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In a tight-binding framework, the characteristics of electronic states are analyzed in strongly disordered
materials (hopping sites are placed randomly with no local order) with tunneling matrix elements decaying
exponentially in the atomic separation with decay range l. The density of states and the inverse participation
ratio (IPR) for amorphous atomic configurations are calculated in one, two, and three dimensions. With the
aid of complementary finite size scaling analyses of the IPR statistical distributions, it is shown that states are
either extended or localized for a particular energy, and phase diagrams for wave functions are obtained showing
extended and localized behavior in the thermodynamic limit. It is concluded that while all states are localized in
one dimension, in the two-dimensional (2D) case there is a threshold lc ∼ ρ−1/2 on the order of the interparticle
separation above which some eigenstates appear to be extended and below which wave functions are entirely
localized. For 3D geometries, there are two mobility boundaries flanking an intermediate range of energies where
states are extended with eigenstates localized for energies above or below this range. The swath of extended states,
broad for l ∼ ρ−1/3 becomes narrower with decreasing l, though remaining finite in width even for l < 1

5 ρ−1/3.
Mobility edges for D = 2 and D = 3 are interpreted as lines of critical points, and the corresponding critical
exponents are calculated.
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I. INTRODUCTION AND THEORETICAL FRAMEWORK

A periodic crystal in the absence of disorder supports
extended Bloch waves within the bounds of energy bands.1

However, the nature of the electronic states in a strongly
disordered (i.e., amorphous) material where symmetry with
respect to discrete translations is absent, is a more subtle
question. Our aim is to examine the effect of very strong
disorder on transport characteristics.

Operating in the framework of a tight-binding model where
electrons are localized in atomic sites or dopant impurities, we
examine amorphous materials in one, two, and three dimen-
sions where the locations of atoms are taken to be uncorrelated
and randomly distributed within the medium. Atomic or dopant
configurations with no local ordering of the sites are described
as gaslike disorder2 (or equivalently, topological disorder,3

since there is no underlying lattice geometry) with relevance
to transport characteristics of expanded alkali metals4 as well
as impurity bands in silicon. The characteristics of exciton
states with respect to localization have been examined in the
context of similar types of disorder.5 In broader generality,
formal analytical and computer studies have calculated the
density of states in amorphous materials with no correlations
among the site positions,6,8–10 using a tight-binding framework
similar to ours.

Disorder, even in regular lattices, may be manifested as ran-
dom site energies, which can disrupt the extended character of
itinerant states and thereby create conditions for localization.
Our aim is to examine strongly disordered materials and the
properties of the associated electronic states with respect to
localization. However, we do not introduce a random local
potential, and in this sense our work is complementary to
studies where energy shifts are superimposed on sites in a
periodic crystalline geometry.11–15 We calculate electronic
wave functions for the fully amorphous case and examine

how strong positional disorder, in conjunction with tunneling
matrix elements which decay exponentially in the separation
of neighboring hopping sites, affects the characteristics of
eigenstates with respect to localization.

In this sense, our concern is with off-diagonal disorder, and
we focus on the effects of random local density fluctuations
on the tunneling matrix elements between neighbors. Off-
diagonal disorder manifested as random variations in hopping
integrals in the absence of a random on-site potential has
been of interest at least since an analytical calculation by
F. J. Dyson in 1953.16–22 Theoretical studies related to the
density of states8–10 and aspects of localization5,6,23,24 have
been carried out in the context of three-dimensional (3D)
gaslike tight-binding models. Our program in this work is to
find out by direct calculation in a large-scale statistical study
the extent to which wave functions are localized in amorphous
materials and under what conditions eigenstates are extended.
Moreover, we obtain phase portraits showing for different
energies and ranges l of the hopping integral domains of
extended and localized states. We regard mobility boundaries
as lines of critical points (each corresponding to a second-order
phase transition for a different value of γ ) and we characterize
the phase transitions by calculating critical exponents.

In this work, we use for the tight-binding Hamiltonian

H = 1

2
t0

N∑

i=1

∑

j �=i

V (rij )(ĉ†i ĉj + ĉi ĉ
†
j ), (1)

where the sum over the index i ranges over the N particles con-
tained in the simulation volume, we take the hopping parameter
t0 to be 3.0 electron volts, and the factor of 1/2 compensates
for multiple counting of hopping terms between atoms. The
creation and destruction operators ĉ† and ĉ create and destroy
occupied electronic orbitals at sites indicated by the subscript.
For the hopping integral, we use V (rij ) = e−γ rij /s , where rij is
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the separation between sites i and j , s = ρ−1/D is the typical
interorbital separation, ρ is the volume density of sites, D is
the dimensionality of the system, and γ is a dimensionless
parameter. Since the length scale for the decay of the hopping
matrix element is l = s/γ , large (small) γ values correspond to
decay lengths small (large) in relation to the typical interatomic
separations. A very similar tight-binding Hamiltonian has
been used as a model in a metastudy of experimental metal-
nonmetal data.7 For the sake of convenience, we rescale
coordinates such that ρ = 1, with a simple inverse relationship
l = γ −1 among the hopping length scale l and decay parameter
γ and V (rij ) = e−γ rij for the dependence of the tunneling
matrix element. Although the hopping integral V (rij ) is finite
in range by virtue of the exponential decay, we nevertheless
take into consideration hopping among all pairs of orbitals
contained in the system of N sites with only a negligible
increase of the computational burden (i.e. a contribution on the
order of N2) relative to direct diagonalization used to calculate
eigenstates, which scales as N3.

In lieu of perturbations of the on-site energy term (for
convenience all site energies are set to zero), disorder enters in
the off-diagonal tunneling matrix elements, reflecting our aim
to investigate the effect of positional disorder itself on transport
characteristics. Although the treatment is nonperturbative with
no local order in the locations of the sites in the amorphous
systems we examine, the decay length scale l of the hopping
integral serves to parametrize the disorder strength. For large
l (small γ ), the tunneling is long ranged and connects sites to
many neighbors, effectively averaging over the hopping rates
to and from many orbitals and thereby somewhat mitigating
the effect of positional disorder. On the other hand, if l is
small relative to the typical intersite spacing ρ−1/D (i.e., for
large γ ), the tunneling is preponderantly to the very closest
neighbors; moreover, even small fluctuations in the locations
of nearest neighbors impact charge transport through the site
to a significant degree via the exponential dependence of the
hopping integral. Hence, disorder is in a sense amplified as γ

is increased and muted when γ is small.
In calculating tight-binding wave functions, we examine

a LD supercell with periodic boundary conditions imposed
to mitigate finite size effects, where many system sizes are
considered in order to perform finite size scaling and determine
the degree to which eigenstates are localized in the bulk
limit. Energies obtained by diagonalizing the tight-binding
(Hermitian) Hamiltonian are used to construct the global
density of states (DOS), while the eigenstates themselves
are retained for analysis to characterize the electronic wave
functions with respect to localization with the aid of a
single quantity known as the inverse participation ratio (IPR),
Y2 = ∑N

i=1 |ψi |4/(
∑N

i=1|ψi |2)2. The participation ratio shows
distinct behavior depending on whether the wave function is
confined to a small volume or spread out over a larger region,
and hence more extended in character. While in the former case
Y2 is finite and tends to be relatively large, the participation
ratio is smaller for broader electronic states, and approaches
zero as the wave function becomes spread over a bulk system
in the case of a genuinely extended state. This dichotomy
for extended vis-à-vis localized states makes the IPR a useful
diagnostic parameter in the context of theoretical calculations
where one seeks to determine the extent of localization of

carrier wave functions in specific locations in an amorphous
geometry or in certain energy ranges of a band structure.25–30

