
theory for two-particle states with total spin s, z component of
spin σ , and momenta p1,2 are

|p1,p2,s,σ 〉 = Ns
p1,p2

N/2∑
m=2

m−1∑
n=1

ψs(p1,p2|m,n)

×
∑
{σ1,2}

cs,σ
σ1,σ2

t+σ1
(m)t+σ2

(n)|0〉, (4)

where Ns
p1,p2 is a normalization constant, cs,α

σ1,σ2
are Clebsch-

Gordan coefficients, and the wave functions take the form

ψs(p1,p2|m,n) = e2i(p1m+p2n) + Ss
p1,p2e

2i(p1n+p2m). (5)

The scattering matrix is given by

Ss
p1,p2 = −1 + e−2i(p1+p2) − 2
se

−2ip2

1 + e−2i(p1+p2) − 2
se−2ip1
, (6)

where 
0 = 1, 
1 = 1/2, and 
2 = −1/2. Imposing periodic
boundary conditions yields a set of coupled algebraic equations
identical to the Bethe ansatz equations for the spin-1/2
Heisenberg XXZ chain with anisotropy 
s ,

eip1N = Ss
p1p2, eip2N = Ss

p2p1. (7)

Explicit expressions for the wave functions are obtained by
solving these equations numerically for the allowed values of
p1,2. Using these explicit forms of the wave functions, one can
determine the matrix elements of the spin operators and, via a
spectral representation, dynamical correlation functions. The
dynamical susceptibility is given by

χzz(ω,Q) = −
∫ β

0
dτeiωnτ

1

N

×
∑
l,l′

e−iQ(l−l′)〈Sz
l (τ )Sz

l′
〉|ωn→δ−iω, (8)

where β = 1/kBT . Using a spectral representation in imagi-
nary time as well as translational invariance by two sites, we
can express the susceptibility as

χzz(ω,Q) = 1

Z

∞∑
r,s=0

Crs,

Crs = −
∫ β

0
dτeiωnτ

1

N

N/2−1∑
l,l′=0

e−2iQ(l−l′)

×
∑
γrγs

e−βEγr e−τ [Eγs −Eγr ]

× ei2(l−l′)[Pγs −Pγr ]Mγrγs
|ωn→δ−iω. (9)

Here, γs is a multi-index enumerating all s-particle states, Eγs

and Pγs
are, respectively, the energy and momentum of the
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excited state |γs〉, and

Mγrγs
= |〈γr |Sz

0|γs〉|2 + eiQ〈γr |Sz
0|γs〉〈γs |Sz

1|γr〉
+ |〈γr |Sz

1|γs〉|2 + e−iQ〈γr |Sz
1|γs〉〈γs |Sz

0|γr〉. (10)

Carrying out the Fourier transform, we have

Crs =
∑
γr ,γs

N

4
δQ+Pγr ,Pγs

e−βEγr − e−βEγs

ω + iδ + Eγr
− Eγs

Mγrγs
. (11)

The terms Crs in the expansion of the susceptibility contain
contributions that diverge as system size to some power and
are canceled by the partition function. In order to make these
cancellations explicit, we denote the n-particle contribution to
Z by Zn and insert the expansion

Z−1 =
( ∞∑

n=0

Zn

)−1

= 1 − Z1 − (
Z2 − Z2

1

) + · · · (12)

into the spectral representation of the susceptibility to obtain
a low-temperature expansion of the form

χzz(ω,Q) = C01 + C10 + C11

+ [C12 + C21 − Z1(C01 + C10)] + · · · (13)

At T > 0, this expansion is found to exhibit divergences when
ω → ε(Q) that grow with the number of particles. In order to
obtain physically meaningful results, it is therefore necessary
to carry out a resummation following Ref. 7. We first note
that the result for the single-magnon contribution at T = 0
is obtained by taking into account only the ground state and
one-particle states in the expansion of χzz(ω,Q), resulting in

D(ω,Q) = 1 − cos(Q)

4

[
1

ω + iδ − ε(Q)
− 1

ω + iδ + ε(Q)

]
.

