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Localized anharmonic rattling of Al atoms in VAl10.1
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We have used a suite of diffraction, thermodynamic, and transport measurements to study the localized
rattling of Al guest atoms in VAl10.1. The mean-square displacement of the rattling atom shows a concave-down
temperature dependence. This is characteristic of an anharmonic vibration, the frequency of which increases
with amplitude, akin to a particle in a box. We find that the rattling is best described in terms of a sixth-
order interatomic potential, with negligible contributions from harmonic and quartic terms. The rattler has a
characteristic temperature of θRM = 21 K and couples strongly to both the acoustic phonons and conduction
electrons. The coupling to the phonons is evident from the large value of the Grüneisen parameter, which
increases with decreasing temperature to � ≈ 43 at 5 K. Below 6 K, the electrical resistivity varies as T 3, which
can be explained in terms of electron scattering from damped sixth-order vibrations. VAl10.1 is a superconductor
below Tc = 1.53 K, with an upper critical field of ∼1 kG.
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I. INTRODUCTION

Localized vibrational states in crystals are usually thought
of in relation to extrinsic disorder that breaks the translational
invariance of the lattice.1 Familiar examples include point
defects such as substitutional impurities, vacancies, and
interstitials.2,3 In the late 1980s, it was suggested that spatially
localized vibrational states could exist even in the absence
of such extrinsic disorder.4–7 These intrinsically localized
modes (ILMs), it was proposed, could occur at any lattice site,
arising due to the anharmonicity of the effective interatomic
potential together with the discreteness of the lattice.1,4,5

Experimental observations of ILMs have now been reported
for several different physical systems of nonlinear coupled
oscillators, including arrays of Josephson junctions,8,9 optical
waveguides,10 and micromechanical resonators.11 The obser-
vation of atomic-scale ILMs in crystals, however, remains
more elusive.12

Another type of localized mode, characterized by low-
frequency vibrations at specific crystallographic sites, is now
known to exist in several different crystal structures, including
the filled skutterudites RM4Sb12 (R = La, Ce, Th, Pr, Tl; M =
Fe, Co, Os),13–16 clathrates such as X8Ga16Ge30 (X = Eu, Sr,
Ba),17,18 R3Pd20M3 (R = La, Ce, Pr, Nd; M = Si, Ge),15,19,20

Ba6Ge25,21,22 and Na24Si136,23 and the β-pyrochlore oxides
AOs2O6 (A = K, Rb, Cs).24–26 A common characteristic
among these structures is the presence of a three-dimensional
network of polyhedral cages, each of which can accommodate
one guest atom. When the cage is oversized compared to
the guest atom, the guest vibrates anharmonically with low
frequency and large amplitude. The vibration can be on
center (single-well potential)17 or off center (multiple-well
potential)15,17–19,21,22,27 relative to the lattice site at the cage
center. In the latter case, atomic tunneling or thermally
activated relaxation between the multiple wells may play an
important role in the mode dynamics.

Most if not all crystals containing these “rattling
modes” also show other interesting physics, most no-
tably strong scattering of long-wavelength acoustic

phonons,13,14,17,21 superconductivity,26,28–31 and sizable elec-
tron mass enhancements.26,29–32 The first phenomenon has
in recent years been exploited to develop new skutterudite-
and clathrate-based semiconducting thermoelectrics with an
enhanced figure of merit owing to the strong suppression
of the lattice thermal conductivity.13,14,17 These materials
are often called “electron crystal-phonon glasses.” Studies
have suggested that the coupling to the acoustic phonons
arises from avoided crossings of the guest-atom rattling mode
branches with host-lattice acoustic-phonon branches having
the same symmetry.33–36 For the second and third phenomena,
superconductivity and electron mass enhancement, the role of
the rattling is less clear. It has been suggested that both are
mediated by the large excursions of guest atoms from the cage
centers that can occur for anharmonic potentials, particularly
those with broad, flat bottoms.26,37,38

The presence of rattling modes in VAl10 was first reported
in the early 1970s. Large anomalies in the low-temperature
heat capacity, thermal expansion, and electrical resistivity
were explained by assuming that VAl10 contains a large
density of low-energy phonon modes, all with the same
Einstein temperature θE ≈ 22 K.39–42 The dominance of these
low-energy modes was considered so unusual that VAl10 was
dubbed an “Einstein solid.”39 VAl10 was later reported to
superconduct below 1.6 K, but the role of Al impurities in
the superconductivity was unclear.43 Although VAl10 has been
largely forgotten since the late 1970s, the recent discoveries
in the clathrate, skutterudite, and β-pyrochlore oxide systems
motivate us to reinvestigate this Einstein solid.

VAl10+δ (δ = 0–0.5) crystallizes in the cubic Mg3Cr2Al18

structure (Pearson symbol cF176, space group Fd3m).44,45 As
shown in Fig. 1, the structure can be described as a diamond-
cubic array of CN16 Frank-Kaspar polyhedra, each of which is
vertex connected to four neighboring CN16 polyhedra. There
are eight polyhedra per unit cell and two per primitive cell.
The array of polyhedra is reinforced by a tetrahedral network
of covalently bonded Al-V-Al-V chains that extend over the
entire crystal. At each polyhedron center is the 8a site, which
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can either be empty or be occupied by one Al atom. If none
of the 8a sites are occupied, the composition is VAl10 and the
crystal contains 129 optical phonon branches in addition to the
three acoustic branches. If all of the 8a sites are occupied by
Al atoms, the composition is V2Al21 and there six additional
optical branches. Ostensibly, these additional branches are the
rattling modes. The nearest-neighbor distances from the 8a

rattling atom site to the polyhedron framework sites are large:
3.16 Å for 8a–96g and 3.14 Å for 8a–16c. Thus, the free
diameter of the cage, ≈3.5 Å, is appreciably larger than that
of even a neutral Al atom, 2.85 Å. This mismatch is evidently
the main reason for the rattling. If larger guest atoms occupy
the 8a site, such as Eu in EuV2Al20 or Gd in GdV2Al20, the
rattling disappears.46,47

Another site in the structure, the 16c Al site, also has
unusually long nearest-neighbor distances. The 16c atom is
surrounded by a CN14 polyhedron that can be described
as a double six-ring polyhedron that is capped in the axial
direction. Figure 1 illustrates the CN14 polyhedra and their
packing within the unit cell. The distances from the 16c

site to the polyhedron framework sites, 3.08 Å for 16c–96g

and 3.14 Å for 16c–8a, are nearly as large as for the CN16

FIG. 1. (Color online) (a), (b) Crystal structure of VAl10, empha-
sizing (a) the diamondlike array of CN16 Frank-Kaspar polyhedra
and (b) the array of CN14 polyhedra. (c), (d) Detailed views of (c)
the CN16 coordination polyhedron surrounding the 8a Al atom (4̄3m

site symmetry), and (d) the CN14 polyhedron surrounding the 16c

Al atom (3̄m site symmetry). The structure contains four types of
Al sites (96g, 48f , 16c, and 8a) and one V site (16d). The vertices
of each CN16 polyhedron are composed of 12 96g Al sites (blue
spheres online) and 4 16c Al sites (green spheres online). Neighboring
polyhedra share one 16c site. One 8a Al site (orange spheres online)
occupies the center of each CN16 polyhedron. The vertices of each
CN14 polyhedron are composed of 12 96g Al sites and 2 8a Al sites.
One 16c Al site occupies the center of each CN14 polyhedron. The
48f Al atoms (magenta spheres online) and the 16d V atoms (red
spheres online) form the reinforcing Al-V-Al-V network. Parts (a)
and (b) show one unit cell and are centered on an 8a site.

polyhedron. We might therefore expect the 16c atoms to also
have unusual vibrational characteristics that contribute to the
“Einstein solid” behavior.

