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Observation of a first-order metal-to-nonmetal phase transition in fluid iron
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Measurements of electrical resistivity and caloric equation of state have been performed for fluid iron to
investigate the metal-to-nonmetal transition induced by thermal expansion. The resistivity results published
earlier [V. N. Korobenko and A. D. Rakhel, JETP, 112, 649 (2011)] have revealed the transition occurring at
a density 4–5 times lower than ambient solid since in this density range the isochoric temperature coefficient
of resistivity becomes negative when the magnitude of resistivity exceeds the minimum metallic conductivity
range. The equation of state results reported here provide strong evidence for the existence of a first-order
phase transition with a critical point located near the metal-to-nonmetal transition threshold. In particular, the
isentropes plotted in the pressure-specific volume plane demonstrate pronounced kinks located on a convex
line with a maximum at about 5 GPa. This suggests the presence of a critical point with the pressure of about
one order of magnitude higher than that expected for the liquid-vapor transition. Arguments are given that the
phase diagram of iron has the structure predicted in the well-known work [Ya. B. Zel’dovich and L. D. Landau,
Zh. Eksp. Teor. Fiz. 14, 32 (1944)] but has not been observed yet.
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I. INTRODUCTION

A transition from metallic to a nonmetallic behavior can be
observed in fluid metals thermally expanded to low density
(at constant pressure).1,2 One of the motivations of those
experiments was to find out the structure of the phase diagrams
of fluid metals in the liquid-vapor phase transition region
since there had been predictions3,4 that the metal-to-nonmetal
(MNM) transition induced by thermal expansion can occur
as an independent first-order phase transition with its own
coexistence curve and the critical point. If so, the phase
diagram, let’s say in the pressure-temperature plane, contains
two critical points and an additional triple point where three
fluid phases are in equilibrium (rather than two as in the usual
case).3 To the best of our knowledge, to date, such first-order
MNM transition, which is frequently called the discontinuous
Mott transition, has not been detected.

The general belief in the existence of the first-order MNM
transition is based on the idea that due to the long range
Coulomb interaction there always exists a finite-size gap in the
electron energy spectrum of an insulator3,5 so that a continuous
transition between the nonmetallic and metallic state is
possible only at temperatures of the order of the gap width. The
interplay between the Coulomb interaction and disorder has
been a long-standing problem that is still far from understood.6

From another point of view7 the MNM transitions driven by
the valence electrons density and disorder are continuous (in
contrast to a first-order transition which becomes continuous
at supercritical pressures). Since both points of view have not
been proved rigorously so far the question about the influence
of the MNM transition on thermodynamic functions and, in
particular, about the interrelation between the MNM and the
liquid-vapor phase transition remains open. At present this
problem can hardly be solved theoretically since we do not
have a theory that is able to predict the critical point parameters
of the liquid-vapor phase transition. On the other hand, the
approach developed in Ref. 7 cannot be applied to fluid metals
since in the limit T → 0 (at constant density) there is the
liquid-vapor phase transition not included in the theoretical

concept. Hence, to cast a light on the problem the experimental
studies on the fluid metals with different atomic structure in
wide ranges of density and temperature are needed.

The whole range of the liquid-vapor phase transition (in-
cluding the critical point) has been investigated experimentally
for mercury and the two alkali metals, Cs and Rb.1,2 The exper-
iments did not reveal any jumps in thermodynamic functions
except those found in the liquid-vapor phase transition region.
It should be noted that recently the small angle x-ray scattering
experiments8 have provided some evidence for the existence of
an independent first-order MNM transition in liquid mercury.
Nevertheless the situation remains unclear since no reliable
indications of the transition have been found in thermodynamic
functions.