(14)

Casting the susceptibility at finite temperature in the form of
a Dyson equation,

χzz(ω,Q) = D(ω,Q)

1 − D(ω,Q)�(ω,Q,T )
, (15)

we obtain an expression χzz = [D(ω,Q) +
D2(ω,Q)�(ω,Q,T ) + · · ·] that exhibits the same type
of divergences encountered in the spectral representation,
which allows us to derive a low-temperature expansion for
�(ω,Q,T ) by matching the two expansions. To the leading
order in e−βJ , we find

�(ω,Q,T ) ≈ D−2(ω,Q){(C11 + C12 + C21)

− [Z1(1 − e−βε(Q)) + e−βε(Q)]D(ω,Q)}. (16)

The contributions C12, C21, and C11 are determined using the
explicit forms of one- and two-magnon states given above and
by solving the quantization conditions for magnon momenta
numerically (which is easily done for systems of several
thousand sites). This results in a low-temperature expansion
of the dynamical susceptibility, controlled by the smallness
of the density of thermally excited magnons. The derivation
presented here is for a straight chain, but is easily adapted to
more physically realistic systems.

III. COPPER NITRATE AND NEUTRON SCATTERING

A. Sample enrichment and growth

Due to the weak two-magnon scattering of about 1%
of the one-magnon signal, a high-quality sample is crucial
for a possible resolution of the two-magnon signal. In its
original form, copper nitrate, Cu(NO3)2·2.5H2O, produces a
high incoherent cross section due to the associated crystal
water giving rise to an incoherent scattering signal. This
can be avoided by replacing hydrogen with deuterium (D),
which possesses a comparably low incoherent cross section
(compare σincH = 81b to σincD = 2.03b). This substitution is
performed by several distillation runs.

The aim of the distillation process is the replacement of
the crystal water associated with the copper nitrate powder by
heavy water and the creation of a saturated solution. For the
desired deuteration ratio of at least 98%, five distillation runs
had to be implemented with the distillation process performed
by using a rotary evaporator with its flask kept at 60 ◦C in
a heat bath where the vacuum was never below 20 mbar so
that the residual material kept its crystal solvate. The starting
solution consists of a saturated heavy-water solution and
additionally some extra heavy water for the pumping process
and replacement of the crystal water, ensuring the existence of
a solution during the whole distillation process.

For a saturated solution at 80 ◦C, the exact solubility of
copper nitrate has to be established with the difficulty in
determining the exact amount of crystal water H2O enclosed
in our starting material. Any contact with air below 26 ◦C
will increase the crystal water in the material, changing
the solubility, where the solubility is defined as the amount
of Cu(NO3)2 dissolvable in a 100 g solution. Cost issues
recommended the use of H2O for the determination of the
solubility for our starting material, and it was determined
that 238.8 g of Cu(NO3)2·2.5H2O could be dissolved in 50 g
of H2O at 80 ◦C, corresponding to a solubility of 66.7%, in
good agreement with the tabulated value of 67.51%. This ratio
has to be corrected due to the higher density of deuterium
(ρD = 1.107 g/mol) compared to hydrogen. 238.8 g of the
powder material Cu(NO3)2·2.5H2O consist of 192.7 g of
Cu(NO3)2 and 46.23 g of H2O, resulting in a total of 96.23 g
of H2O for a saturated solution equivalent to 106.53 g of D2O,
establishing the total mass of a saturated heavy-water solution
at 299.1 g.

The first distillation run is performed with recycled heavy
water consisting of a deuteration ratio of at least 80% for which
262.4 g of D2O are mixed to 238.8 g of Cu(NO3)2·2.5H2O,
ensuring a deuteration mass ratio of at least 68.0% and an
atomic ratio of 65.7%. During the distillation, 190.7 g of liquid
are pumped out of the mixture, leaving 310 g of solution.
The deuteration ratio does not change significantly during the
distillation; if at all, a slight shift to a higher ratio is possible
due to a 1.4 ◦C lower boiling point of H2O compared to D2O.
For the second run, 253.4 g of D2O are added to the remaining
solution, raising the mass ratio to 89.9% and the atomic ratio
to 88.8%; 263.3 g of liquid are pulled during the pumping
process. The solution is replenished by 253.4 g of D2O for
the third run, creating a mass ratio of 96.9% (atomic ratio
of 96.6%) and, during the distillation, 244.6 g of liquid are
removed from the solution. In the second-to-last distillation
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FIG. 2. (Color online) Example of a highly deuterated single
crystal of copper nitrate grown using the solution growth and
enrichment method described in Sec. III A of the text. Very large
high-quality crystals of several tens of grams can be grown using this
method.

run, a mass ratio of 99.0% and an atomic ratio of 98.9%
are obtained by mixing 253.2 g of D2O to the solution and,
during the pumping, 259.6 g of liquid are extracted. For the
last process, 230.0 g of D2O are added and a mass ratio of
99.7% and an atomic ratio of 99.7% are reached. In this last
distillation, 232.1 g of solution have to be extracted from the
mixture to ensure a saturated solution for the growth process
and, during the actual run, 233.7 g of liquid are pulled out.
This amount is within the limits of having a saturated solution
at 80 ◦C, leading to the decision to not add more D2O in order
to limit the air contact of the solution and thus a possible
exchange between hydrogen and deuterium. By performing
these five distillation runs, the target deuteration ratio of >99%
is achieved.