In this work, we aim to find for bulk 1D, 2D, and
3D amorphous systems the prevalence of extended states,
and we construct phase portraits showing regions where
wave functions are localized and areas where states are
extended. The inherent random character of the amorphous
geometry precludes a direct observation of the evolution of
the characteristics of electronic states as the system size
L is increased. However, there remains the possibility of
determining characteristics with respect to localization in
a statistical sense by calculating the inverse participation
ratio histogram. Shifts in the weight of the IPR probability
distribution with increasing L provide insight as to how many
of the electronic states ultimately are localized and what
portion are genuinely extended. For a specific hopping integral
decay parameter γ we find the status of electronic states
with respect to localization to be determined exclusively by
the energy eigenvalue E, with no situation arising in which
localized and extended states exist simultaneously for the same
infinitesimal energy interval.

With a finite size scaling analysis of the Y2 statistical
distribution gleaned from a large-scale Monte Carlo study,
we extrapolate to the bulk limit and determine in a rigorous
fashion energies where electronic states are localized and
eigenenergies supporting extended states. By repeating the
calculation for different γ , we obtain phase portraits showing
regions of localized and extended wave functions. For D = 1,
the phase diagram is simple in that we find all carrier states to
be localized even for large values of l. For 2D systems, we find
a threshold lc ∼ 1 on the order of the typical separation be-
tween sites where all carrier states are localized for l > lc ∼ 1,
with a finite portion of the wave functions extended for l < lc.
For D = 3, we use two distinct methods to calculate the
phase diagram, one of which makes direct use of the Y2

values extrapolated to the thermodynamic limit. The results,
in quantitative agreement over a wide range of γ values, serve
to validate the use of bulk Y2 values in constructing phase
diagrams for 3D systems. In the 3D case, a metastudy7 of a
large body of experiments in distinct settings corresponding to
a broad range of γ values suggests a termination of conducting
behavior for γ > 3.8. Nevertheless, though we find the portion
of extended states to diminish monotonically in γ , we find no
indication of an abrupt termination of the extended region for
finite l, in contrast to D = 2, where extended states do not
exist if l is smaller than the interparticle separation.

The IPR probability distributions represent an intermediate
stage in the determination of energy ranges corresponding
to localized or extended states in the bulk limit, but are of
interest in themselves and highlight salient qualitative trends.
A participation ratio histogram that does not change either in
its shape or position with increasing system size L signifies
that all states encompassed in the distribution are localized, and
the IPR distribution may be regarded as a bulk characteristic
where L � ξmax with ξmax being the largest of the localization
length scales of the eigenstates. At the opposite extreme is a
participation ratio histogram that shifts in its entirety toward
smaller Y2 values with increasing L. The steady transfer
of a large share of statistical weight toward successively
smaller participation ratios implies the electronic states are
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preponderantly extended. An intermediate possibility arises if
a part of the IPR distribution converges as would be expected
for a set of localized states, even as a portion of the histogram
separates from the main envelope of the distribution and is
conveyed toward lower IPR values, a characteristic ascribed to
extended states. The dichotomy signals that the carrier states
are divided among extended and localized wave functions.

To sample realizations of disorder from the appropriate
statistical distribution, it is important to generate random con-
figurations of hopping sites in an unbiased way. For stochastic
input, we use a Mersenne Twister algorithm to minimize
correlations among successively generated random numbers
and to ensure the period of the pseudorandom sequence far
exceeds the quantity of random numbers used over the course
of the simulations. For continuously distributed hopping sites,
one operates in the grand canonical ensemble, and the number
N of sites in the simulation volume must in general vary
from one sample to the next due to statistical fluctuations.
The integer value closest to the mean occupancy Nav = ρLD

is a convenient initial choice, and random variations in the
number of particles in the simulation volume are taken into
account with a sequence of stochastically driven attempts
either to raise or lower N . The latter are part of an importance
sampling scheme similar to that used to derive the Metropolis
criterion31 at the heart of Monte Carlo simulations that sample
the Boltzmann distribution in the calculation of equilibrium
thermodynamic variables.

To determine the probability of N sites in v = LD , we
divide v into M subvolumes of equal size where �v = v/M .
For large M the likelihood of multiple occupancy in any of
the subvolumes is very small relative to the chance of having
one or zero sites in a subdivision; in the small �v limit, the
single occupancy probability is ρ�v, with (1 − ρ�v) being
the complementary likelihood of null occupancy. Hence, the
probability that the entire system is devoid of hopping sites is
(1 − ρv/M)M , which becomes e−ρv for M → ∞. For single
occupancy, adopting a prefactor M to take into consideration
that the site may reside in any of the M subvolumes, yields
M(ρv/M)(1 − ρv/M)M−1, which becomes ρve−ρv in the
�v → 0 limit. Similar logic gives P (N ) = e−ρv(ρv)N/N! for
the general case of exactly N sites in the simulation volume,
where N ! is a combinatorial factor to compensate for multiple
counting.

To generate a realization of disorder, a succession of
attempts (a number of moves in the vicinity of Nav is
sufficient to achieve ergodicity) is made to raise or lower
the occupancy number N , where the choice to increase or
decrease N is randomly determined. For increments from
N to N + 1, the change is accepted if Xr < r+ ≡ p(N +
1)/p(N ) = ρv/(N + 1), where Xr is a random number sam-
pled uniformly from the interval [0,1]. Similarly, decreasing
N to N − 1 occurs if Xr < r− ≡ p(N − 1)/p(N ) = N/ρv.
With N properly sampled, D Cartesian coordinates for each
site location are chosen independently (and at random with
uniform probability density) from the interval [0,L].

The coordinates for each of the N sites enter in the con-
struction of the Hamiltonian matrix [in the context of the tight-
binding model given in Eq. (1)], which is diagonalized for the
eigenenergies and eigenstates. For the purpose of the DOS cal-
culations, 5 × 105 energy eigenvalues are sampled; in obtain-

ing the IPR statistical distributions, where eigenstates are used
to calculate participation ratios with a concomitant increase in
the computational burden, 105 wave functions are retained.