In this paper, we report neutron and x-ray diffraction,
heat capacity, thermal expansion, elastic constant, electrical
resistivity, and thermal conductivity measurements on poly-
crystalline VAl10.1. We find that the rattling mode is highly
anharmonic, with a dominant sixth-order term in the effective
interatomic potential. This anharmonicity is associated with
strong coupling to the long-wavelength acoustic phonons,
as evidenced by large anomalies in the thermodynamic
properties. The rattling mode also couples strongly to the
conduction electrons, dominating the electron scattering at
low temperatures and resulting in an unusual temperature
dependence of the resistivity. We have also confirmed the
existence of bulk superconductivity in VAl10.1 at Tc = 1.53 K.

II. EXPERIMENT

Polycrystalline ingots with nominal composition VAl10+δ

(δ = 0, 0.10, 0.25, 0.50, and 0.75) were prepared by arc melting
Al pieces (99.999%) and V flakes (99.9%) in a high-purity
Ar atmosphere. To ensure homogeneity, we used a multistep
melting procedure, first preparing the V-rich intermetallic
V8Al5 and then adding Al in successive arc-melting steps to
form the intermetallic VAl3 and finally VAl10+δ . The as-cast
ingots were wrapped in Ta foil, vacuum sealed in silica
tubes (<10−3 Torr), and annealed for five days at 650 ◦C.
At the end of the anneal, each sample tube was quenched
in −13 ◦C brine. The ingots were electrodischarge machined
into parallelepiped-shaped specimens for thermodynamic and
transport property measurements, or ground into powder for
x–ray and neutron diffraction measurements.

We characterized the crystal structure of the VAl10+δ

alloys using x-ray and neutron powder diffraction. The x-ray
measurements were done at room temperature on a Scintag
XDS 2000 diffractometer (Bragg-Brentano θ -θ type), using
Cu Kα radiation (λ ≈ 0.154 06 nm). During each scan, the
sample was rotated continuously in the 2θ = 0◦ plane. The
neutron measurements were done on the high-intensity powder
diffractometer at the Lujan Neutron Scattering Center at the
Los Alamos Neutron Science Center. For these experiments,
we used a vanadium sample can to contain approximately
300 mg of VAl10.1 powder. Diffraction patterns were measured
at seven temperatures between 4 and 300 K. The neutrons
were collected in time-of-flight mode using detector banks
located at four different angular ranges covering a d-spacing
range of 0.4–40 Å. All structural refinements were performed
using GSAS with the EXPGUI user interface.48,49 We were
particularly interested in deducing from the refinements the
temperature dependence of the isotropic mean-squared atomic
displacement 〈u2〉iso. Therefore, we were careful to refine
the data in as consistent a manner as possible across the
4 � T � 300 K range of our measurements. Specifically, we
jointly refined six room-temperature neutron patterns (using
banks located at 2θ = ±158◦, ± 90◦, ± 40◦, each covering
±5◦) and one room-temperature x-ray pattern (covering 2θ =
5◦–90◦) to determine the values of the Al 8a site occupancy,
the phase fractions, and nonstructural parameters including
the diffractometer constants, the absorption and transmission
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corrections, and selected peak-profile parameters. The values
deduced from this room-temperature co-refinement were then
fixed, and only the lattice parameters, atomic positions, and
〈u2〉iso thermal parameters were refined for all the remaining
temperatures.

We measured the heat capacity, thermal expansion, elastic
constants, electrical resistivity, and thermal conductivity using
a Quantum Design Physical Properties Measurement System.
All measurements were done in the range 2 � T � 300 K,
except for the heat capacity, where lower temperatures
were achieved using dilution and 3He refrigerators. The
heat capacity, electrical resistivity, and thermal conductivity
measurements were done using standard option packages
available from Quantum Design. Resistivity and thermal
conductivity measurements were both performed using four-
probe techniques, with the lead wires spot welded to the surface
of the sample in the case of resistivity and wrapped around
and then silver epoxied to the specimen in the case of thermal
conductivity.

Thermal expansion was measured using a three-terminal
capacitance technique, the details of which are described
elsewhere.50 Data were collected on an Andeen-Hagerling
2700A capacitance bridge. Elastic constants were measured
using resonant ultrasound spectroscopy (RUS). In our RUS
apparatus, the sample was excited using a Stanford Research
Systems (SRS) DS345 function generator driving a lead
zirconate titanate (PZT) transducer, and the sample response
was detected using a PZT transducer and a SRS SR844 lock-in
amplifier. Details of the RUS technique have been discussed
in several comprehensive reviews.51,52

III. RESULTS

A. Neutron diffraction and the mean-square
atomic displacement

Rietveld co-refinements of the x-ray and neutron powder
diffraction data confirmed that our VAl10+δ crystals consisted
mainly of the VAl10+δ phase (δ = 0–0.5) having the cubic
Mg3Cr2Al18-type structure. The crystals also contained a
minority phase of pure Al with concentration <5 wt.% for
δ = 0.1. With increasing δ, the extra Al formed more impurity
phase rather than filling the 8a sites. For this reason, we focus
on the VAl10.1 alloy for the remainder of the paper. It is
difficult to determine the exact composition of the VAl10+δ

phase. However, based on the nominal sample composition
of VAl10.1 and our heat capacity data (discussed below), we
estimate δ = 0.05–0.1.

From the co-refinements of the room-temperature neutron
and x-ray data, we concluded that the 8a sites are occupied
exclusively, or nearly so, by Al atoms. From these co-
refinements, we deduced an 8a occupancy of 0.90. This value
was fixed in all subsequent refinements at other temperatures.
(The occupancies of the other Al sites and the V site were
always fixed at 1.) We should note that this 8a occupancy is
larger than the ∼0.20 occupancy that we expected based on
the nominal stoichiometry of the alloy. This discrepancy is
caused by preferential orientation of the crystallites, which we
observed in the neutron image plate measurements.

Here, we are particularly interested in the temperature
dependence of the isotropic mean-square atomic displacement
〈u2〉iso for the Al sites. Because in any Rietveld refinement
the values of 〈u2〉iso and the site occupancies are correlated, a
systematic error in the occupancy will cause a systematic error
in the values of 〈u2〉iso. However, the temperature dependence
of 〈u2〉iso will be correct provided that the error in occupancy
is unchanged with temperature. This seems to be the case here;
by allowing the 8a occupancy to float during all refinements
in the range 4 � T � 300 K, we find that its value is constant
at 0.90.

To determine 〈u2〉iso, each Al site was refined as-
suming a single-site model using the standard ex-
pression for the isotropic Debye-Waller factor fDW =
exp(−16π2〈u2〉iso sin2 θ/λ2), where θ is the diffraction angle
and λ the neutron wavelength. Although this expression is
rigorously valid only for harmonic vibrations, we have recently
shown53 that even for strongly anharmonic vibrations, the
absolute value of 〈u2〉iso deduced using fDW is in error by less
than ∼20%. Moreover, the temperature dependence of 〈u2〉iso

is nearly correct. This latter point is particularly relevant for
the analysis of the 8a site data, as seen below.

Figure 2 shows the temperature dependence of 〈u2〉iso for
the four Al atoms in the structure: 96g, 48f , 16c, and 8a (see
Fig. 1). The curves through the 96g and 48f data are fits of
the Debye-Waller model54

〈u2〉iso = 〈u2〉0 + 3h̄2

mkB

(
1

4θDW
+ T 2

θ3
DW

∫ θDW
T

0

x dx

ex − 1

)
. (1)

Here, θDW is the Debye-Waller temperature, m is the atomic
mass, h̄ and kB are the Planck and Boltzmann constants, and
〈u2〉0 is a temperature-independent term that accounts for
static displacements of the atoms and for systematic errors.
Assuming that m = mAl, from the fits we deduced θDW =
425 K and 〈u2〉0 ≈ 0 for the 96g atom, and θDW = 725 K and
〈u2〉0 ≈ 0 for the 48f atom.

Here, we should note that the Debye-Waller model assumes
a cubic-symmetry lattice site and therefore isotropic atomic
displacements. In contrast, the 96g, 48f , and 16c sites
have monoclinic, orthorhombic, and trigonal symmetries,
respectively, and thus the displacements are anisotropic. (The
8a site has cubic symmetry.) As pointed out by Willis and
Pryor,55 our present use of Eq. (1) is justified because in
our Rietveld refinement, we interpreted the thermal factors
in terms of the isotropic model, thereby deducing “equivalent”
or “quasicubic” values of 〈u2〉iso. Similar comments apply to
our use of the Einstein model, discussed below.