The MNM transition observed in mercury (and in the
alkali metals) occurs in the liquid state so that near the
liquid-vapor critical point both the liquid and the gaseous
phase are nonmetals. This can be seen by comparison of
the value of electrical conductivity near the critical point (σc)
with the minimum conductivity measured in the metallic state
(σmin). Indeed, the main difference of a nonmetal from metal
is the energy gap (or a mobility gap4) in the electron energy
spectrum. The presence of the energy gap can be probed by
the measurements of the electrical conductivity, which in a
nonmetallic state acquires the activated dependence4

σ = σmin exp[−�/kT ], (1)

where � is proportional to the gap width in the electron density
of states, T is temperature, and k is the Boltzmann constant.
The pre-exponential factor σmin characterizes the conductivity
in the metallic state where the temperature dependence
saturates (the Ioffe-Regel limit).6,9 The typical values of the
minimum inactivated conductivity for the majority of metals
is σmin = (3–5) 105 �−1 m−1, but for some strongly correlated
systems (such as the high-Tc cuprates) it can be 1.5–2 times
less. As follows from the measurements1,2,10 for mercury σc ∼
102 �−1 m−1 and for the two alkali metals σc = 2–3 104 �−1

m−1, and therefore the following inequality holds: σc � σmin.

014208-11098-0121/2012/85(1)/014208(6) ©2012 American Physical Society

http://dx.doi.org/10.1134/S1063776111020178
http://dx.doi.org/10.1103/PhysRevB.85.014208


V. N. KOROBENKO AND A. D. RAKHEL PHYSICAL REVIEW B 85, 014208 (2012)

This suggests that the critical points are of the same kind as in
the insulating substances rather than due to the discontinuous
Mott transition for which we expect σc ∼σmin. Such conclusion
is consistent with estimates of the critical compressibility ratio
Zc =APcVc/RTc, where A is atomic weight; R is universal gas
constant; and Pc, Tc, Vc are the critical pressure, temperature,
and specific volume, respectively. A similarity between the
critical points of different substances manifests itself in close
values of the dimensionless parameter Zc.11 Since the value for
mercury (Zc ≈ 0.37) and for the alkali metals (Zc = 0.22–0.26)
is rather close to those of the noble gases (Zc ≈ 0.3) and the
van der Waals gas (Zc = 3/8), the critical points of the three
fluid metals are most likely similar to those of the noble gases
rather than that of the first-order MNM transition. In the last
case the critical pressure is expected to be essentially higher
than the liquid-vapor critical point.3

The atomic structure of iron differs essentially from that
of mercury and the alkali metals. The strong sp-d hybridiza-
tion of the atomic orbitals, appearance of magnetism, and
the spin-orbital interaction can affect essentially the MNM
transition.6,12 In the present study we demonstrate that in fluid
iron the transition occurs as a first-order phase transition up
to a critical point with an unexpectedly high critical pressure
(about 5 GPa). We show that the equilibrium line of the phase
transition in the density-pressure plane differs essentially from
that of the liquid-vapor phase transition, and the phase diagram
of fluid iron probably has the structure predicted in Ref. 3,
i.e., it contains two critical points and an additional triple
point.

Our approach is based on the simultaneous measurements
of electrical resistivity and the caloric equation of state of fluid
iron in wide ranges of density and pressure. The measurements
of resistivity allow us to identify the occurrence of the MNM
transition while the equation of state results to reveal a first-
order phase transition.

II. EXPERIMENT

Specific internal energy E and resistivity σ−1 have been
measured as functions of pressure P and specific volume
V using the newly developed experimental technique.13

This technique allows the measurements to be performed at
temperatures of 1–3 eV and pressures of 1–10 GPa with an
uncertainty less than 10%. The essence of the experimental
technique is as follows. A piece of an iron foil strip is
sandwiched between two flat sapphire plates and heated by
an electrical current pulse with a density of (1–3) 107 A/cm2.
The heating conditions are chosen so that the spatial dis-
tributions of pressure and temperature in the foil sample
experiencing a 5–10-fold thermal expansion for t ∼ 1 μs
remain sufficiently uniform.13,14 This experimental technique
had been succesfully utilized in the measurements of resistivity
and caloric equation of state of fluid aluminum and provided
the fairly accurate results.13,14 A schematic of the experiments,
as well as the diagnostics utilized, is shown in Fig. 1.