This saturated solution in a sealed glass container is placed
into a temperature-controlled oil bath at 85 ◦C. The liquid
is cooled to 35 ◦C, well above the second phase-transition
temperature, over several hours, producing needle-shaped
seeds of approximate size 1 cm × 2 mm × 1 mm. Choosing
one seed and placing the rest back into the solution to avoid
any changes in the solubility, a thread is tied around the
upper part of the seed and it is placed vertically into the
solution. The thread has to be kept outside of the solution,
ensuring the growth of the crystal below it and an easy
removal after the completion of the growth process. The
new starting temperature with the suspended seed consists
of 65 ◦C to avoid any dissolving of the seed, and a cooling
rate of 0.5 ◦C per hour until 45 ◦C is achieved, which is
necessary for a homogeneous growth. The whole growth
process is performed in a nitrogen-filled glove bag and resulted
in the growth of the 8-g single crystal used in our neutron
experiment. An example crystal grown using this method is
shown in Fig. 2.

B. Neutron scattering

The single and multiparticle states were measured using
the OSIRIS indirect geometry time-of-flight spectrometer22

at the ISIS Facility, Rutherford Appleton Laboratory, United
Kingdom. The crystal was precisely aligned with the (h,0,l)
reciprocal lattice plane in the horizontal scattering plane.
Cu(NO3)2·2.5(D2O) is monoclinic (I12/c1) with lattice pa-

rameters (at 3 K) of a = 16.1, b = 4.9, and c = 15.8 Å and
β = 92.9◦.23 Equivalent chains lie along the [1,1,1]/2 and
[1,−1,1]/2 directions and project onto the same direction
on the (h,0,l) plane.19 A dilution insert provided sample
temperatures down to 120 mK and a rotation stage allowed
the magnetic chains to be rotated to different angles relative to
the incident beam of neutrons. A white beam is pulsed at 50 Hz
with neutrons arriving at the sample over the initial 34-m flight
path at different times according to their energy. An array of
pyrolytic graphite analyzers scatter neutrons with energy of
1.845 meV from 002 reflections into a bank of 42 detectors,
covering scattering angles from 11◦ to 150◦ arrayed at 0.5 m
around the sample, provided an energy resolution of 25 μeV
full width at half maximum. The cooling of the analyzers in
OSIRIS provides a very low background by removing thermal
diffuse scattering. The energy and wave-vector transfer of
scattering events are calculated from the crystal angle and
converted to the partial differential cross section expressed in
terms of the projection of the wave vector along the chain
axis. Nonmagnetic backgrounds have been subtracted from
the displayed data sets.

At very low temperatures compared to the exchange
energy J , neutrons essentially measure the S = 1 spectrum
by exciting from the ground state. The entire scattering plane
was measured and the single-magnon excitation spectrum was
fitted to determine the exchange couplings using a simple
cosinusoidal dispersion, h̄ω(Q) = J − 1/2

∑
d Jd cos(Q · d).

This analysis showed that the strongest exchange, J =
0.443 ± 0.002 meV, is across the bond [0.234, ±0.473, 0.270]
with intradimer J[0.266,0.027,0.230] = 0.101 meV, giving the
alternation ratio α = J/J = 0.227 ± 0.005. The interchain
coupling along the [1/2,0,0] and [0,0,1/2] directions are Ja =
0.006 ± 0.003 meV and Jc = 0.0018 ± 0.0005 meV. The
improved exchange-parameters determination was possible
due to the comprehensive and high-quality data sets obtained
from OSIRIS.