The Debye-Waller model also assumes that all phonon
modes contributing to 〈u2〉iso are harmonic and acoustic,
with a partial phonon density of states (DOS) given by
the Debye approximation D(ω) ∝ ω2. For VAl10+δ , which
has only 3 acoustic branches but 129–135 optical phonon
branches (depending on the value of δ), the assumption
of a Debye DOS is probably unrealistic. For this reason,
we also fitted our data using an Einstein model 〈u2〉iso =
〈u2〉0 + (h̄2/mkBθE) coth (θE/2T ), where θE is the Einstein
temperature. We found that the data are described equally
well by the Debye-Waller and Einstein models, but the
characteristic temperatures are different: using the Einstein
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FIG. 2. (Color online) (a), (b) Temperature dependence of the
isotropic mean-square atomic displacement 〈u2〉iso for the different Al
atoms, as determined from Rietveld refinement of neutron diffraction
data. Error bars are shown only when larger than the size of the points.
The curves through the 96g and 48f data are fits of the Debye-Waller
model [Eq. (1)] for harmonic acoustic phonons. The curve through
the 8a data is the fit for a sixth-order optical phonon. The solid curve
through the 16c data is the fit for a sixth-order anharmonic phonon
plus the Debye-Waller model [Eq. (2)].

model, θE = 240 K for the 96g atom and θE = 420 K for 48f .
These values are smaller than the Debye-Waller temperatures
by a factor of

√
3. This is due to the different vibrational spectra

assumed for the two models. Aside from this difference, the
details of the phonon DOS evidently have little effect on the
temperature dependence of 〈u2〉iso. Most likely, the reason is
that the zero-point mean-square displacement is proportional
to the first moment of the phonon DOS, and hence is fixed
mainly by the highest-frequency modes in the spectrum.56

Compared to the 96g and 48f atoms, for the 8a atom
the magnitude of 〈u2〉iso is much larger. Clearly, the 8a Al
atom is the “rattling atom” in VAl10+δ . As seen in Fig. 2,
the most interesting feature of the 8a data is its concave-
down temperature dependence, which is completely different
than that of a harmonic vibration. We will now show that
this concavity is the signature of an anharmonic phonon, the
frequency of which increases with vibrational amplitude.

Based on the structure of VAl10.1, namely, the presence
of a “rattling” atom in an oversized cage, we can as a
first approximation model the 8a atom as a particle in a
box. This is a limiting case for an anharmonic single-well
potential. Using the interatomic distances deduced from our
diffraction data, we estimate that for neutral and hard-sphere
Al atoms, the box dimension is L ≈ 0.7–0.8 Å. From the
well-known wave functions 
n and eigenenergies En for the
eigenstates n, we compute 〈u2〉iso numerically from 〈u2〉iso =∑

n pn〈
n|u2|
n〉, where pn = e−βEn/Z is the Boltzmann
weight, Z = ∑

n e−βEn is the partition function, β = 1/kBT ,
and u is the displacement from the center of the well. For L =
0.8 Å and a particle of mass mAl, we calculate the curve shown
in Fig. 2. Clearly, the particle-in-a-box model reproduces
qualitatively the concave-down temperature dependence of our
〈u2〉iso data. The physical interpretation of the concavity, then,
is that the displacement of the 8a atoms is restricted by the
cage walls.

For increasing temperature, the particle-in-a-box model
predicts that 〈u2〉iso approaches a saturation value. Our data,
however, show a T 1/3 dependence from 25 K up to 300 K, with
no sign of saturation. This T dependence is characteristic of
sixth-order (sextic) potential, rather than a square well.57 We
obtain favorable agreement with our data over the entire range
4 < T < 300 K by modeling the rattling modes as sextic vibra-
tions, with interatomic potential V (u) = 1

6 (m3ω4
RM,6/h̄

2)u6

and characteristic frequency ωRM,6. This is shown in Fig. 2,
where the curve through the 8a data is the fit of 〈u2〉iso =
〈u2〉0 + ∑

n pn〈
n|u2|
n〉 for the sextic oscillator. The wave
functions 
n and eigenenergies En used in the fit were obtained
by numerically solving the Schrödinger equation. From the fit,
we determined θRM,6 = h̄ωRM,6/kB = 32 K, m = 1.07mAl,
and 〈u2〉0 = 0.0033 Å2. For the purely sixth-order oscillator,
this value of θRM,6 equates to characteristic temperatures of
40, 59, and 73 K for the level transitions 0 → 1, 1 → 2, and
2 → 3, respectively. Based on the value of 〈u2〉0 found here,
we can not rule out the possibility of static disordering of
the 8a atoms. However, if the 8a atoms vibrate in single-well
potentials and the lattice has little or no distortion, as are
suggested by our diffraction and heat capacity data, then the
static contribution to 〈u2〉iso should be small compared to the
dynamic one.

Finally, we consider the data for the 16c atom. As shown in
Fig. 2(b), 〈u2〉iso decreases linearly with temperature down to
15 K, and then remains virtually unchanged on further cooling
to 4 K. The linearity of high-temperature data implies that
the vibrations are harmonic. However, we were unable to fit
the data using only the harmonic Debye-Waller or harmonic
Einstein model. The problem is that the value of θ required
to explain the slope of the high-temperature data can not also
explain why the zero-point saturation of 〈u2〉iso occurs at such a
low temperature, T ≈ 15 K. This is demonstrated in Fig. 2(b),
where the dashed curve is the Debye-Waller model for θDW =
350 K, which is the value deduced from the high-temperature
slope. The 15 K saturation temperature suggests the presence
of additional excitations with lower characteristic energy.

The data could be fitted by assuming two contributions to
the 16c partial density of states: one from harmonic acoustic
(Debye) modes, and one from anharmonic low-frequency
optical modes. The data can not be fitted by assuming that the
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optical modes are harmonic. We modeled the optical modes as
sextic vibrations, just as for the neighboring 8a rattling site. In
this case,

〈u2〉iso = 〈u2〉0 + f
∑

n

pn〈
n|u2|
n〉

+ (1 − f )
3h̄2

mkB

(
1

4θDW
+ T 2

θ3
DW

∫ θDW
T

0

x dx

ex − 1

)
,

(2)

where f is the fraction of the 16c modes that are strongly
anharmonic. The fit of Eq. (2) to the 16c data is shown in Fig. 2.
From the fit, we determined θRM,6 = 39 K, θDW = 365 K,
f = 0.148, and 〈u2〉0 = 0.0013 Å2. This value of θRM,6 is
close to that deduced for the neighboring 8a rattling atom,
i.e., θRM,6 = 32 K. Furthermore, the value of f seems to be
physically meaningful when interpreted in terms of the crystal
structure. Recall that the primitive cell of VAl10+δ contains
44–46 atoms, 4 of which are 16c Al atoms, and 0–2 of which
are 8a Al atoms depending of the value of δ. We estimate that
δ = 0.05–0.1 for the VAl10+δ phase of our crystal, meaning
that each primitive cell contains on average 0.2–0.4 Al atoms in
the 8a site. Of the four 16c atoms per primitive cell, on average,
0.6–1.2 of them are nearest neighbors of occupied 8a sites.
This fraction, 0.6/4 = 0.15 to 1.2/4 = 0.30, is comparable to
f = 0.148 that we found by fitting Eq. (2) to the data. Thus,
one interpretation of the data is that 16c atoms neighboring
occupied 8a sites vibrate anharmonically, presumably due to
coupling to adjacent 8a rattling atoms, whereas 16c atoms
neighboring unoccupied 8a sites vibrate harmonically.

B. Thermodynamic properties

1. Heat capacity

Figure 3 shows the temperature dependence of the (a) heat
capacity (plotted as Cp/T ), (b) coefficient of linear thermal
expansion, (c) elastic constants, and (d) Grüneisen parameter.
All thermodynamic properties show large anomalies that
extend from 2 K upward to 50 and even ∼100 K in the case
of the elastic constants. From the heat capacity data, one can
immediately infer a large density of states of excitations with
characteristic temperature less than 50 K. From the thermal
expansion, elastic constants, and Grüneisen data, we can
further infer that the rattling modes couple strongly to the
acoustic phonons, which is consistent with the anharmonicity
evident in the 〈u2〉iso data.