In this work, we discuss results for 1D, 2D, and 3D systems;
for each dimensionality, we examine a range of tunneling
matrix element decay parameters γ, which in a sense govern
the strength of the disorder. In Sec. II, we examine the density
of states for energy eigenvalues. Inverse participation ratio
(IPR) statistical distributions are discussed in Sec. III with Y2

histograms displayed for various system sizes. In Sec. IV, the
channel-averaged participation ratios are examined; we show
with direct calculation in Sec. V that IPR channel averages are
representative of the states at a particular energy and hence may
be used to determine how Y2 scales with system size. In Sec. VI,
a finite size scaling analysis is used to extrapolate to the
thermodynamic limit to calculate the bulk IPR. Phase diagrams
showing regions of localized and extended states, discussed in
Sec. VII, are constructed in a rigorous fashion using a finite
size scaling analysis, where mobility edges are signaled by
intersections of a rescaled participation ratio calculated for
different system sizes, complementary to the calculation of
Y2 in the thermodynamic limit. For D = 3, phase portraits
obtained directly from bulk IPR results are in quantitative
agreement with phase diagrams determined by intersections
of the rescaled Y2 quantity. We conclude in Sec. VIII.

II. ENERGY DENSITY OF STATES

The DOS, which in principle is a continuous statistical
distribution function f (E) of energy for an amorphous
material, may only be rendered to an approximate degree in a
finite calculation. Accordingly, we partition the energy interval
between the ground state and the uppermost excited state into a
finite though reasonably large number of subintervals or bins.
The augmented resolution achieved with an increase in the
total number of partitions is counterbalanced with a rise in
the magnitude of statistical fluctuations. To strike a suitable
balance among detail and noise, 500 divisions are used in
preparing DOS histograms; with a total of 5 × 105 eigenvalues
sampled for each DOS curve, one still has on average 1000
data points for each partition.

A salient common characteristic of DOS curves for 1D, 2D,
and 3D systems is a rapid convergence of the energy eigenvalue
statistical distributions with respect to the system size L. In
fact, as may be seen for representative cases in Fig. 1, the DOS
curves overlap very closely and approach the bulk limit as long
as L � max[ρ−1/D,l] with the hopping range l and the typical
interparticle separation ρ−1/D (unity in our treatment) being
relevant length scales.

It also is informative to examine on the same graph DOS
profiles for a range of γ values, and Fig. 2 shows results for
D = {1,2,3} for large enough L that the DOS traces may be
regarded as representative of the bulk. A consistent feature is
a systematic shift of the DOS statistical weight toward lower
(i.e., more negative) energies with decreasing γ , or increasing
tunneling matrix element range l = γ −1. Although a transfer
of probability density toward negative energy values occurs
for each dimensionality, the evolution of the DOS curves with
decreasing γ for 1D systems differs from the way the DOS
changes for D = 2 and D = 3 as γ is lowered.
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FIG. 1. (Color online) Density of states plotted for (top to bottom)
D = 1, D = 2, and D = 3, and for large to small γ (left to right).
DOS curves are plotted for various systems sizes L.

For D = 1, the energy probability distribution has a single
maximum centered about E = 0 for γ � 1. With increasing
l = γ −1, a secondary peak appears at a negative energy,
gaining amplitude at the expense of the statistical weight of
the E = 0 maximum; for large enough l, the latter vanishes
with only the negative energy peak remaining. For 2D and 3D
systems, probability density also is transferred from E = 0 to
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FIG. 2. (Color online) Density of states curves are shown together
for a range of decay rates γ , with, clockwise from left, D = 1, D = 2,
and D = 3.

negative energies as in the case D = 1. However, instead of
an intermediate transition to a dual peak profile, the DOS
curves remain unimodal as the single maximum migrates
continuously toward lower energies, arriving at a negative
energy for γ � 1.

A salient trait common to DOS curves for 1D, 2D, and
3D systems is the absence of symmetry about Epeak where
the energy probability density is maximum. The asymmetry is
especially pronounced for low values of the decay rate γ where
sites are coupled to many neighbors. On the other hand, for
D = 2 and D = 3, as γ is increased, DOS peaks move toward
E = 0 while the degree of asymmetry about Epeak fades,
and the energy statistical distributions are asymptotically
symmetric about E = 0 as γ → ∞.

Models with chiral symmetry are examined in a variety
of contexts, and while our Hamiltonian is not chiral by
design,17–21 there are similarities that emerge in our results
in the large γ limit (where tunneling is mainly to nearest
neighbors). A strict symmetry about E = 0 is a characteristic
of chirally symmetric Hamiltonians where for every positive
eigenvalue E there is a counterpart with −E. In this sense, the
case E = 0 is special, and often is associated with eigenstates
that are localized, but with a power-law decay.

Similarly, just as the DOS curves are increasingly sym-
metric for higher values of the matrix element decay rate γ ,
we find for D = 3 that a band of extended states becomes
narrow and centered about E = 0 for large γ . Ultimately, our
results suggest for γ → ∞ that the ribbon of extended states
narrows to a single critical point at E = 0 where carrier states
have the power-law decay encountered in strongly disordered
tight-binding models with chiral symmetry.

III. PARTICIPATION RATIO
STATISTICAL DISTRIBUTIONS

The inverse participation ratio (Y2) is a compact single
parameter gauging the degree to which electronic states are
localized or extended, with Y2 tending to zero for L → ∞ for
bulk extended states. Ultimately, with a rigorous finite size
scaling analysis, we use the IPR to calculate phase diagrams
showing where states are localized and extended. However,
information may also be gleaned at a qualitative level when
participation ratio statistical distributions are juxtaposed for a
range of system sizes. Since Y2 may vary by several orders
of magnitude over the full gamut of system sizes L under
consideration, it is often more prudent to exhibit log10(IPR) in
lieu of the raw participation ratios.

The IPR histograms are created by dividing the interval
along the log10(IPR) abscissa into a suitable number of bins.
With the availability of 105 Y2 values, the choice of 200
partitions provides a reasonable measure of resolution while
confining statistical fluctuations to levels that do not obscure
salient features. IPR distributions are shown in Figs. 3–5 for
D = 1, D = 2, and D = 3 respectively.