IV. RESULTS AND DISCUSSION

A. One-magnon, two-magnon, and bound states

In Fig. 1, the excitations to the one-magnon modes are
easily seen and follow accurately the predicted cosinusoidal
behavior. The wave-vector modulation of the intensity is
due to interference in scattering between the two spins
composing the dimer. The two-quasiparticle states can also be
observed. Neutrons scatter from the weakly admixed polarized
(s = 0) dimer pairs composing the ground-state fluctuations
to the two-magnon states [Fig. 1(g)]. This scattering is far
more sensitive to the composition, interactions, and phase
factors between particles than the one-magnon signal, and our
measurements, given in Fig. 3, are in quantitative agreement
with the interacting two-particle Schrödinger wave functions,
calculated in the appendix of Ref. 19. In particular, we resolve
the spin-1 bound mode of the AHC, which is a direct signature
of the two-particle interaction, given in Figs. 3(c) and 4. The
binding energy and intensity of the bound mode are in perfect
agreement with the perturbative calculation.13 This confirms
that copper nitrate accurately realizes an interacting gas of
hard-core magnons in one dimension and shows an attractive
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FIG. 3. (Color online) The two-magnon states. (a) The superim-
posed line gives the upper and lower boundaries of the two-magnon
scattering and the position of the bound mode, lying just below
the node. (b) is a cut of the scattering intensity at Q = 2π/d as a
function of energy; scattering is observed between the upper and lower
two-magnon envelope. (c) is a cut at the node position (Q = 3π/d).
The node occurs at an energy of 0.88 meV (shaded region), however,
at this wave vector, it is predicted to have very little intensity. Red lines
are calculations based on the two-particle Schrodinger solution.19 A
peak is nevertheless observed and occurs at the lower energy of
0.855 meV; this is the expected position of the bound mode.

coupling—the bound state appears below the continuum—
between pairs of magnons in a spin-1 total state. Magnons
in the spin-0 total state are even more attractive and form a

FIG. 4. (Color online) Measurement showing bound mode at
∼0.86 meV, as indicated by the red dashed line, resolved from the
continuum at the higher energy of ∼0.89 meV, with gray hatching
indicating the nominal extent of the continuum. The measurement
here was made with a different crystal rotation angle from that in
Fig. 3(c) and cuts through a location with more intensity near the
continuum node. The red line is that of two resolution-broadened
Gaussians at the expected bound mode and continuum positions.

deeper bound state not visible to neutrons, while the magnons
are repulsive in spin-2 states and form an antibound state above
the continuum, again not visible to neutron scattering due to
spin conservation selection rules.

The spin-1 bound mode, shown in Fig. 3(c), is extracted
from a crystal orientation that covers the whole wave-vector
extent of the continuum. In this geometry, the node in the
continuum has very little intensity and only the bound mode
is apparent. Other crystal rotations, while not covering the
whole wave-vector range simultaneously, can provide the
possibility to observe bound mode and continuum scattering
simultaneously, as shown in Fig. 4.

B. Thermal effects

At low temperatures, the dynamics of the strongly al-
ternating Heisenberg chain can be thought of in terms of
a low-density gas of hard-core magnons. We follow the
thermal evolution of correlations in this quasiparticle gas:
The density of thermally excited magnons per dimer can
be estimated from the zero-bandwidth limit to be n(T ) ≈
3 exp(−J/kT )/[1 + 3 exp(−J/kT )] (black dash-dotted line
in Fig. 5). Neutron-scattering measurements were made at
temperatures of T = 0.12,2,3,4,6 K, where the magnon densi-
ties are approximately n = 6 × 10−19, 0.19, 0.35, 0.45, 0.56,
respectively, and where the density at infinite temperature
is n(∞) = 0.75. With increasing temperature, the following
picture emerges: first, the two-magnon scattering all but
disappears; second, a new band of scattering emerges around
zero energy with the same bandwidth as the one-magnon
scattering; and third, the one-magnon mode develops into a
scattering continuum; see Fig. 6.

The decrease in the two-particle scattering with increasing
temperature is a direct result of the hard-core constraint. A
neutron cannot create a further two magnons on a given pair of
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FIG. 5. (Color online) Calculated integrated intensity of the one-
magnon band (black stars), two-magnon band (red circles; note the
intensity is scaled by a factor of 20 to be visible on the same scale),
and central quasielastic band (blue crosses), as computed in Ref. 21
using 16 spin diagonalizations for copper nitrate. The temperature is
rescaled to the dimer energy J . The black dash-dotted line is the zero
bandwidth limit result discussed in Sec. IV B, and the blue dashed
line is the corresponding value for the central peak (see Ref. 7). The
red solid line is the intensity predicted for the two-magnon scattering
from perturbation theory; see Sec. IV B.
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FIG. 6. (Color online) Excitations at finite temperature. (a) shows
the experimental data at 6 K. The one-magnon scattering has
significant asymmetric broadening at this temperature; additional
scattering appears around E = 0 meV. This is intraband scattering,
which at the lowest temperatures is found only within the white
boundary shown. (b)–(d) gives a schematic representation of the
neutron-scattering processes. At finite temperature, a significant
number of dimer triplets are thermally excited, as shown in (b).
Neutrons can scatter these magnons within the triplet band, which is
observed as the intraband scattering. (c) One-magnon excitations can
also be made by exciting a dimer from a singlet to a triplet as before.
(d) However, now in addition to the energy gap, the interaction of the
magnons within the band must be considered, as must the hard-core
constraint; these effects combine to give an asymmetric line shape as
described in the text.