In the present experiments the foil strips of pure iron (99.9%
Fe) of 30-μm thickness, 3–6 mm width, and 10 mm length
together with a ruby plate (with a thickness of 380 μm, a
width of 10 mm, and length of 10 mm) were placed between
optically polished sapphire plates of 1.5–5 mm thickness. The

FIG. 1. (Color online) Schematic of the experiments. An iron foil
strip placed together with a ruby plate between two sapphire plates is
shown in the plane perpendicular to the surface of the strip. Electrical
current flows along the z axis, and the sample undergoes thermal
expansion predominantly along the x axis since the sample thickness
is much smaller than its width and length and because the foil strip is
sandwiched between flat (optical quality) and thick sapphire plates.

ruby plate was used to measure pressure by recording the
ruby luminescence lines shifts. The experimental assembly
was carefully glued by an epoxy resin so that the thickness of
the apoxy layer between the sample and the ruby and sapphire
plates did not exceed 3 μm. On the side of the ruby plate
facing the sample, a multilayer dielectric mirror of about
2-μm thickness was deposited. This mirror reduced the
thermal radiation that was an interference and increased the
signal of the ruby luminescence. To heat the sample a capacitor
bank discharge was used.15 In each experiment we measured
the temporal dependence of the current through the sample
I (t), the voltage drop along its length U (t), and the pressure
in the ruby plate near the sample P (t). Resistance R and the
specific Joule heat dissipated q were determined as follows:

R(t) = UR(t)/I (t), (2)

q(t) = M−1
∫ t

0
I (t ′)UR(t ′)dt ′, (3)

where UR(t) = U (t) − Lf dI (t)/dt is the active voltage drop,
M is the sample mass, and Lf is its inductance. From the
measured temporal dependence of pressure P (t) the sample
volume was determined by solving the inverse problem about
the motion of flat piston in a medium whose equation of state
is known and the pressure on the piston is a given function of
time.13 The equation of state of sapphire within the range of
uniaxial elastic deformation (P < 12.5 GPa) is known with an
uncertainty <1%. As the difference between the mechanical
properties of sapphire and ruby can be neglected (due to the low
concentration of chromium in the ruby plates), the integration
of the equations of motion can be performed with almost the
same accuracy. After the sample volume is determined the
mechanical work performed by it on the sapphire plates can
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be calculated. The specific internal energy E is the difference
between the specific Joule heat q and the work (per unit mass).
Resistivity was calculated by the formula:

σ−1 = R(t)D(t)H/L,

where D(t) is the sample thickness, and H and L are its width
and length (assumed to be constant).

In these experiments we have measured a family of
dependences of resistivity σ−1 and specific internal energy E

on pressure P and specific volume V along the thermodynamic
paths representing our experiments in the (P , V ) plane. By
varying the heating conditions and increasing the number of
the experiments the region of interest in the (P , V ) plane
has been filled by the thermodynamic paths with a sufficient
density to build isochores in the (E, P ) plane or isobares in
the (E, V ) plane. Other details of the experimental technique
can be found elsewhere.13,15,16

III. RESULTS

In Fig. 2 we show the dependence of resistivity on specific
internal energy along several isochores to demonstrate the
occurrence of the MNM transition in fluid iron. The isochores
are labeled by the values of the relative volume ϕ = V/V0,
where the specific volume of solid iron at normal conditions
V0 ≈ 0.127 cm3/g. As seen, our measurements agree well
with the data of Ref. 17. The usage for the analysis of the
recently published results,18 presented in further discussion,
is made difficult by a 30–50% scatter; for this reason we do
not show those data points. From Fig. 2 it follows that in the
range of ϕ = 2–5 the slope of the isochores changes sign. This
means that the isochoric temperature coefficient of resistivity
(∂σ−1/∂T )V also changes sign because

(∂σ−1/∂E)V = (∂σ−1/∂T )V /(∂E/∂T )V ,

and the specific heat cV = (∂E/∂T )V > 0. Such behavior of
resistivity indicates a transition to a nonmetallic state in which
conductivity takes the form (1). As seen in Fig. 2, the isochores
become horizontal when resistivity attains 3–5 μ� m, which is
very close to the values of (σmin)−1 for the high-Tc cuprates.9

Thus, the measurements’ results indicate the occurrence of
the MNM transition since the temperature coefficient of
resistivity changes sign from positive to negative as soon
as resistivity exceeds the minimum metallic conductivity
range. Such behavior has been observed in many systems6

and is usually regarded as a crossover between metallic and
nonmetallic regimes of conductivity not affecting thermody-
namic functions. In our experiments the MNM transition was
observed at pressures P = 2–10 GPa, which are essentially
higher than the critical pressure of the liquid-vapor phase
transition, 0.8–1.0 GPa.11,19,20 In this case one would expect
that the MNM transition is continuous, but as we shall see the
equation of state results indicate the contrary. It should be noted
that the data presented in Fig. 2 have been partially published
in Ref. 16. We present some of the isochores here again since
they are indispensable for a consistent interpretation of the
equation of state and resistivity results.