In the 1D case, system sizes progress geometrically, dou-
bling from L = 100 to L = 6400. With successive doublings
of L, Y2 histograms invariably converge and cease to evolve
with increases in the system size, a characteristic consistent
with the localization of all wave functions in the thermo-
dynamic limit. When converged in L to an IPR distribution
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FIG. 3. (Color online) Inverse participation ratio profiles graphed
for various system sizes L for hopping integral decay rates ranging
from γ = 3.0 in panel (a) to γ = 0.5 in panel (d) for 1D systems.

appropriate to the bulk limit, histograms are dominated by
cusplike peaks near the upper limit of the IPR range. The
latter characteristic is a hallmark particular to 1D systems and
is evident whether the hopping integral length scale l is large
or small relative to the separation between sites.
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FIG. 4. (Color online) Inverse participation ratio profiles graphed
for various system sizes L for hopping integral decay rates decay
rates ranging from γ = 3.0 in panel (a) to γ = 0.5 in panel (f) for 2D
systems.
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FIG. 5. (Color online) Inverse participation ratio profiles graphed
for various system size L for hopping integral decay rates γ ranging
from γ = 3.5 in panel (a) to γ = 1.0 in panel (f) for 3D systems.

The interpretation from the D = 1 Y2 distributions that all
wave functions are localized is in a sense not surprising. With
the theoretical framework of Anderson localization having
been introduced more than 50 years ago,32 a significant body
of work (both in experiment and theoretical calculations)
has examined the tendency for random potentials to localize
electronic states very effectively in one-dimensional systems,
even for weak random potentials. Moreover, the availability
of cold atom traps with coherent quantum states where the
underlying one-dimensional potential may be tailored in a
variety of ways has made possible the study of localization
properties of 1D systems in a controlled manner. In this vein,
a direct experimental observation of localization has recently
been achieved in a Bose-Einstein condensate with the random
(diagonal) potential set up by a laser speckle33 with results in
accord with theoretical descriptions.34 Bichromatic aperiodic
potentials are not purely random uncorrelated disorder, but
nonetheless have been found in experiment and theoretical
analysis35–37 to be very effective in localizing quantum states.
In this work, we show using finite size scaling analysis that
off-diagonal disorder inherent in one-dimensional amorphous
systems leads to the localization of all electronic states
notwithstanding the absence of random site potentials.

For D = 2, the evolution of the participation ratio with
increasing L depends on the hopping integral decay length
l. IPR histograms for various γ values are shown in the six
panels of Fig. 4; as in the 1D case, successive values of L differ
by a factor of 2, and Y2 distributions for L = {5,10,20,40,80}
appear together on the same graph. For short hopping ranges
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l = γ −1, sharp maxima in the high IPR regime subsume a
large share of the total statistical weight, and apart from small
vacillations, the distributions have a unimodal envelope, as
seen in Y2 histograms calculated for one-dimensional systems.
Moreover, the convergence of distributions with respect to
L is an indication of the localization of all states in the
thermodynamic limit.

For longer decay lengths l (i.e., for γ � 1.0) participation
ratio distributions obtained for 2D amorphous systems differ
from the l � 1 counterparts, lacking a unimodal sharply
peaked profile and failing to converge with respect to increases
in L. Instead, histograms become bimodal as statistical weight
is transferred to the left, toward the lower IPR regime. The
migration of statistical weight toward lower Y2 values and
more extended character is indicative of the possible existence
of extended states, and the effect is particularly striking for the
smallest decay rates γ = 0.75 and γ = 0.5. The systematic
transfer with increasing L of probability density to smaller
IPR values is manifest as a steady leftward shift of the trailing
(low IPR) edge of the histogram with the nearby maximum
also borne leftward. In fact, the shift both of the peak and the
left-most front is constant in magnitude with each doubling
of the system size L; since the abscissa is log10(IPR), the
latter trend corresponds to a power-law scaling L−β for the
left trailing edge and the peak in the low Y2 regime.

Participation ratio histograms for 3D systems are displayed
in Fig. 5. As in the large l limit for 2D systems, a portion of
the participation ratio statistical weight shifts systematically
to lower IPR values. The size of the emerging peak and the
amount of leftward migrating probability density increases
with l, even as the cusp-shaped maximum in the low Y2

regime decreases in amplitude and overall statistical weight. A
noteworthy feature is the robustness of the probability density
contained in the leftward shifting peak. That the packet moves
systematically toward lower IPR values without leaving
behind any statistical weight is compatible with the existence
of a finite fraction of extended states in the bulk limit. Thus,
for 3D amorphous systems, there is a dichotomy in the
way the distribution changes, where the leftward shifting
probability density corresponding to extended wave functions
contrasts with the localized states encompassed in the high
IPR region of the histogram, which ceases to evolve with
increasing L. With increasing tunneling matrix element range
l, the balance shifts in favor of the extended states as more
and more statistical weight is swept into the peak moving
toward lower IPR values. Nonetheless, as embodied in the
part of the distribution that does not change with increasing
L, a finite fraction of the wave functions are localized even
for very small values of the decay rate γ .

IV. THE CHANNEL-AVERAGED PARTICIPATION RATIO

With long-range positional order absent in the amorphous
systems we examine, the eigenstate energy is the only good
quantum number available, and in this work we show that
the energy eigenvalue is a unique determinant as to whether
electronic states are either extended or localized with the
simultaneous presence of localized and extended states ruled
out as a possibility for a particular energy.

Determining if a tight-binding wave function ψ is localized
or extended entails calculating Y2 statistics for many L values
and using finite size scaling to access the L → ∞ limit, with a
vanishing IPR in the bulk limit a hallmark of extended states.
The random character of gaslike disorder precludes the study
of the evolution of individual states with increasing system
size, and instead we must analyze aggregates of wave functions
across a range of system sizes. Since electronic states are
parameterized by energy eigenvalues, one possible choice is
to partition states into channels of width δE centered about
uniformly spaced energies E

′
where δE is narrow enough to

capture information specific to wave functions with energies
very close to E

′
, but broad enough to suppress statistical

fluctuations.
The DOS statistical distributions shown in Fig. 2 are

sharply peaked, with a rapid decrease in the probability density
away from the maximum. In a practical sense, the DOS
heterogeneity poses a challenge for a scheme where the energy
range between the ground state energy Emin and the highest
excited state energy Emax is divided into uniformly sized
intervals; statistical fluctuations will plague channels far from
the DOS maximum where the statistical weight for eigenstates
is sharply reduced.

In lieu of energy, to circumvent the problem of nonuniform
statistics, states are labeled with the normalized energy
eigenvalue rank r̃ . The rank number is assigned by calculating
energy eigenvalues and corresponding wave functions for a
large number of configurations of disorder, and is given by
r̃ ≡ r/N	 where N	 is the total number of states and r is
the global eigenvalue rank within the large aggregate. We
find n = 100 yields channel widths δr̃ sufficiently narrow
for channel averages to be representative of the normalized
rank r̃ at the center of the channel, yet broad enough to
provide sufficient statistics for analysis; parallel calculations
for n = 50 and n = 200 yield results in quantitative agreement
with the n = 100 scheme, direct verification that n = 100 is
large enough to avoid systematic admixture effects from the
finite channel width δr̃ .