dimers if any of the dimers is already occupied by a magnon.
The density of adjacent dimer pairs that are both unoccu-
pied falls approximately as nss(T ) ≈ 1/[1 + 6 exp(−J/kT ) +
9 exp(−2J/kT )], i.e., nss = 1, 0.66, 0.42, 0.30, 0.19, re-
spectively, for temperatures 0.12, 2, 3, 4, 6 K, and reaches
a value of nss(∞) = 0.0625 at infinite temperature. The
expected intensity is a product of the matrix element α2/4 (to
lowest order in α) and the population of unoccupied pairs, and
therefore is proportional to I2magnon ≈ nss × α2/4 (see Fig. 5
where this result, shown as a red solid line, is compared to
exact diagonalization). This implies that the two-magnon band
does not disappear altogether, but rather becomes very hard to
detect, with an intensity of only 0.06% of the total scattering
at high temperature.

C. Intraband scattering

Around zero energy, a central peak in S(Q,ω) appears
with increasing temperature due to intraband scattering within
the one-magnon band: Neutrons can scatter via a change in
momentum and energy (and possibly spin quantum number)
off of a thermally excited magnon, as shown in Fig. 6. Precisely
one scattering process exists for given wave vector Q and
frequency ω in a frequency range |ω| < ωm(Q) [where the
maximum frequency ωm(Q = π ) is the bandwidth]. To the
lowest order, we have ωm(Q) = αJ sin(Q/2), and from the
density of states a square root at ±ωm(Q) results. In the higher
order, this singularity becomes rounded out to a continuum.9

Results for the line shape of the central peak are displayed in
Fig. 7(c). The calculated intraband scattering for Q = π for
different temperatures are also shown in Fig. 7(c). Although
the central regime at energy zero is masked by other incoherent
scattering processes from the material, the increase of signal
toward ωm and the drastic decrease beyond ωm is clearly seen.

The basic square-root singularity characterizing this scat-
tering process appears similar to the scattering from excited
domain walls in quantum Heisenberg-Ising chains, as pre-
dicted by Villain24 and observed later in the quasi-1D magnets,
CsCoCl3 (Refs. 25 and 26) and CsCoBr3 (Ref. 27). However,
this similarity is to a large extent formal (cosine spectrum
of the basic excitation), whereas the basic processes behind
the scattering are very different:9,28 In the AHC, the leading
contribution to the intraband scattering at low temperatures
arises from scattering processes between two well-defined
single-particle states. On the other hand, spin excitations in the
Heisenberg-Ising chain occur in pairs of domain walls and the
leading contribution to the low-temperature intraband scatter-
ing is due to scattering on one member of the domain-wall pair.
While the topological nature of these solitonlike excitations
restricts it to 1D, the dimer case studied here can serve as
a paradigm for gapped quantum magnets in any number of
dimensions. In particular, intraband scattering is also present
in other gapped quantum spin chains such as Haldane-gap
compounds, but is likely to be more spread out and harder to
observe due to the larger ratio of bandwidth to gap energy.

D. Thermal line broadening

Finally, we discuss the asymmetrically broadened line
shape of the one-magnon scattering at finite temperature. In a
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FIG. 7. (Color online) Temperature dependence of intraband and
one-magnon excitations: (a) shows the one-magnon scattering for
Q = 2π/d at 2, 3, and 4 K, respectively. (b) shows the one-magnon
at Q = π/d for 2, 3, and 4 K. The profile becomes broadened with
temperature and develops an asymmetric line shape. (c) shows the
intraband scattering at Q = 5π/d; the scattering is similar at π/d

and 3π/d but the background is particularly clean at Q = 5π/d .
A theory of interacting particles was developed as described in
Sec. II and is shown as the solid blue line in each panel of parts
(a)–(c) (convolved with the experimental resolution). Note that for 4
K, the agreement is not as good because the series expansion is only
valid at low particle density.