In Fig. 3 isochores have been plotted in the (P , E) plane.
As seen, the figure strongly suggests that isochores ϕ = 4–6
have kinks at P = 4–5 GPa. For isochore ϕ = 4 we can locate

FIG. 2. (Color online) Resistivity of iron as a function of
specific internal energy along isochores. The black dashed lines are
dependencies measured in our experiments, and the blue open circles
represent data.17 The work values for seven isochores are shown with
black (gray and open) marks; red dashed lines are linear fits of some
of the isochores. The isochores change the slope from positive to
negative when the minimum metallic conductivity range, 2–6 μ� m,
is exceeded.

the kink rather accurately, while for the other two isochores
(ϕ = 5 and ϕ = 6), due to the small amount of the data
points at P > 5 GPa, this cannot be done. Nevertheless, it is
obvious that the data points on these isochores at P > 5 GPa
cannot be approximated by the same fits determined at P �
5 GPa. It is well known that for a first-order phase transition
the isochores must have kinks on the equilibrium line.21 Thus,
Fig. 3 provides an evidence for a first-order phase transition
at P � 5 GPa. To locate the equilibrium line at P < 4 GPa

FIG. 3. (Color online) Pressure as a function of specific internal
energy along isochores. The meaning of the symbols is the same as
in Fig. 2. The red dashed lines show linear fits for isochores ϕ =
2–3 and for parts of isochores ϕ = 4–6. Fitting of isochores ϕ = 4–6
by piecewise linear functions reveals kinks in the pressure range of
4–5 GPa.
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FIG. 4. (Color online) Internal energy as a function of relative
volume along isobars. The data on isobar P = 3 GPa are fitted by
piecewise linear function to locate the kink.

we have plotted isobars in the (E, V ) plane. It can be easily
shown that such isobars must have kinks on the equilibrium
line as well and in the two-phase region they must be straight
lines. This property of the isobars can be used to prove with a
more degree of certainty the presence of the first-order phase
transition. Indeed, in the two-phase region the specific internal
energy and specific volume can be presented as follows:

E = E1(P )(1 − x) + E2(P )x (4)

V = V1(P )(1 − x) + V2(P )x, (5)

where the subscript denotes the phase, and x is the mass
fraction of phase 2; it is assumed that in the two-phase state the
system is near thermodynamic equilibrium. By differentiating
Eqs. (4) and (5) with respect to volume at constant pressure
we find the relation

(
∂E

∂V

)
P

= E2(P ) − E1(P )

V2(P ) − V1(P )
, (6)

which proves the linearity of the isobars in the two-phase
region. The isobars of fluid iron are shown in Fig. 4. As one
can see, to within the uncertainty of the measurements in the
two-phase region (V/V0 > 3, P < 5 GPa), the isobars can
be well fitted by straight lines and the locations of the kinks
on the isobars reasonably agree with those determined from
Fig. 3.

To validate the conclusion about the presence of the
first-order phase transition we plotted also isentropes in the
(P , V ) plane. Kinks on isentropes are widely used for detecting
the liquid-vapor phase transition which occurs during t ∼ 1 μs
in the rarefaction waves.22,23 To build an isentrope we chose
first an initial point (P1, V1) on the curve representing one of
our experiments (let’s say experiment A) and approximated
the isentrope in a vicinity of the point by a linear function
of volume P = P1 − a2

1(V − V1), where a1 = c1/V1, and
c1 is sound speed. The dependence of internal energy on

volume along the isentrope was found by integration of the
relationP = −(∂E/∂V )S . As a result we got the formula

E − E1 = − 1
2 (P + P1)(V − V1), (7)

where E1 is a value of internal energy at the initial point.24

To find the point at which the isentrope intersects the path
representing another experiment (an experiment B) approach-
ing sufficiently close to the initial point, we substituted the
measured dependence EB(V ) and PB(V ) for experiment B in
Eq. (7) and solved it for the value of specific volume.