Indexing eigenstates by rank allows for a determination of
the location of the DOS peak in relation to the normalized
rank variable r̃; in this way, cases with distinct γ values
may be considered on a similar footing. To locate maxima
in the energy histograms, we exploit the fact that the spacing
between eigenenergies is lowest where the DOS is greatest.
With local averaging to suppress statistical noise, we calculate
the derivative dE/dr̃ , shown in Fig. 6 for D = 2 and Fig. 7
for D = 3, with minima identified with peaks in the density of
states. The insets of Fig. 6 and Fig. 7 are graphs of DOS peak
locations r̃peak with respect to γ . For both D = 2 and D = 3,
r̃peak increases monotonically in γ ; eventually, for γ � 3.0
in the case of 3D systems, r̃peak becomes level, tending to a
limiting value of r̃ = 0.58.

The sharpness of the DOS peaks is mirrored in the behavior
of the dE/dr̃ curves near the minima. Ultimately, for large
enough γ , the minima become very steep; eventually, the
basins develop kinks, an indication of a singularity at DOS
peaks for large γ . For D = 3, the transition from smooth
minima to sharp valleys seems to be gradual. However, for
2D systems, the shift is much more abrupt and occurs between
γ = 2.0 and γ = 2.5.
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Channel-averaged Y2 results appear in Figs. 8–10 for 1D,
2D, and 3D systems, where the horizontal axis is log10(L)
for each case. For D = 1, IPR curves initially decrease for
small system sizes, but quickly become level and approach
asymptotically finite values even for the small decay constant
γ = 0.5. The latter phenomenon and the convergence of the
global Y2 probability distributions in Fig. 3 are indications that
all states are localized in one-dimensional systems irrespective
of γ .

For D = 2, there is a bifurcation in the variation of the
channel averaged IPR with increasing L with the precise
behavior determined by the hopping range l = γ −1. For large
γ (i.e., especially for γ � 2), the IPR traces become level
and are asymptotically finite corresponding to localized states,
much as in the 1D case. On the other hand, in the case of
smaller γ , where states with extended character are more
likely, it is not obvious that Y2 becomes finite in the bulk limit.
Broadly speaking, for D = 2 IPR traces are most likely to
level out and tend to a finite value for smaller r̃ , or for energies
near the ground state. For γ � 1.0, there are channel-average
curves, which in principle may retain a finite negative slope
as L → ∞, tantamount on a logarithmic scale to a vanishing
IPR in the thermodynamic limit.

Notwithstanding the persistently downward slope for l

larger than the interparticle separation, an unambiguous deter-
mination that the monotonically decreasing channel averages
represent extended states is hampered by the upward concavity
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in most of the Y2 curves, where, except for the very highest r̃

(i.e., for r̃ = 0.95 where the concavity appears to be neutral),
there is a progressive reduction in the magnitude of the
downward slope, which could eventually cause the channel-
averaged participation ratio to become level and tend to a finite
value. To determine in a rigorous way if the participation ratios
vanish for L → ∞ or instead approach a finite value, a finite
size scaling analysis, described in Sec. V, is needed.

As in the case of 2D systems, for D = 3, there are in a broad
sense two ways in which Y2 curves scale with L. For very large
decay rates (e.g., γ = 4.5), the majority of the participation
ratio channel averages seem to become level and tend to finite
values. On the other hand for smaller γ , instead of the upward
concavity seen in 2D examples, many of the curves are concave
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FIG. 10. (Color online) Log-log graphs of channel-averaged IPR
versus L for 3D systems in the case of a 100-channel scheme with
hopping integral decay rates ranging from γ = 4.5 in panel (a) to
γ = 0.75 in panel (f).

downward with the rate of decrease of the channel averages
increasing with L. With the downward slope becoming greater
instead of showing signs of faltering, it is possible to conclude
without further analysis that the participation ratio tends to
zero in the bulk limit for at least some of the r̃ values.

Although we wish to extrapolate to the thermodynamic
limit, it is informative to examine the variation of Y2 with
respect to r̃ for very large system sizes. Global IPR minima
may, in a loose sense, be regarded as a proxy for the cohort of
carrier states that have the greatest potential to be extended in
the bulk limit. Semilogarithmic graphs of Y2 appear in Fig. 11
for D = 2 and Fig. 12 for D = 3. While locations r̃peak for
the DOS maxima migrate toward higher-ranked energies with
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squares) and Y2 minima (filled black circles) with respect to γ .
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increasing γ , the Y2 minima behave in essentially the opposite
manner, appearing for γ ∼ 1 in the upper r̃ range and moving
toward lower-ranked energies with increasing γ . The DOS
peak r̃peak and IPR minima locations, shown together in the
insets of Figs. 11 and 12, approach one another with increasing
γ ; the convergence is most readily discerned in the case of 3D
systems for γ � 3.

If the Y2 minima correspond to r̃ where extended states
are most likely to exist, results in Figs. 11 and 12 suggest
that the region with states having the most extended character
approaches the DOS peak with the swath of extended states and
the DOS maximum essentially coinciding for large enough val-
ues of the matrix element decay rate γ . Nevertheless, the align-
ment of the prospective band of extended states and DOS max-
ima requires that the zone of extended states persist at least to
moderate γ , a condition met for D = 3, but not for 2D systems.

V. THE STANDARD DEVIATION
OF THE CHANNEL-AVERAGED

INVERSE PARTICIPATION RATIO

Since channel averages only provide the mean participation
ratio, it is important to be certain the IPR values obtained in
this manner represent the characteristics of all of the states
encompassed in a channel. The most vital task in this vein is
to rule out the possibility of coexisting localized and extended
states for a specific channel index r̃ (or energy E). To tackle this
question, we calculate the standard deviation σ of log10(IPR)
within a channel with results appearing in Fig. 13 for D = 1,
Fig. 14 for D = 2, and Fig. 15 for D = 3. With increasing L,
the quantity σ [log10(IPR)] will either diverge or tend to a finite
value. While a divergence is associated with dual extended
and localized states (coexistence), a standard deviation of
participation ratio logarithms that tends to a finite value for
L → ∞ is an indication that either localized or extended wave
functions exist, but not both simultaneously (exclusivity).