semiclassical picture, the high-temperature or paramagnetic
phase is characterized by an absence of coherence, and
quasiparticles only emerge with decreasing temperature. The
process can be followed in the one-particle scattering, where
the neutron creates a magnon directly by polarizing an
unoccupied dimer. In such a picture, a symmetric Lorentzian
line shape is predicted, whose width is a measure of the

lifetime or coherence of the particles. The issue was first
addressed experimentally by Xu et al.23 who also studied
one-magnon scattering in copper nitrate using inelastic neutron
scattering (INS). The data was interpreted as a conventional
Lorentzian line shape and modeled using a random phase
approximation (RPA) calculation. The dispersion of these
particles was found to renormalize with temperature with the
bandwidth of the excitation spectrum narrowing compared to
an RPA calculation. Here we find that the lineshapes are in fact
highly asymmetric in energy. This suggests that a Lorentzian
broadening occurs only at very low temperatures (compared
to the magnon gap), which is a fact that is borne out by
calculations above in Sec. II. At higher T , magnon interaction
effects are such that a simple description in terms of a lifetime
no longer applies. The line shape then constitutes a fingerprint
of the magnon interactions.

Figure 7 shows the thermal evolution of the one-magnon
band. The most striking feature is the formation with increasing
temperature of a continuum of scattering weighted toward
higher (lower) energies for Q = 2π/d (Q = π/d and Q =
3π/d). In the analysis of experimentally obtained lineshapes
that show asymmetric thermal broadening, such as those
presented here, it is useful to have a function that can be fit
to the data, parametrizing the asymmetry. We find a suitable
function to be

I (Q,ω) = A(Q)
∫ ∞

−∞
dt

exp
{− [ω−�(Q)t−d(Q)]2

2σ 2

}
√

2πσ 2

× 1

π

1

1 + (t − α(Q)t2 + γ (Q)t3)2
. (17)

This incorporates the effect of the experimental resolution
by taking a convolution with a Gaussian of variance σ

(we have made a substitution, shifting and rescaling the
integration dummy parameter to simplify the integrand). The
remaining function takes the form of a modified Lorentzian,
where the usual argument has been replaced by a polynomial
that includes an asymmetry term, α(Q)t2, and a further
damping term, γ (Q)t3. As T → 0, the asymmetry vanishes
[α(Q),γ (Q) → 0] and the line shape becomes Lorentzian
(broadened by the experimental resolution). Taking the T =
0.12 K data as symmetric, we extract the resolution, σ =
0.12 meV, and use this as an input parameter for fits at
T = 2,3,4, and 6 K. The extracted parameters are then
�(Q), d(Q), α(Q), γ (Q), and the overall amplitude A(Q).
Some of the fits obtained are shown in Fig. 8. A simple measure
of the asymmetry is given by α(Q), which is increasingly
positive (negative) for a tail weighted toward higher (lower)
energies. In Fig. 9, we plot the values of α(Q) and �(Q)
obtained using Eq. (17).

E. Interacting particle gas

To gain insight into the development of the asymmetric
line shape, a calculation was presented in Sec. II, treating the
thermally excited particles as a strongly correlated quantum
ensemble. These calculated lineshapes (blue line) for the
alternating Heisenberg chain at finite temperature are also
shown in Fig. 7 and give a good account of the data.
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FIG. 8. (Color online) Fits (red curves) of Eq. (17) to the
experimental data (black points). Parameters are obtained by first
fitting a Lorentzian convolved with a Gaussian to the T = 120 mK
data in order to extract the experimental resolution.

For hard-core particles with no contact potential, the quasi-
particles are fermionic in the sense that their scattering matrix
is −1. They are hard core in that even if the fermions have
different spin quantum numbers, they will never occupy the
same dimer site. The broadening of the magnon line is found
to be highly asymmetric in this case. The presence of a further
interaction in the form of a contact potential (“stickiness”)
between quasiparticles is seen to modify the line shape.
This demonstrates that as expected on general grounds, the
broadening of the line reflects the details of the quasiparticle
interactions. On a qualitative level, the broadening of the
magnon line can be understood by considering the joint
density of states for transitions between thermally occupied

π
π
π

Γ α

FIG. 9. (Color online) The Lorentzian width �(Q) and asymmetry
α(Q) extracted from fits of Eq. (17) to the experimental data at 0.12, 2,
3, 4, and 6 K. Fits are obtained by first fitting a Lorentzian convolved
with a Gaussian to the T = 120 mK data in order to extract the
experimental resolution.

one-magnon states and unoccupied two-magnon states,

N1→2 =
∑

p,p1,p2

n(p)n̄(p1,p2)δq+p,p1+p2δω+ω(p),ω(p1)+ω(p2).

(18)

Here, n(p) is the thermal occupation number for a one-magnon
state with momentum p and n̄(p1,p2) is the probability that the
two-magnon state characterized by momenta p1,p2 is unoc-
cupied. For −π/2d < Q < π/2d and π/2d < Q < 3π/2d,
this function is skewed toward higher and lower energies,
respectively. The specific form of the line shape is dictated
by the matrix element and hence by the magnon-magnon
interaction.