As seen in Fig. 4, the isentropes indeed demonstrate
pronounced kinks at the values of pressure and relative volume
where the kinks on isochores and isobars have been found. The
blue convex curve shows a smooth fit to the kinks positions.
The curve has a maximum (or at least it saturates) at P ≈
4.7 GPa, which suggests a critical point with so high pressure.
In Fig. 5 we presented as well several isentropes obtained using
another approach.25 The isentropes were found by integration
of the equation(

∂P

∂V

)
S

= −
[(

∂E

∂V

)
P

+ P

]/(
∂E

∂P

)
V

, (8)

in which the partial derivatives of internal energy in respect to
specific volume and pressure were determined in an analytical
form. It turned out that in the region of the (P , V ) plane
where the partial derivatives (∂E/∂P )V and (∂E/∂V )P could
be determined accurately, the isentropes practically coincide
with those found from Eq. (7). The comparison demonstrates
that the uncertainty in the values of pressure and volume on
the isentropes found by the method proposed here (and which

FIG. 5. (Color online) Pressure as a function of relative volume
along isentropes. The black (gray and open) marks correspond to
seven fixed entropy values obtained by Eq. (7). Four isentropes
determined by integration of Eq. (8) are shown with the thick black
lines (isentropes 1, 2, and portions of isentropes 5 and 6 at P < 5 GPa).
The data on isentropes were approximated by piecewise linear
functions (the red dashed lines) to locate the kinks. The blue circles
are the kinks’ positions determined for some of the isentropes, the
isobars shown in Fig. 4, and the isochores in Fig. 3. The blue convex
line connecting the points shows tentatively the equilibrium line of
the first-order phase transition.
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was used in the region where the partial derivatives are poorly
defined) does not exceed the measurements uncertainty.

As can be seen from Fig. 5 for isentropes 4–6, the sound
speed cs = V

√−(∂P/∂V )S undergoes a jump from about
3–4 km/s in the one-phase state down to 1.5–2.0 km/s in
the two-phase region. The question concerning kinetics effects
arises. Since the kinks on isentropes (and isobars) are clearly
manifested so that the phase transition is fast, these effects play
obviously a minor role. On the other hand, the relatively low
values of sound speed in the two-phase region may increase
the measurements uncertainty due to a non-uniform expansion
of the sample. Our estimates show that for P > 3 GPa these
uncertainties are insignificant.

IV. DISCUSSION

The interpretation of the resistivity results, assuming that
the MNM transition is continuous, has been given in Ref. 16.
Since actually it is not the case, the interpretation should be
revised. As seen from Figs. 2–5, resistivity at isobar P = 4 GPa
(which must be an isotherm in the two-phase region) increases
from about 4 μ� m in the metallic phase near the equilibrium
line (ϕ1 ≈ 3.4) to 9–11 μ� m in the nonmetallic phase (if at
the equilibrium line ϕ2 = 6–7). Thus, there is a remarkable
discontinuous jump in resistivity. Let’s assume the system in
the two-phase state is a fine dispersed mixture of the metallic
and nonmetallic phase whose conductivity can be described by
the effective medium formula.26 The equilibrium line shown
in Fig. 5 is rather flat so that at P � 4 GPa the metallic phase
conductivity on the equilibrium line (σ1) is much higher than
that of the nonmetallic phase (σ2). Neglecting the conductivity
of the nonmetallic phase, the effective medium formula can be
written as follows:

σeff ≈ σ1(T )

(
1 − 3

2
y2

)
, (9)

where y2 is the volume fraction of the nonmetallic phase (y2 <

2/3). Thus, the constant values of resistivity on isochores
ϕ = 3–4 in Fig. 2 can be explained by the fact that the
increase of resistivity with temperature in the metallic phase
is compensated by a decrease in the volume fraction y2, which
turns to zero at the equilibrium line (if the critical volume ϕc =
4–5). The remarkably higher values of resistivity on isochores
ϕ = 5–7 are due to the nonmetallic states with remarkably
larger values of ϕ than the average ones (since the equilibrium
line is flat).