If only localized states are present, the standard deviation
will converge to a limiting value (σ is in general finite even in
the thermodynamic limit since some wave functions are more
spread out than others due to disorder fluctuations) and become
a bulk characteristic when L � ξmax, where ξmax is the largest
decay length scale of the states. On the other hand, for a suite of
purely extended states, the IPR for each wave function will tend
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FIG. 13. (Color online) Intrachannel standard deviations of
log10(IPR) plotted for D = 1. Graphs in panels (a) and (c) correspond
to relatively large γ = 1.5, while plots in panels (b) and (d) are
calculated for a more gradual hopping integral decay, γ = 0.5. Graphs
on the left show σ versus log10(L) for various normalized channel
numbers r̃ , while the rightmost panels are plots of σ [log10(IPR)] with
respect to the rank r̃ for large L.

to zero with a concomitant divergence of log10(IPR). Although
the magnitude of the ensemble average 〈log10(IPR)〉, which is
negative in sign, grows without bound for increasing L for a
rank r̃ or energy E supporting extended states, it is nevertheless
not clear that σ diverges since the standard deviation measures
the spread in the participation ratios, not their magnitude. In
the global Y2 histograms shown in Figs. 4 and 5 for D = 2
and D = 3, the tendency for packets of probability density
migrating to lower log10(IPR) with increasing L to maintain
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FIG. 14. (Color online) Intrachannel standard deviations of
log10(IPR) plotted for D = 2. Graphs in panels (a) and (c) correspond
to relatively large γ = 2.0, while plots in panels (b) and (d) are
calculated for a more gradual hopping integral decay, γ = 0.5. Graphs
on the left show σ versus log10(L) for various normalized channel
numbers r̃ , while the rightmost panels are plots of σ [log10(IPR] with
respect to the rank r̃ for large L.
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FIG. 15. (Color online) Intrachannel standard deviations of
log10(IPR) plotted for D = 3. Graphs in panels (a) and (c) correspond
to relatively large γ = 3.0, while plots in panels (b) and (d) are
calculated for a more gradual hopping integral decay, γ = 1.0. Graphs
on the left show σ versus log10(L) for various normalized channel
numbers r̃ , while the rightmost panels are plots of σ [log10(IPR] with
respect to the rank r̃ for large L.

their shape and width suggests σ may remain finite even as the
average 〈log10(IPR)〉 diverges.

In the coexistence scenario with extended and localized
wave functions in the same infinitesimal energy range, there
will be a divergence in σ [log10(IPR)] since the packet of proba-
bility density for localized states remains fixed with increasing
L while the peak corresponding to states with extended
character is conveyed toward more negative log10(IPR). The
standard deviation σ [log10(IPR)], which provides a measure of
the increasing separation of the two peaks, must thus diverge as
L → ∞ if localized and extended electronic states are present
for the same energy E or rank r̃ .

To determine if for any combination of system parameters
σ converges to a finite value (exclusivity) or diverges (coexis-
tence), we plot σ [log10(IPR)] versus log10(L) in the left panels
of the graphs in Figs. 13–15. In addition, the right panels show
σ with respect to r̃ for large L to provide a glimpse of the
bulk σ [log10(IPR)]. The σ curves for the cases D = 1, D = 2,
and D = 3 either decrease with L or are concave downward
in the large L regime in cases where the slope is positive,
and hence seem to become level and tend to finite values.
In addition, standard deviations plotted in the right panels
of Figs. 13–15 for large L, are low in magnitude, and do not
exceed σ [log10(IPR)] = 0.35 for which the spread in Y2 values
is a factor of two.

VI. PARTICIPATION RATIOS IN THE
THERMODYNAMIC LIMIT

An important aim in the finite size scaling analysis is to
calculate Y 0

2 , the channel-averaged participation ratio in the
thermodynamic limit. For the IPR dependence for moderate
to large L, we use a power-law formula, Y2(L) = Y 0

2 +
α1L

−β + α2L
−δ where Y 0

2 is the participation ratio in the
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bulk limit, β is the leading-order scaling exponent, and δ

is the exponent for the next-to-leading-order contribution to
scaling; α1 and α2 are amplitudes. We obtain the parameters
Y 0

2 , β, δ, α1, and α2 in a nonlinear least squares calculation by
minimizing the sum of the square of the relative differences

�LSF ≡ 1
m

[
∑m

i=1( Y CA
2 (Li )−Y LSF

2 (Li )
Y CA

2 (Li )
)2]1/2 (i.e., with L1 and Lm

the smallest and largest systems examined, respectively) of the
data gleaned from the IPR channel averages Y CA

2 (L) and the
theoretical scaling expression Y LSF

2 (L). To find the optimal fit,
we use a stochastic algorithm with the quantity �LSF treated
as an energy to be minimized by randomly perturbing Y 0

2 ,
α1, α2, β, and δ. Only Monte Carlo moves that decrease �LSF

(and hence incrementally improve the fit) are accepted, and the
Y2(L) parameters are suitably converged after 4 × 105 attempts
to shift the five unknown parameters in Y2(L) in a stochastic
fashion.

Participation ratios extrapolated to the bulk limit are
displayed for D = 1, D = 2, and D = 3 in Fig. 16. The bulk Y2

curves in the main graphs are calculated for 100 channel parti-
tions, whereas the insets show results for a 50-channel scheme.
The good agreement among the 100- and 50-channel bulk IPR
values indicates convergence with respect to the number of
channels.

Bulk limit participation ratios for 1D systems are plotted in
panel (a) of Fig. 16. Notwithstanding a nonmonotonic variation
of Y2 in the normalized channel number r̃ the D = 1 results are
finite in all cases, dipping only slightly below Y 0

2 = 0.1 even
for hopping integral decay rates as low as γ = 0.5, indicating
the localization of all wave functions irrespective of γ .

Extrapolated IPR results for D = 2 shown in panel (b) of
Fig. 16 are nonmonotonic, generally decreasing precipitously
near r̃ = 0 and ultimately recovering in the vicinity of r̃ = 1.
With increasing l, the participation ratio trough becomes
broader and deeper, while the recovery to higher IPR values
is muted. Eventually, for γ � 1, the minimum reaches the
horizontal axis, where Y 0

2 = 0, and there appears to be no
return to higher participation ratios near r̃ = 1. Although
the bulk Y2 curve does seem to descend to zero for γ < 1,

which in principle could signal extended states, the gradual
approach to the abscissa confounds a straightforward objective
identification of a mobility edge for the 2D systems we
examine.

Irrespective of γ , the D = 3 extrapolated IPR curves in
panel (c) of Fig. 16 seem to plunge to zero and remain zero for a
range of r̃ values. This characteristic, where even the v-shaped
γ = 5.5 Y2 curve descends to zero, contrasts with the 2D case
where manifestly finite bulk participation ratios alone preclude
extended states below the threshold l ∼ 1. However, the width
of the interval where extended states seem to exist decreases
with γ , with Y2 appearing to vanish for most of the r̃ domain
in the case γ = 1.0 while only briefly touching the abscissa
for γ = 5.5. For moderate to large γ values, the IPR curves
are locally symmetric about r̃ = 0.58, which corresponds to
E = 0 and near the DOS peak. Salient features not present
in the 2D results are derivative discontinuities where Y2 falls
to zero, descending to or rising from the horizontal axis with
a finite slope. The clear delineation of the regions where Y2

vanishes favors the use of basins in the curves calculated in the
3D case as a way to identify the boundary between extended
and localized states.
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FIG. 16. (Color online) Inverse participation ratios in the bulk
limit for D = 1 in panel (a), D = 2 in panel (b), and D = 3 in panel
(c). Y2 curves are shown for assorted γ values, and the main graphs
correspond to a 100-channel scheme while the Y2 curves in the insets
are for 50 channels.