To analyze the low-temperature heat capacity data, we
must assume that aside from the usual contributions from the
electrons and acoustic (Debye) phonons, there is an additional
contribution from non-Debye vibrations. We model these
vibrations as sextic, just as for our analysis of the 〈u2〉iso data.
In this case, the heat capacity is

Cp = γ T + 12π4

5θ3
D

(N − NRM ) kBT 3 + 3NRMCv,RM, (3)

where γ is the Sommerfeld coefficient, θD is the Debye
temperature, N is the number of atoms is the solid, NRM is the
number of rattling atoms, and Cv,RM is the heat capacity of
one sextic vibration with characteristic temperature θRM,6. The

curve through the data in Fig. 3(a) shows the fit of Eq. (3) in
the range 0.01 < T < 25 K. We should note that comparable
fits are found using harmonic and quartic oscillators since the
computed Cp(T ) is somewhat insensitive to the anharmonicity.
The fact that Eq. (3) can be fitted over a large temperature
range, up to T/θD ≈ 1/14, reflects the dominant contribution
of the rattling modes to the low-energy phonon DOS. This
is also evident from the dashed curves in Fig. 3(a), which
show the contributions from only the electrons plus the Debye
phonons. From the fit of Eq. (3), we deduced γ = 1.56 mJ
mol atoms−1 K−2, θD = 341 K, θRM,6 = 21 K, and NRM/N

= 0.014. This value of NRM/N is larger than 0.01, which is
the fraction of atoms occupying the 8a site in VAl10.1. This
might reflect the participation of additional atoms aside from
the 8a, for example, the 16c atoms, as suggested by the 〈u2〉iso

data in Fig. 2. The characteristic temperature of 21 K is close
to 32 K, which is the value of θRM,6 determined from our
analysis of the 〈u〉iso data. It also agrees well with the value
of 22 K deduced by Caplin and co-workers,39,41 who used a
harmonic (Einstein) model to interpret their heat capacity data.
We should note that the frequency of the rattling in VAl10.1 is
among the lowest among all known rattling-mode materials.
This is interesting considering the small mass of the Al guest.
To our knowledge, only the 150% more massive Ga guest in
Ga-doped VAl10 has a lower frequency, with θ ≈ 8 K.41,42 The
50% more massive K guest in KOs2O6, with θ ≈ 22 K,31 has
a comparable frequency to the Al guest in VAl10.1.

As pointed out by Caplin and Nicholson,41 in Ga-doped
VAl10, the characteristic temperature for the Ga rattler is about
0.4 that of the Al rattler, whereas the mass ratio of Al to
Ga is 0.38. They noted that disregarding any change in the
interatomic potential, this mass scaling would be expected
for a rotator or a square-well potential (m−1), but not for a
harmonic oscillator (m− 1

2 ). This is consistent with the present
picture of a sextic (square-well-like) potential for the Al rattler
in VAl10.1

We have also measured the heat capacity down to 100 mK,
using 3He and dilution refrigerators. These data are shown in
Fig. 4. The main panel shows Cp/T versus log T , measured at
both zero applied field and at 1 kG. The shoulder near 10 K is
due to excitation of the rattling modes. At lower temperatures,
near 1.53 K, VAl10.1 undergoes a superconducting transition.
The magnitude of the heat capacity jump suggests that the
superconductivity has bulk character and is not associated with
the Al impurity. We have not studied the field dependence of
Tc in detail, but the transition is suppressed to Tc < 100 mK
by applying a field between 0.8 and 1 kG. For 1 kG, the Cp/T

versus T data is flat and featureless below ∼2 K, as expected
when normal-state electrons dominate the heat capacity.

The inset of Fig. 4 shows the temperature dependence
of the electronic heat capacity, plotted as Ce/T , near the
superconducting transition. Here, the phonon component was
estimated by fitting Eq. (3) to the normal-state data, as
done previously, only now we used two sextic oscillators
to obtain a better estimate of the phonon contribution. The
superconducting transition temperature, as determined from
an entropy-conserving construction, is Tc = 1.53 K. This
falls within the range of Tc’s determined previously for
VAl10 via inductance measurements.43 The sharpness of the
transition �Tc ≈ 0.2 K suggests that our VAl10.1 polycrystals
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FIG. 3. (Color online) Temperature dependence of the thermodynamic properties of VAl10.1: (a) heat capacity, plotted as Cp/T ,
(b) coefficient of linear thermal expansion, (c) adiabatic bulk (BS), isothermal bulk (BT ), and adiabatic and isothermal shear (GS = GT )
moduli, and (d) thermodynamic Grüneisen parameter, all measured at zero applied magnetic field. The curves through the Cp/T , GT , BT , and
� data are fits of Eqs. (3), (4), (5), and (6), respectively.

are homogeneous and of good quality. Based on the equal-
entropy analysis, we determined a heat capacity jump of
�Ce/γ Tc = 1.42. This is close to 1.43, which is the value
predicted by BCS theory for weak coupling.58

2. Thermal expansion

As shown in Fig. 3(b), the thermal expansion coefficient
rises steeply above 5 K, has a shoulder in the range 15 <

T < 25 K, and then continues to increase at a slower rate
above 25 K. The temperature of the shoulder is approximately
equal to the θRM,6 = 21 K characteristic temperature deduced
from the heat capacity data. More interestingly, the value at
the shoulder, α ≈ 4 × 10−6 K−1, is 10 to 40 times larger than
that of pure Al (dashed curve) in the same temperature range.
These data are qualitatively similar to those measured by Legg
and Lanchester.42 The large value of α, together with the low
temperature of the plateau, points to the strong coupling of the
anharmonic rattling mode to nondeviatoric (volume-changing

but shape-conserving) thermal strains, and hence to the long-
wavelength longitudinal and transverse acoustic modes.

3. Elastic constants

The temperature dependence of the elastic constants mirrors
that of the thermal expansion coefficient. This is shown
in Fig. 3(c), where we plot data for the two independent
moduli of polycrystalline VAl10.1. Here, we choose the shear
modulus G and the bulk modulus B as the independent moduli
because they characterize the response to purely deviatoric
(shape-changing but volume-conserving) and purely nondevi-
atoric (volume-changing but shape-conserving) deformations,
respectively. We include in Fig. 3(c) data for both the
adiabatic and isothermal moduli. The adiabatic moduli GS

and BS were measured directly using resonant ultrasound
spectroscopy. For moduli associated with purely deviatoric
deformations, the isothermal and adiabatic values are equal,
so GT = GS .59 For moduli associated with deformations
having a nondeviatoric component, they are different. In the
case of the bulk modulus, BT = BS/

(
1 + Tβ2BSV/Cp

)
,60
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FIG. 4. (Color online) Main panel: Temperature dependence of
Cp/T , measured at zero applied field and 1 kG. Inset: Temperature
dependence of the electronic heat capacity, plotted as Ce/T , near the
superconducting transition. Note the different scales.

where β is the volume thermal expansion coefficient (β = 3α

for VAl10.1). For most materials, the difference between BT

and BS is negligible. However, because of its huge thermal
expansion coefficient at low temperatures, for VAl10.1 the
difference is large, reaching 2% at 200 K. This results in a
substantially different temperature dependence for BS and BT ,
which is particularly important when extracting the coupling
coefficients from these data, which we do next.