Again, one may naı̈vely think that formation of the one-
magnon band as a continuum resembles the two-soliton
continua in the quantum Heisenberg-Ising chains, such as
CsCoCl3 (Refs. 25 and 26) and CsCoBr3 (Ref. 27). However,
this is misleading. The physical origin is distinctly different
with the continuum in the quantum Heisenberg-Ising chains
due to the neutron-scattering process involving a spin-1 flip
being projected into pair states consisting of two solitons
each, carrying a spin-1/2 and independent momenta and
energy. The partitioning of momenta and energy is a simple
summation, E = E(k1) + E(k2) and k = k1 + k2, which gives
a characteristic bowtie structure, and this continuum is a T = 0
property of the Hilbert space. For the AHC, the excitations
are spin-1 magnons with only one being excited by a neutron.
There is no one-magnon continuum at T = 0, only a δ-function
pole. At elevated temperatures, the neutron-excited magnon
interacts with the nearby thermally activated magnons through
the potential V and scatters to a two-magnon final state via an
off-shell scattering process. The continuum in Eq. (18) then is
distinctly different in extent in wave vector and energy.

This behavior then represents a quite different paradigm
for the effects of temperature in a quantum magnet, in
contrast to the expectation of simple lifetime broadening due
to thermal decoherence that is observed, for example, in the
2D Heisenberg antiferromagnet.3 We expect that such strongly
correlated physics is generic to ensembles of interacting hard-
core particles and should be seen mainly in low-dimensional
gases of particles including other gapped quantum magnets.

V. COMPARISON TO DIAGONALIZATIONS

Complementing the above analytical approach, an exact
finite chain diagonalization study using 16 sites has been
undertaken for the spin-1/2 alternating Heisenberg chain with
the parameters for copper nitrate.21 The scattering, including
all possible transitions, weighted by thermal population and
scattering cross sections and corrected for both the magnetic
form factor for Cu2+ and the instrumental resolution, has been
computed. These computations also predict the asymmetric
line shape in agreement with the measurements, demonstrating
an accurate handling of background effects in the neutron-
scattering data. The temperature dependence of the one-
magnon lineshapes, both measured and computed, are shown
in Fig. 10, which demonstrates very good agreement. The
small disagreement at 2 K is probably due to the sample being
at a slightly elevated temperature during the measurement. The
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FIG. 10. (Color online) The one-magnon line shape at different
temperature (2, 4, 6 K) compared to the exact diagonalization
calculations for Q = 2π/d (left-hand panels) and Q = π/d (right-
hand panels). Small corrections for interchain coupling have been
made to the lineshapes generated assuming J = 0.443 meV and
J ′/J = 0.226. Also, the intensity is normalized to unit area to
simplify the prefactor contributions of thermal weight and dimer
structure factor.

intraband scattering is centered on zero energy transfer. This is
particularly hard to measure because the incoherent scattering
of hydrogen from the sample gives a large background signal
centered at 0 meV. The excellent energy resolution of OSIRIS
allows the magnetic intraband signal to be extracted at around
twice the FWHM of the energy resolution. In fact, reliable data
is extracted from 0.048 meV transfer and above. The accurate
handling of background effects in the neutron-scattering data
is again demonstrated by the comparison with the computed
lineshapes. The temperature dependence of the intraband
scattering agrees very well in intensity, and line shape changes
with the computations, as shown in Fig. 11.
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FIG. 11. (Color online) The intraband scattering at different
temperatures (2, 4, 6 K) compared to the exact diagonalization
calculations. At 2 K, the vestiges of the singularity at the upper
boundary (Villain-type mode) are seen. The agreement with the finite
chain calculations21 including instrumental resolution is excellent.

Finally, we draw attention to Fig. 3 from Ref. 21, which
shows S(Q,ω) calculated via the 16 spin diagonalization.
It shows a cut at π/d, and at 2π/d with no instrumental
resolution (cf. Fig. 8 in this paper). For both π/d and 2π/d,
the asymmetry of the line shape is very clearly seen at the
different temperatures. Note that the copper nitrate parameters
were used, and the temperature and energy scales are in units
of the dimer coupling, J = 0.443 ± 0.002 meV. This shows
that the line asymmetry indeed survives up to all orders of
perturbation (i.e., to temperatures of the order of the gap and
above) and is a striking physical effect.