VII. SCALED PARTICIPATION RATIO INTERSECTIONS

While mobility edges in principle are located by finding
where Y2 curves vanish, the regions where the IPR is zero are
not as crisply indicated in 2D as in 3D. Traversal of a mobility
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boundary is associated with a second-order phase transition
(there being no discontinuity in the physical observables)
where the character of the states changes (from localized to
extended and vice versa) in a fundamental way. We exploit the
anticipated critical behavior, a generic hallmark of continuous
phase transitions, to locate mobility edges for D = 2 and
D = 3; the phase boundary, highlighted by the intersection
of multiple curves at the same location, is identified in an
objective and rigorous way.

As a consequence of critical behavior at the mobility edge,
one expects from single-parameter finite size scaling theory a
form Y2 = LαDFD[L1/νD (r̃ − r̃c)] near the boundary between
regions of extended and localized states, with αD and νD being
critical exponents (νD controls the singular behavior of the
correlation length ξ ). We locate the phase boundary in an
objective fashion by finding intersections of a rescaled version
of the participation ratio, φ2 ≡ Y2(r̃ ,L)−1L−αD where αD is
fixed by insisting that curves calculated for distinct values of
L coincide, with r̃c determined by the position of the crossing.
A similar technique has been used in theoretical studies of a
2D Anderson model with long-range correlated disorder38 and
Anderson localization of phonons.39 Data collapses, where φ2

points plotted versus L1/νD |r̃ − r̃c| for various L coincide on
a single curve, are associated with a critical point for D = 2,
and in the case of the lower mobility edge for D = 3 are sharp
enough to permit the determination of the critical index νD by
optimizing the data collapse.

Across the range of γ we consider, we find from the φ2

curve intersections that α2d = 1.6 ± 0.1 for D = 2 and α3d =
1.25 ± 0.15 for D = 3. In the 2D case, a mobility edge is
identified only for γ < 1 (where the decay length l begins to
exceed the typical separation between sites). In the right panels
of Fig. 17, the intersections of φ2 curves for four distinct L

values are shown for γ = {0.3,0.5,0.75}. Although only one
intersection appears for γ = 0.3 and γ = 0.5, the φ2 curves
appear to intersect twice for γ = 0.75 with the second crossing
near r̃ = 1.0, where the scaling of Y2 is controlled by the
critical point marking the upper mobility edge.

The left panels of Fig. 17 show good data collapses for
critical exponents shown in Table I. The ν2d results are
in agreement within the bounds of error across the range
of γ values under consideration, in accord with the Harris
criterion.40 The upper parts of the v-shaped data collapses
correspond to r̃ > r̃c, in the realm where states are extended.
For γ = 0.3, the slight blurring in the upper part of the collapse
is mainly due to deviations in the L = 48 data points, and is
attributed to finite size effects associated with the relatively
large decay length l = 3.3. For γ = 0.5, where finite size
effects are mitigated by the shorter matrix element decay
length l = 2.0, a sharp collapse of the φ2 data is obtained
in both the upper and lower parts of the graph. Finally, for
γ = 0.75, where in principle finite size effects should be even
less severe, there is marked blurring in the upper branch of the
data collapse for γ = 0.75. The abrupt defocusing is attributed
to a second mobility edge for the upper r̃ range.

A similar treatment identifies mobility boundaries for D =
3, and the corresponding φ2 collapses and intersections are
shown in Fig. 18. For γ < 2.5, only a single intersection marks
the boundary between localized states for r̃ < r̃c and extended
states for r̃ > r̃c. On the other hand, two sets of φ2 crossings
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FIG. 17. (Color online) Data collapse plots for (top to bottom)
γ = 0.3, γ = 0.5, and γ = 0.75 appear on the left with the corre-
sponding φ2 intersections displayed on the right for D = 2.

occur for γ > 2.5, indicating two distinct mobility edges with
an interval of extended states flanked by localized states for
r̃ < r̃ lower

c and r̃ > r̃
upper
c . In the context of a similar tight-

binding model, a calculation by Krich and Aspuru-Guzik24

has also identified two sets of mobility edges for D = 3. The
case γ = 2.5 is marginal, since the upper intersection appears
to coincide with the upper r̃ extreme, r̃ = 1, much as occurs
in 2D for γ = 0.75.

The convergence of mobility edges, and the concomitant
constriction of the extended region affects the upper part of the
data collapses calculated for the lower mobility edges where
the severity of the defocusing in the upper branch of the φ2

increases with the proximity of critical points in the upper
mobility boundary. The areas in the right panels marked in
gray are a close match to the r̃ domains between the crossings
of φ2 curves, and are determined from the extrapolated IPR
results in panel (c) of Fig. 16, where we adopt the criterion
φ2 � 10−3 for the extended states. For the lower mobility edge,
scaling collapses are sharp enough to be of service in fixing
the exponent ν3d, with results shown in Table II. As in the

TABLE I. ν2d results for various γ values.

γ 0.3 0.5 0.75

ν2d 2.3 ± 0.2 2.2 ± 0.2 2.3 ± 0.2
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FIG. 18. (Color online) Data collapse plots for various γ values
(γ increases from top to bottom); data collapse plots corresponding
to the lower mobility edge appear on the left, with φ2 intersection
plots shown on the right for D = 3.

2D case, within error bounds critical indices are in agreement
across the broad range of γ values under consideration.

Phase diagrams showing regions of extended and localized
states for D = 2 appear in Fig. 19, where the main graph shows
results in terms of the normalized rank r̃ , and the inset is a phase
portrait expressed in terms of carrier-state energies. Extended
states occupy the upper left corner of the phase diagram, for
γ < 1.0 and in the upper E and r̃ ranges.

Phase portraits rendered in terms of r̃ and E for the 3D
case appear in Figs. 20 and 21; mobility edges calculated from
φ2 intersections and phase boundaries gleaned from bulk Y2

TABLE II. ν3d results with for various γ values.

γ 1.0 1.5 2.0 2.5 3.0

ν3d 1.1 ± 0.15 1.2 ± 0.15 1.2 ± 0.15 1.2 ± 0.15 1.3 ± 0.15

γ 3.5 4.0 4.5 5.0

ν3d 1.2 ± 0.15 1.2 ± 0.15 1.1 ± 0.15 1.0 ± 0.2
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FIG. 19. Phase portraits for D = 2 in terms of the normalized
channel number r̃ . The inset phase diagram is calculated with
respect to energy. Filled symbols are calculated, and broken lines
are extrapolations.

values appear in black and gray respectively. The close overlap
is a sign of excellent agreement among results of the two very
distinct methods of locating mobility edges, and serves to
validate the use of the bulk Y2 curves in identifying mobility
edges for 3D systems.