The T dependence of the moduli suggest that the rattling
modes couple strongly to externally applied deformations, and
hence to the k = 0 longitudinal acoustic (LA) and transverse
acoustic (TA) phonons. Here, we use a simple quasiharmonic
model to quantify the strength of the coupling. Within
the quasiharmonic approximation, the T dependence of the
isothermal shear and bulk moduli are59

GT (T ) = G(0) − A1T
2 + K1

�L(T )

L

+ 1

V

(〈
1

ωPh

∂2ωPh

∂ε2
G

〉
UPh − 〈(

γ G
Ph

)2〉
T Cv,Ph

)

+ 3NRM

V

(
1

ωRM,6

∂2ωRM,6

∂ε2
G

URM − (
γ G

RM

)2
T Cv,RM

)
(4)

and

BT (T ) = B(0) − A2T
2 + K2

�L(T )

L

+ 1

V

(〈
1

ωPh

∂2ωPh

∂ε2
V

〉
UPh − 〈(

γ V
Ph

)2〉
T Cv,Ph

)

+ 3NRM

V

(
1

ωRM,6

∂2ωRM,6

∂ε2
V

URM − (
γ V

RM

)2
T Cv,RM

)
.

(5)

In Eqs. (4) and (5), the first term on the right is the value of the
modulus at 0 K. The second term is the electronic contribution,
where A1 and A2 are constants. The third term accounts for the

implicit dependence of the phonon frequencies and the lattice
potential energy on thermal expansion. Here ,K1 and K2 are
effective moduli that represent the sum of several second- and
third-order elastic constants,61 and �L(T )/L is the relative
length change due to thermal expansion. The remaining terms
on the right account for the explicit dependence of the phonon
frequencies on the externally applied strain. In these last
terms, we have divided the phonons into two groups: rattling
modes and background modes. The quantities UPh and Cv,Ph

are the internal energy (relative to 0 K) and heat capacity
for the phonon background, whereas URM and Cv,RM are
the same quantities for one sextic rattling mode. The mode
Grüneisen parameters γ

G,V
RM = −ω−1

RM,6(∂ωRM,6/∂εG,V ) and
the second derivatives ω−1

RM,6(∂2ωRM,6/∂ε2
G,V ) characterize

the coupling of the rattling mode to the shear strain
εG and volume strain εV . Similarly, the mode-averaged
Grüneisen parameters 〈(γ G,V

Ph )2〉 = ∑
j (−ω−1

j ∂ωj/∂εG,V )2

Cv,j /
∑

j Cv,j and 〈ω−1
Ph∂

2ωPh/∂ε2
G,V 〉 = ∑

j (ω−1
j ∂2ωj/

∂ε2
G,V )Cv,j /

∑
j Cv,j characterize the average coupling of the

3(N − NRM ) background phonon modes.
The curves in Fig. 3(c) show the fits of Eqs. (4) and (5) to

the data. For these fits, we used values of �L(T )/L obtained
from our thermal expansion data. The heat capacity Cv,RM was
assumed to be that of a sextic oscillator with θRM,6 = 21 K
and number density was NRM/N = 0.014, as determined from
the heat capacity data. The background phonon heat capacity
was computed from Cv,Ph = Cv − γ T − 3NRMCv,RM , where
Cv is the measured total heat capacity and γ = 1.56 J
mol−1K−2. Internal energies URM and UPh were obtained
by integrating the respective heat capacities. Using these
thermodynamic data, and further noting that (i) to first order
〈(ω−1

Ph(∂2ωPh/∂ε2
G,V )〉 = 〈(γ G,V

Ph )2〉, and (ii) the electronic T 2

terms can be omitted with little error, Eqs. (4) and (5) each have
five parameters to be determined by fitting to the data. From
the shear modulus data, we found 〈(γ G

Ph)2〉 = 0.7 for the back-
ground phonons, and γ G

RM = 24 and ω−1
RM,6(∂2ωRM,6/∂ε2

G) =
31 for the rattling modes. From the bulk modulus data, we
determined 〈(γ B

Ph)2〉 = 2.1 for the background phonons, and
γ V

RM = 73 and ω−1
RM,6(∂2ωRM,6/∂ε2

V ) = 78 for the rattlers. It
is important to note that we determined these values using
NRM/N = 0.014. This corresponds to a stoichiometry of
VAl10.15 for the VAl10+δ phase. If we instead use a stoichiome-
try of VAl10.1, as implied by our sample composition (assuming
no Al impurity), we find that the mode Grüneisen parameters
are 50% larger than the values stated here.

Interestingly, from our analysis, we find that for T � 100 K
the temperature dependence of BT and GT arises mainly from
expansion of the lattice, e.g., the �L(T )/L terms in Eqs. (4)
and (5). Conversely, for T � 100 K, it is due mainly to the
strong coupling of the rattling-mode frequency to the applied
strain, and hence to the LA and TA phonons. This coupling is
a consequence of the rattling mode’s huge anharmonicity.

4. Grüneisen parameter

Figure 3(d) shows the temperature dependence of the
thermodynamic Grüneisen parameter � = 3αBSV/Cp. For
temperatures above 200 K, � approaches a limiting value
of ∼2. With decreasing temperature, � increases steeply,
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reaching a value of ∼43 at 5 K, the lowest temperature for
which we have thermal expansion data. The Grüneisen � is
equivalent to the weighted average of the mode Grüneisen
parameters60 � = ∑

i γiCv,i/
∑

i Cv,i , where the sums are
over all excitations in the solid. For the present analysis, we
classify the excitations into three types: electrons, background
phonons, and anharmonic rattling modes. In this case,

� = γ V
e Ce + 〈

γ V
Ph

〉
Cv,Ph + γ V

RMNRMCv,RM

Cv

, (6)

where γ V
e = [V/D(εF )][∂D(εj )/∂V ] is the electronic

Grüneisen parameter, D(εF ) is the density of states at the
Fermi level, Ce is the electronic heat capacity, Cv is the
total heat capacity, and 〈γ V

Ph〉 is the mode-averaged Grüneisen
parameter for the background phonons, the definition of which
is analogous to that for 〈(γ V

Ph)2〉.
The curve through the data in Fig. 3(d) shows the fit of

Eq. (6). In this fit, we used the same data and parameters
used for the elastic constant analyses. We also assumed
that γ V

e = 1.8, the value for pure Al.60 This left only
two parameters to be determined by fitting, for which
we deduced 〈γ V

Ph〉 = 1.5 and γ V
RM = 54. Both values are

comparable to those determined from the bulk modulus data√
〈(γ V

Ph)2〉 = 1.45 and γ V
RM = 73. Recall, however, that these

values may be 50% too small because of the uncertainty in
the composition of the VAl10+δ phase.

C. Transport properties

1. Electrical resisitivity

Figure 5 shows the temperature dependence of the electrical
resistivity. Above ∼80 K, the data show a downward con-
cavity suggesting that ρ(T ) saturates for T > 300 K. Similar
concavity has been measured for other metallic rattling-mode
materials, for example, the β-pyrochlores AOs2O6 (A = K,
Cs, Rb) (Ref. 26) and the filled skutterudite PrOs4Sb12.29

The downward concavity is in qualitative agreement with the
models of Mahan and Sofo57 and Dahm and Ueda,62 who
calculated ρ(T ) due to scattering by anharmonic phonons.
They found that, for anharmonic potentials V (u) ∝ un, where
n = 4,6,8, the temperature dependence is ρ ∝ T 2/n in the
high-temperature limit. Our VAl10.1 data, however, show no
such power-law dependence for 80 < T < 300 K. This differs
from KOs2O6, RbOs2O6, and CsOs2O6, which all show a

√
T

dependence above 100 K.26

The resistivity of poorly conducting metals often shows
a concave-down temperature dependence.63 In that sense,
the concavity observed for VAl10.1, the β-pyrochlores, and
PrOs4Sb12 is not surprising, considering that these alloys
all have room-temperature resistivites of �100 μ� cm.
The resistivity of such metals is often well described by
the phenomenological “shunt” model 1/ρ(T ) = 1/ρideal(T ) +
1/ρmax.63 Here, ρideal(T ) is the ideal resistivity arising from
electron-impurity, electron-electron, electron-phonon, etc.,
scattering and ρmax is the maximum limiting resistivity. The
curve through the data in Fig. 5(a) shows the fit of the
shunt model in the range 90 < T < 300 K. For this analysis,
we assumed that ρideal is dominated by electron-harmonic
phonon scattering in the high-temperature limit, so that ρideal =
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FIG. 5. (Color online) Temperature dependence of the resistivity
of VAl10.1, plotted as ρ vs T in the main panel and ρ vs T 3 in the inset.
Below 40 K, the rattling mode makes the main contribution to the
temperature dependence. For T < 12 K, the data are well described
by a simple model of electron scattering by a damped sextic vibration.

a + bT as given by Bloch-Grüneisen theory. From the fit, we
determined a saturation resisitivity of ρmax = 188 μ� cm.