VI. SUMMARY AND CONCLUSION

We have undertaken an in-depth study of the effects
of temperature on a gapped quantum magnet. By using
inelastic neutron scattering, the dynamics in the model one-
dimensional magnet, copper nitrate, was determined at a series
of temperatures. The primary observations are (1) a thermally
induced central peak due to intraband scattering, and (2)
the one-magnon quasiparticle pole is seen to develop with
temperature into an asymmetric continuum of scattering, rather
than showing the conventional Lorentzian line broadening.
To complement the experimental measurements, theoretical
calculations and finite chain diagonalizations specialized to the
spin-1/2 one-dimensional (1D) bond alternating Heisenberg
chain describing copper nitrate are combined to interpret the
physical origin of the thermal effects observed. The central
peak is shown to have a physical origin similar to Villain
scattering familiar from soliton systems in 1D. However,
here the excitations are boson quasiparticles, which do not
have the same dimensional constraints of topological solitons
and so generalize to dimensions greater than one and this
should be searched for in other materials. As regards the
one-particle band, we relate this asymmetric line broadening
to hard-core constraints and quasiparticle interactions, and
this can be explained as a scattering process whereby a
quasiparticle is inserted into a partially filled multiparticle
band. The asymmetry originates from a combination of
the density of states of the transitions available and the
interaction potential modifying the cross section. These
findings are a counter example to recent assertions of the
universality of line broadening in 1D systems, which as-
sume a Lorentzian line broadening. Indeed, the computations
show asymmetry relevant at even the lowest temperatures.
The results are applicable to a broad range of quantum
systems.

In conclusion, our study shows that the effects of temper-
ature in a low-dimensional quantum magnet are not those of
simple decoherence of the quasiparticles, but instead promote
the formation of a strongly correlated gas of quasiparticles.
A description of this state has been achieved using non-
perturbative methods. The findings here should apply to a
large range of quantum systems and present a model of such
behavior.

ACKNOWLEDGMENTS

We thank Rick Paul (NIST) for measuring the deuteration
of the sample, S. Pfannenstiel (HZB) for storage, Felix Groitl

014402-10



ANOMALOUS DYNAMICAL LINESHAPES IN A QUANTUM . . . PHYSICAL REVIEW B 85, 014402 (2012)

(HZB) for photograghy, and K. Damle (TFIR Mumbai) for
enlightening discussions. Work at the Ames Laboratory was

supported by the US Department of Energy, Basic Energy
Sciences, under Contract No. DE-AC02-07CH11358.

1S. P. Bayrakci, T. Keller, K. Habicht, and B. Keimer, Science 312,
1926 (2006).

2H. M. Ronnow, D. F. McMorrow, R. Coldea, A. Harrison, I. D.
Youngson, T. G. Perring, G. Aeppli, O. Syljuasen, K. Lefmann, and
C. Rischel, Phys. Rev. Lett. 87, 037202 (2001).

3T. Huberman, D. A. Tennant, R. A. Cowley, R. Coldea, and C. D.
Frost, J. Stat. Mech. (2008) P05017.

4G. Y. Xu et al., Science 317, 1049 (2007).
5S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 1999).

6A. Zheludev, V. O. Garlea, L. P. Regnault, H. Manaka,
A. Tsvelik, and J. H. Chung, Phys. Rev. Lett. 100, 157204 (2008);
M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, and D. F.
McMorrow, Phys. Rev. B 63, 134417 (2001).

7F. H. L. Essler and R. M. Konik, Phys. Rev. B 78, 100403 (2008).
8F. H. L. Essler and R. M. Konik, J. Stat. Mech. (2009) P09018.
9A. J. A. James, F. H. L. Essler, and R. M. Konik, Phys. Rev. B 78,
094411 (2008).

10W. D. Goetze, U. Karahasanovic, and F. H. L. Essler, Phys. Rev. B
82, 104417 (2010).

11G. S. Uhrig and H. J. Schulz, Phys. Rev. B 54, R9624 (1996).
12C. J. Hamer, W. Zheng, and R. R. P. Singh, Phys. Rev. B 68, 214408

(2003).
13K. P. Schmidt, C. Knetter, and G. S. Uhrig, Phys. Rev. B 69, 104417

(2004).
14C. Brukner, V. Vedral, and A. Zeilinger, Phys. Rev. A 73, 012110

(2006).

15V. Srinivasa, J. Levy, and C. S. Hellberg, Phys. Rev. B 76, 094411
(2007).

16T. Barnes, J. Riera, and D. A. Tennant, Phys. Rev. B 59, 11384
(1999).

17I. Exius, K. P. Schmidt, B. Lake, D. A. Tennant, and G. S. Uhrig,
Phys. Rev. B 82, 214410 (2010).
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