The effective medium formula (9) predicts a percolation
threshold at y2 = 2/3. Density of the two-phase mixture at the
percolation threshold is

ρp = (ρ1(T ) + 2ρ2(T ))/3,

where ρ1 and ρ2 are densities of the metallic and nonmetallic
phase on the equilibrium line correspondingly. At low temper-
atures where ρ1 � ρ2, ρp ≈ ρ1/3 and it approaches the critical
density at the critical temperature. Thus, in our experiments for
which pressure did not vary essentially when the sample was
in the two-phase state so that the process was approximately
isothermal, the resistivity results must indicate the percolation
threshold by an abrupt change in resistivity at about the critical
density. As seen in Fig. 6 for the experiments satisfying this

FIG. 6. (Color online) The volume derivative of resistivity
dσ−1/dϕ vs relative volume for three experiments (27, 30, and
31) whose thermodynamic paths crossed the two-phase region (and
pressure was practically constant) and experiment 24, for which it
was not the case. The maximum values of the derivative are located
close to the critical volume ϕc ≈ 4.

condition, the derivative dσ−1/dϕ indeed has a maximum near
the value ϕ ≈ 4.

As follows from Figs. 2–4, near the critical point ϕ =
4–5, the resistivity in the one-phase state is within the range
of 5–6 μ� m that is very close to the minimum metallic
conductivity range of the high-Tc cuprates.6 Thus, the MNM
transition in fluid iron occurs as a first-order phase transition up
to the critical point. The first-order MNM transition can either
coincide with the liquid-vapor phase transition or have its own
equilibrium line.3 To find out what is the case for iron, we
have plotted the portion of the equilibrium of the here-observed

FIG. 7. (Color online) Portion of the equilibrium line of the phase
transition determined in this work (red solid line) is compared with the
boiling curve of iron (black dashed line) obtained by the soft-sphere
equation of state.27 CP is the MNM transition critical point; TP is the
hypothetical triple point.
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phase transition in the (P , ϕ−1) plane and compared it with the
boiling curve obtained by the soft-sphere equation of state,27

whose parameters were fitted to the experimental values at low
pressures.

As one can see in Fig. 7, the slope of the equilibrium line of
the phase transition observed here is essentially steeper than
that of the boiling curve. This strongly suggests that there is
a triple point at which the boiling curve intersects the equilib-
rium line of the MNM transition at certain (nonzero) angle,
i.e., there is a kink on the equilibrium line. Consequently, the
phase diagram is of the form predicted in Ref. 3 (case no.
3) with an additional triple point and two critical points. The
second critical point is located obviously at essentially lower
pressure than that shown in Fig. 7 but above the triple point,
PT P = 0.5–0.8 GPa.

A noteworthy feature of the observed-here phase transition
is the large values of internal energy on the equilibrium line
which exceed essentially the sublimation energy of iron (Esub

= 7.4 kJ/g, Ref. 28). Nevertheless such behavior is not unique
and has been observed in some fluids.29 The unique nature of
the present critical point becomes evident when we calculate
the critical compressibility ratio Zc. Estimating the critical
temperature by means of the procedure24 we get Zc ≈ 2,
which is about one order of magnitude higher than the value
for mercury, the alkali metals, and the noble gases.

Since on the nonmetallic side of the MNM transition,
internal energy approaches the ionization energy of ions with
the charge state z = 1–2, the thermodynamic states correspond

to a dense plasma. However, the plasma-phase transition
predicted for the gaseous state between two nonmetallic phases
(see, e.g., Ref. 30 and the literature therein) seems to have
no direct relation to the observed-here MNM transition. In
our case the metallic phase is strongly degenerate and is
hardly a gas. It seems that more relevant is the first-order
MNM transition predicted for liquid hydrogen.31 In that case
metallization becomes continuous when pressure is above a
critical point at which σc ≈ σmin and Zc ≈ 8.

V. CONCLUSION

In summary, we have detected a first-order phase transition
in fluid iron with a critical point at about 5 GPa. This transition
coincides with the MNM transition up to the critical point.
Comparison of the equilibrium line of the phase transition
with the boiling curve of iron suggests that the phase diagram
has the structure predicted in Ref. 3.
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