On cooling to 40 K, the slope dρ/dT abruptly decreases.
Most likely, in this temperature range, scattering by the rattling
modes becomes increasingly dominant because the density of
other phonon states with comparably low energies (θRM,6 =
21 K) is small. In the range 2 < T < 6 K, the resistivity shows
a T 3 dependence. This is seen in the inset, where we plot
ρ versus T 3. To our knowledge, a T 3 dependence has not
been seen for other rattling-mode materials, although a T 2

dependence at low temperatures has been reported for AOs2O6

(A = K, Rb, Cs).26 In what follows, we show that the low-
temperature resistivity data, including the T 3 regime, can be
explained in terms of electron scattering by a damped sextic
vibration.

To calculate the contribution of the rattling modes to the
resistivity, we follow closely the work of Mahan and Sofo,57

except here we assume that the anharmonic phonon is damped
owing to the interaction with conduction electrons.62 In this
case, the phonon spectral function is

A(ω) =
∑

v

fv

1

π

4�v�0ω(
ω2 − �2

v

)2 + 4�0ω2
, (7)

where ω is the frequency, �v = (En+k − Ek)/h̄ is the fre-
quency of the transition v between states with eigenergies
En and En+k , and �0 is the temperature-independent phonon
damping rate. The strength of a particular transition is

fv = 1

Z
(e−βEn − e−βEn+k )〈n|ξ |n + k〉2, (8)
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where Z is the partition function, 〈n|ξ |n + k〉 is the relevant
matrix element for the electron-phonon interaction in the adia-
batic approximation, and ξ is the dimensionless displacement
as defined previously. Since the matrix elements decrease
rapidly with increasing k, it is an accurate approximation
to consider only k = 1,57 which we do here. Calculation of
the resistivity requires the energy-dependent electron lifetime,
which is proportional to the imaginary part of the retarded
electronic self-energy62

τ−1(ε) ∝
∫ ∞

0
A(�)[2nB(�) + f (� + ε) + f (� − ε)]d�,

(9)

where ε is the electron energy and nB(�) = (eβh̄� − 1)−1 and
f (�) = (eβh̄� + 1)−1 are the Bose and Fermi distributions,
respectively. The temperature dependence of the lifetime is
then obtained by averaging τ (ε) over the electron energies
τ (T ) = − ∫ ∞

−∞
df

dε
τ (ε)dε. The resistivity is calculated from

ρ(T ) = Dτ−1(T ), where D is a fitting parameter.
Using the previously determined eigenfunctions 
n and

eigenergies En for a sextic oscillator with θRM,6 = 21 K,
together with the above equations, we have calculated ρ(T )
numerically for different values of the damping rate �0.
We find that the low-temperature behavior of our ρ(T )
data, including the T 3 regime, can be reproduced for
�θ = h̄�0/kB = 4 K. This is demonstrated by the curve in the
Fig. 5 inset, which fits the data well up to ∼12 K. For T > 12
K, contributions from other scattering mechanisms evidently
become important and the resistivity rises more quickly than
predicted by this simple model.

Using an approach similar to the present one, Dahm and
Ueda62 showed that for a damped quartic vibration, the
resistivity varies as T 2 at low temperatures, in agreement with
data for the β-pyrochlore oxides AOs2O6, (A = K, Rb, Cs).26

2. Thermal conductivity

Figure 6 shows temperature dependence of the thermal
conductivity κ . For T < 6 K, κ increases linearly with
temperature, as expected when electrons are the dominant
mechanism of heat transport. Using the Wiedemann-Franz
law, κe = Lρ−1T , together with our electrical resistivity data
and the Lorenz number L = 2.45 × 10−8 W � K−2, we
calculated the electronic contribution to the conductivity,
shown by the curve in Fig. 6. This simple calculation captures
the temperature dependence seen in the data, although the
computed values of κ are too large. Based on this analysis, it is
safe to assume that the lattice contribution to the conductivity
is small compared to the electronic one.

IV. DISCUSSION

A. Anharmonicity of the rattling modes and their
coupling to the acoustic phonons

The concave-down temperature dependence of 〈u2〉iso

observed for the 8a rattling atom is a clear signature for strong
anharmonicity of at least one of its three optical modes. That
the concavity is to the abscissa rather than to the ordinate
implies that the frequency increases with amplitude, e.g.,
the vibration can be described qualitatively as a particle in
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FIG. 6. (Color online) Temperature dependence of the thermal
conductivity, plotted in log-log and linear-linear forms. The solid
curve shows the conductivity calculated from the resistivity data in
Fig. 5, using the Wiedemann-Franz law. The end of the plateau at
∼115 K corresponds to the onset of electrical resistivity saturation,
as seen in Fig. 5.

a box. More quantitatively, we have found that the rattling
is best described using a sextic vibration, with negligible
contributions from harmonic and quartic terms. The idea that
the Al atom rattles anharmonically was first proposed in the
1970s. Based on pseudopotential calculations, Caplin and
Nicholson41 proposed that the 8a site was actually fourfold
split, with each minimum located about 0.55 Å from the cage
center on a spherical surface having slightly greater potential
energy. The picture that emerged, then, was one of a quasifree
rotator. At the time there was no clear experimental evidence
to support Caplin and Nicholson’s anharmonic model.

In our low-temperature heat capacity data (Fig. 4), we
observe no evidence of a Schottky-type anomaly. We would
expect a Schottky feature to occur if the 8a site were split
into multiple sites, each displaced slightly and symmetrically
from the ( 1

8 , 1
8 , 1

8 ) and equivalent positions. Such multiple sites
would be energetically equivalent, or nearly so, causing tunnel
splitting of the ground and possibly even excited vibrational
states. Evidence for splitting has been detected in Eu8Ga16Ge30

from nuclear density maps derived from neutron diffraction
data,17 and splitting has been predicted in Sr8Ga16Ge30 by
means of first-principles calculations.27 Based on the heat
capacity data in Fig. 4, though, we conclude that the 8a site
in VAl10.1 is either not split, or that any splitting results in a
very small tunneling gap, less than 10 μeV. This implies that
the effective potential is a single well, the minimum of which
is broad and flat. Hence, the low-frequency modes of the 8a

atoms are indeed best described as “rattling.”
To our knowledge, the strong downward concavity of 〈u2〉iso

that we observe in VAl10.1 has not been seen for rattling
atoms in other materials. In our search of the literature, we
found 〈u2〉iso versus T data (measured via neutron diffraction)
for the La and Tl rattling atoms in the filled skutterudites
La0.75Fe3CoSb12 and Tl0.22CoSb12,13,14 for the K rattling atom
in the β-pyrochlore oxide KOs2O6,25 for the Eu, Sr, and Ba

014103-9



D. J. SAFARIK et al. PHYSICAL REVIEW B 85, 014103 (2012)

rattling atoms in the clathrates X8Ga16Ge30 (X = Eu, Sr, Ba),
Ba8Ga16Si30, and Sr8Zn8Ge38,17,64 and for the Na rattling atom
in the clathrate Na24Si136.65 For all of these materials, with
the exception of Eu8Ga16Ge30, 〈u2〉iso increases approximately
linearly with temperature in the range 30 < T < 300 K. This
is demonstrated in Fig. 7(a), where we reproduce literature data
for Sr8Ga16Ge30,64 KOs2O6,25 and Eu8Ga16Ge30.17 Only the
clathrate Eu8Ga16Ge30 is different in that 〈u2〉iso seems nearly
temperature independent above 40 K. Interestingly, for both
Eu8Ga16Ge30 and Sr8Ga16Ge30, 〈u2〉iso appears to increase as
the temperature is decreased below ∼30 K.