For D = 3, the swath of extended states is quite broad
for γ ∼ 1.0, encompassing most of the eigenstates and the
associated range of eigenstate energies. As in the 2D case,
a smaller portion of the wave functions are extended with
increasing γ . For moderate to large hopping integral decay
lengths (i.e., for γ � 3.0), the band of extended states rapidly
constricts with the extended phase region asymptotically
symmetric about r̃ = 0.58. Figure 22 is the phase diagram
with the vertical axis rendered in terms of energies instead
of normalized rank r̃ . Again, the interval of extended states
becomes sharply narrower with increasing γ . The structure of
the phase diagram for 3D systems, where a phase supporting
extended states is flanked by regions where wave functions are
localized, indicates the presence of two mobility edges.

Although the extended-state phase persists for large values
of γ (i.e., even for γ > 5.0), the decrease of the width is
very rapid, and we examine the possibility that the decrease
may be exponential in the hopping integral decay rate γ .
Figure 22 displays a graph of base ten logarithm of the width
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FIG. 20. Phase portraits for D = 3 are shown in the upper row;
mobility edges obtained from scaled IPR curve intersections and
extrapolated participation ratios appear on the same graph.
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FIG. 21. Phase portraits for D = 3 are shown in the upper row;
mobility edges obtained from scaled IPR curve intersections and
extrapolated participation ratios appear on the same graph.

of the phase where eigenstates are extended; the main plot
shows log10[w(r̃)] with respect to γ , while the inset is a
plot of log10[w(E)] versus γ . Within the bounds of error,
the asymptotically linear dependence of the logarithm of w,
which is seen whether one considers the the width w(E) of the
energy interval or w(r̃) of the normalized rank, is tantamount
to an exponential dependence w ∝ e−Aγ for moderate to
large γ .

In terms of our model, a study of an aggregate of exper-
imental metal-nonmetal transitions specifies a critical length
lc = 0.26 or γc = 3.8,7 where the conducting phase terminates
for γ > γc. Nevertheless, we find the extended-state region to
persist beyond γc, though the zone of extended wave functions
grows sharply narrower with increasing γ . By virtue of the
sharply peaked DOS, the extended-state region in the phase
diagram rendered in terms of energies E instead of normalized
rank r̃ is even more compressed for γ > 3.8. The very narrow
width of energies supporting extended states for γ > 3.8 may
account for the lack of experimental evidence for metallic
behavior for γ beyond this threshold. As an additional check,
channel-averaged participation ratios are plotted in Fig. 23 for
r̃ = 0.58 (corresponding to E = 0), the normalized rank that
asymptotically bisects the region supporting extended states.
With Y2 curves shown for various γ ranging from γ = 3.5 to
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FIG. 22. Logarithm of the width of the extended-state region
plotted versus the decay parameter γ . The main graph shows the
normalized rank width w(r̃), and the inset plot displays the width of
the corresponding energy interval w(E).
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FIG. 23. (Color online) Log-log graphs of channel-averaged IPR
versus L for 3D systems for the normalized channel number r̃ = 0.58
for moderate to large hopping integral decay rates γ . The graph inset
is a closer view of the channel-averaged participation ratio curves,
and the broken straight lines are included to highlight the downward
concavity.

γ = 5.5, downward concavity (highlighted in the inset where
broken straight lines are shown for the sake of comparison)
is a salient feature common to each of the displayed curves.
That the slopes of the participation ratio curves consistently
become more negative in the log-log graph with increasing L,
even for γ > 3.8, is consistent with a vanishing bulk Y2 as
expected for extended states.

As a further comment about the small set of states in the
vicinity of E = 0 for large γ , from Fig. 21 one sees that the
band of extended states becomes very narrow and is confined
to a small interval about E = 0. Eventually, for γ → ∞, the
region of extended states tends to a line of critical points
where the wave functions are neither exponentially localized
nor in the strict sense extended, but decay as a power law.
This characteristic of the E = 0 states is similar to the case
of chirally symmetric tight-binding models where the E = 0
states also are quasi-extended with a power-law decay.

VIII. CONCLUSION

We have calculated the energy density of states and,
using the inverse participation ratio, we have examined the
characteristics of electronic states in amorphous systems (for
gaslike disorder with no correlations among site positions) in
one, two, and three dimensions for hopping matrix elements
that decay exponentially in the separation distance between
neighboring sites in the context of a tight-binding model.
We have calculated global IPR statistical distributions, which
have a rich multimodal structure for systems in two and three
dimensions in contrast to the simple sharply peaked profiles
consistently seen for D = 1.

Partitioning wave functions according to the normalized
eigenvalue rank r̃ has yielded channel-averaged participation
ratios, which we have shown to be representative of wave
functions for a specific energy E or normalized rank r̃ . By
applying finite size scaling to each of the channel averages, we
have obtained participation ratios in the thermodynamic limit,
which for D = 3 fare reasonably well as a means for finding
mobility edges.
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In one dimension, wave functions are strongly localized
in all cases, whereas results for two dimensions indicate the
presence of a critical decay parameter γc, with localization
for γ > γc and existence of extended states below γc. In
the 3D case, extended states also are admitted, and the wave
functions with extended character occur even for quite large γ

values, although the interval of energies supporting extended
states diminishes with γ , asymptotically scaling as e−Aγ with
increasing γ . The swath of extended states is flanked by regions
where wave functions are localized, with the two interfaces
interpreted as mobility boundaries. It is expected that in the
large γ regime, the band of extended states narrows to a line of
critical points at E = 0 where carrier states have characteristics
similar to those of quasi-extended states in chirally symmetric
models.

In future studies, disorder schemes could be considered
in which the severity of the disorder is tuned from mild to
quite strong by perturbing a regular periodic crystal lattice
and introducing random perturbations δ in the positions of the
hopping sites. The disordering shifts δ may be introduced,
e.g., from a Gaussian distribution with a rms magnitude
σ . Among the salient germane questions to be investigated
in this manner is whether there is a threshold in typical
displacement magnitudes where extended states may survive

in D = 1 and D = 2 if random displacements in atomic
positions are sufficiently small in relation to the crystal lattice
constant. Given the fragility of extended character in D = 1,
one might predict that even a small random perturbation in
the site positions from a periodic configuration might induce
localization in a one-dimensional lattice. On the other hand,
in two dimensions it may be that there is a perturbation level
beyond which the disordering influence causes most or all
of the states to be localized, with predominantly extended
character below the perturbation threshold.

In the present study, we have concentrated on short-range
couplings, as might be appropriate in an exchange-type
coupling scheme. Nonetheless, it would be useful also to
examine a power-law decay to see if the severity of localization
effects are reduced in one dimension, and if bona fide extended
states exist under these conditions.
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