Ostensibly, the linear T dependence of 〈u2〉iso implies that
the rattling is harmonic. This is why these data are usually
interpreted in terms of a harmonic Einstein model. Other
measurements for the same and similar materials, however,
show direct evidence for anharmonicity of the rattling. Here,
we cite four examples: (1) Nuclear density maps of the Eu
site in Eu8Ga16Ge30 show evidence for fourfold splitting,
at least for temperatures near 40 K.17 (2) Thermodynamic
measurements for Sr8Ga16Ge30, Ba8Ga16Si30, and Sr8Zn8Ge38

show that the mode-averaged Grüneisen parameter � increases
with decreasing temperature, with values reaching � ∼ 10
at 25 K.64 (3) Neutron scattering experiments done on the
β-pyrochlore oxides AOs2O6 (A = K, Rb, Cs) (Ref. 66) show
that for all three compounds, the inelastic peak associated
with the alkali-metal rattling ion shifts monotonically to
lower frequencies as the temperature is decreased. (4) NMR
measurements done on KOs2O6 show an unusual temperature
dependence of the K-site nuclear relaxation that has been
explained in terms of a highly anharmonic, low-frequency
phonon.62,67

The data shown in Fig. 7(a) (and other data not shown
here), together with the above-mentioned evidence of anhar-
monicity, suggests that the rattling can be anharmonic, yet
the corresponding 〈u2〉iso can have a quasilinear temperature
dependence that might easily be misinterpreted as harmonic.
In what follows, we show that this can indeed occur for a local
anharmonic vibration that is characterized by a double-well
potential. For at least the Eu-filled clathrate Eu8Ga16Ge30,
there are data suggesting that a multiple-well model is a more
appropriate description than a single well. Specifically, the
nuclear density map for the rattling Eu atom, as determined
from single-crystal neutron diffraction, shows a fourfold
splitting of the Eu nucleus at 40 K.17 Also, for Sr8Ga16Ge30,
density functional theory (DFT) calculations suggest that the
Sr atom rattles in a multiple-well potential.27

We model the rattling modes as a particle in a one-
dimensional double-well potential V (u) = − 1

2αmω2
4u

2 +
1
4 (m2ω3

4/h̄)u4, where α is a positive constant and ω4 is the
characteristic frequency of the quartic contribution. Although
here we use a 2–4 potential, qualitatively similar results are
obtained by choosing 2–6, 2–8, etc. potentials. By using the
previously described methodology, we solve the Schrödinger
equation numerically for particular values of α, θ4 = h̄ω4/kB ,
and m and then compute 〈u2〉iso = 〈u2〉0 + ∑

n pn〈
n|u2|
n〉.
Figure 7(b) shows schematics of the interatomic potentials
with the eigenenergies superimposed. The calculated values of
〈u2〉iso are relative to the u = 0 positions shown in Fig. 7(b).
In other words, we use a single-site model. The reason is that
a single-site model is normally used to deduce 〈u2〉iso values
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FIG. 7. (Color online) (a) Temperature dependence of 〈u2〉iso

for rattling atoms in the indicated materials. Data are reproduced
from Refs. 13,25,64, and 17. The curves are computed for a 2–4
double-well potential, using the mass of the specified rattler and the
indicated values of α and θ4. The α = 0 dashed curve (calculated for
a K atom) shows how the T dependence differs for purely quartic vs.
double-well potentials. (b) Schematics of the interatomic potentials
for the indicated values of α, plotted in terms of dimensionless
energy E/h̄ω4 and dimensionless displacement ξ = u

√
(mω4/h̄).

Eigenenergies are denoted by the horizontal lines. Thin lines denote
a single energy level, whereas thick lines denote two levels with a
small tunnel splitting.

from diffraction data. As best as we can tell, this is the case
for all of the data shown in Fig. 7(a).

As shown in Fig. 7(a), the simple double-well model
captures qualitatively the range of temperature dependences
observed in these literature data. This includes the quasilinear
T dependence at high temperatures for the K pyrochlore
and Sr clathrate, the temperature independence at high tem-
peratures for the Eu clathrate, and the upturn in 〈u2〉iso at
low temperatures for the Eu and Sr clathrates. In reality, of
course, the potential might be considerably more complicated
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than our simple model, as suggested, for example, by DFT
calculations done for Sr8Ga16Ge30.27 Also, depending on the
rattling site symmetry, the mean-square displacements may
be anisotropic, meaning that the values of 〈u2〉iso shown in
Fig. 7(a) are an approximation. Nonetheless, we can gain
physical insight from this simple model. As the double well
becomes deeper, the magnitude of 〈u2〉iso increases and its
temperature dependence changes dramatically. The increase
in magnitude results from the broadening of the potential
well in the presence of the destabilizing quadratic term. This
effect is most pronounced near the ground state due to the
splitting of the equilibrium position. For the purely quartic
potential, 〈u2〉iso ∝ T 1/2 in the high-temperature limit.62 As
the value of α increases and the depth of the double well grows,
the high-temperature dependence changes to quasilinear (for
α = 2–3) to almost temperature independent, but with a broad
and shallow minimum (for α = 6–8).

Notice that we need two parameters to describe the
double-well potentials (θ4 and α), so the value of θ4 can not
be compared directly to characteristic temperatures deduced
from experiment. To estimate an experimental characteristic
temperature, we must consult with the schematics in Fig. 7(b).
The ordinate of Fig. 7(b) shows the energy expressed in
multiples of h̄ω4 = kBθ4. Notice in the figure that for α = 4,
the energy gap between the ground and first excited states
is kBθ4 ≈ 3, whereas for α = 2 it is 0.5kBθ4. Thus, for
the Sr clathrate, which we model using α = 3, in the limit
of low temperatures we expect to measure a characteristic
temperature of θ ≈ 2θ4 = 44 K. This is in good agreement
with the values deduced from heat capacity (θ = 53 K)
(Ref. 17) and Raman spectroscopy (θ = 46 K).68

The above analysis suggests that for at least some materials,
the rattling atoms reside in strongly anharmonic multiple-well
potentials. At present, we can not comment on the prevalence
of multiple wells among rattling-mode materials. However,
it does appear that the anharmonicity in VAl10.1 is different
than in the materials shown in Fig. 7(a). Specifically, the Al
atoms seem to rattle in a boxlike (sextic) potential rather than
a multiple-well potential.

In view of the anharmonicity of the 8a vibrations, the large
values of γ V

RM and γ G
RM deduced from the elastic constant

and Grüneisen data are not surprising. Although such large
couplings are rare, they are not unprecedented. As examples,
we can cite (1) the low–frequency (θ ≈ 40 K) resonant modes
associated with the 〈100〉 split-dumbbell interstitial defects
in neutron-irradiated Cu, which have γ G ∼ 40–100,69 (2)
tunneling states associated with impurities in alkali halide
crystals, which can have γ values as large at 300,70 and (3) the
collective vibrations of stringlike arrays of atoms in metallic
glasses, for which γ G ∼50.59 Also, as previously mentioned,
the rattling-mode clathrates Sr8Ga16Ge30, Ba8Ga16Si30, and
Sr8Zn8Ge38 all have � ∼ 10 at 25 K,64 which implies large
values of γ V

RM .
One of the most interesting and important questions toward

the fundamental understanding of rattling modes is the origin
of the strong coupling and anharmonicity. This has been
investigated by several groups and for several different mate-
rials: Tse and co-workers33,34 for Kr-filled clathrate hydrates,
Koza et al.35 for La and Ce-filled Fe4Sb12 skutterudites, and
Christensen et al.36 for the clathrate Ba8Ga16Ge30. The main

conclusion from all of these studies was that the coupling of the
guest modes to the acoustic phonons, and in fact the existence
of the anharmonic potential, results from avoided crossings of
the localized guest modes with the acoustic-phonon branches
having the same symmetry.

The avoided crossing of the guest and acoustic branches
is expected to occur inside the Brillouin zone, not at the
zone center or boundary. It is therefore surprising that the
rattler-phonon coupling appears so strongly in the VAl10.1

elastic constant data, considering that the ultrasonic methods
used here probe only the k = 0 acoustic modes. By using the
rattling-mode frequency ωRM,6 deduced from heat capacity
data, together with the values of the elastic constants, we can
crudely estimate the anticrossing points in VAl10.1. Assuming
that the acoustic modes follow a linear dispersion, and that the
rattling mode is dispersionless, the wave vector at the anticross
point is kACP = ωRM,6/v, where v is the sound velocity. For
the anticrossing of the longitudinal acoustic (LA) modes, we
estimate kACP ≈ 0.04 Å−1, and for the transverse acoustic (TA)
modes kACP ≈ 0.07 Å−1.

For wave numbers above the anticross point k > kACP, the
TA and LA group velocities are expected to be nearly zero, in
which case these phonons will be inefficient at transporting
heat. Hence, one possible strategy for reducing the lattice
thermal conductivity, and thus improving the figure of merit
for thermoelectric applications, is to decrease kACP so that
only a small number of acoustic-phonon states are capable
of effectively transporting heat. In principle, kACP can be
minimized by reducing the frequency of the rattling modes
and/or stiffening the lattice such that the LA and TA velocities
are increased.

B. Coupling of the rattling modes to the electrons

Resistivity saturation behavior similar to that seen in
VAl10.1 (Fig. 5) has also been observed in other rattling-mode
materials, for example, β-pyrochlores AOs2O6 (A = Cs, Rb,
K),26,71–73 and the filled skutterudite PrOs4Sb12.29 Mahan and
Sofo57 and Dahm and Ueda62 have proposed that saturation-
type behavior is expected for the scattering of electrons by
strongly anharmonic vibrations. On the other hand, resistivity
saturation is a common behavior for poor metals,63 so that the
relationship between the saturation and the rattling mode, if
any, is unclear. This question could be answered most directly
by somehow preparing these materials without the rattling
modes. For VAl10+δ , however, we have so far been unable to
do this.

We attempt to answer this question by examining the
mean-free path of the conduction electrons l. Figure 8
shows the temperature dependence of l, as estimated from
our electrical resistivity and thermal conductivity data. To
calculate l, we assumed a free-electron Fermi gas, so that
using the resistivity data l = π2k2

B/γ vF e2ρ, whereas using
the thermal conductivity data l = 3κe/γ vF T . Here, γ is the
Sommerfeld coefficient determined from heat capacity data,
κe is the electronic thermal conductivity, and vF is the electron
velocity at the Fermi level, which we assumed equal to that
for pure Al, vF = 2 × 106 m/s.

As shown in Fig. 8, from our room-temperature data,
we estimated l ∼ 2.5 Å. Using the saturation resistivity of
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FIG. 8. (Color online) Temperature dependence of the electron
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ity data. The resistivity-derived data were determined by averaging
measurements on three different samples. Representative error bars
are shown for several temperatures.

ρmax = 188 μ� cm, the value is l = 1.3 Å. These values
are comparable to the ∼2.7 Å average interatomic spacing
in VAl10.1, but are almost an order of magnitude smaller
than the ∼16 Å spacing between the occupied rattling atom
sites. Thus, the resistivity saturation in VAl10.1 evidently
corresponds to electron-phonon scattering by nearest-neighbor
atoms, i.e., the usual Ioffe-Regel limit,74 rather than by
scattering from the rattling atoms.

For low temperatures, we estimated l ∼ 20–40 Å. These
values are small enough that extrinsic scattering from grain
boundaries can be excluded. However, given the purity of our
samples, we can not rule out scattering from impurities, or from
crystal defects. Nonetheless, it is interesting that these values
of l are comparable to the ∼16 Å distance between occupied
rattling atom sites in VAl10.1. (Note that this value may be
50% too small, given the uncertainly about the VAl10+δ phase
composition.) Thus, we must keep open the possibility that
the 8a atoms, rattling anharmonically in their ground states,
strongly scatter electrons and thus contribute significantly to
the small mean-free path at 0 K. In this sense, the occupied
rattling sites may be akin to point defects. Unlike point
defects, however, the rattling atoms contribute strongly to the
temperature dependence of the resistivity, especially at low
temperatures. The effect is particularly evident for T < 12 K,
where the interaction of the sextic vibration with the electrons
dominates the T dependence of the resistivity, and evidently
results in a ρ(T ) ∝ T 3 dependence below 6 K.

The broad, gradually sloping plateau in the thermal
conductivity of VAl10.1 (Fig. 6) is qualitatively similar to
plateaus observed previously for glasses, for crystalline but
disordered solids,75 and for other rattling-mode materials such
as clathrates17,23 and filled skutterudites.13,14 The plateau is
usually interpreted as a signature of disorder, which results
in scattering of the heat-carrying phonons and/or electrons.
In the case of glasses and disordered crystals, the nature of
the disorder seems clear, namely, the absence of long-range
translational and/or orientational symmetry (the latter being
particularly relevant for molecular-based materials). In the

case of rattling-mode materials, the disorder is evidently not
usually of the static structural type. Rather, it is dynamic
disorder associated with the large-amplitude vibrations of the
rattling atoms. For poorly conducting metals and/or semi-
conductors where heat is transported mainly by the phonons,
this is normally explained in terms of resonant scattering of
long-wavelength phonons by the low-energy rattling modes.
The recent work by Tse et al.,34 Koza et al.,35 and Christensen
and co-workers36 indicates that the poor thermal conductivity
is better explained in terms rattler-acoustic mode coupling due
to avoided crossings.

For metallic rattling-mode metals where the thermal con-
ductivity is mainly electronic, such as VAl10.1 and Na24Si136,23

the connection between the plateau and the rattling seems
less clear. The reason is that the plateau temperature is above
the range where the rattling mode dominates ρ(T ). It is also
important to note that a plateau in κ(T ) will occur whenever
ρ(T ) varies linearly with temperature. Of course, this is the
usual T dependence of ρ associated with electron-harmonic
phonon scattering in the high-temperature limit. Thus, it should
come as no surprise that thermal conductivity plateaus are
ubiquitous in metallic crystals.

Based on the available data, then, it appears that the main
difference between κ(T ) for rattling-mode metals and κ(T )
for “normal” metals is the absence of a peak for the rattling
materials. For normal metals, the peak occurs at temperatures
below the plateau and is associated with the transition from
defect-dominated electron scattering at low temperatures to
phonon-dominated scattering at higher temperatures.76 At
present, we do not know why a peak is virtually absent from
the known rattling-mode metals. However, one possibility is
that the rattling modes are akin to a large defect concentration,
which suppresses completely the κ(T ) peak.

V. SUMMARY AND CONCLUDING REMARKS

Presently, there are two main reasons for the interest
in rattling modes: (1) their ability to scatter heat-carrying
acoustic phonons, and hence their potential role in devel-
opment of improved thermoelectric materials utilizing the
“electron crystal-phonon glass” concept, and (2) their apparent
ability to facilitate electron-electron and electron-phonon
coupling, thereby promoting superconductivity and electron
mass enhancement. Although VAl10.1 is neither a promising
thermoelectric material nor a superconductor with high Tc or
heavy electrons, it is nonetheless a useful model compound
to study the enhanced couplings associated with rattling
modes.

Two characteristics of the rattling in VAl10.1 seem to make
it remarkable even among the growing ranks of rattling-mode
materials. First, the rattling frequency of the 8a Al atom,
θRM,6 = 21 K, is among the lowest of all known rattling-
mode materials. This is surprising considering the light mass
of the Al rattler compared to rattlers in other materials.
Second, in qualitative terms, the rattling Al atom behaves
like a particle in a box. This is clear from the temperature
dependence of the 〈u2〉iso data, which is concave down to
the abscissa. Quantitatively, these data can be described in
terms of a dispersionless sixth-order vibration, with negligible
contributions from harmonic or quartic terms. Additional
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evidence for the boxlike character comes from heat capacity
measurements down to 100 mK, which show no Schottky
anomaly that would signify tunnel splitting of the ground
vibrational state. At present, the rattling mode in VAl10.1 is
the only one we know of that seems to be associated with
a broad, flat potential that allows for large dynamic atomic
displacements even in the ground state. Potentials of this shape
may be of particular interest because they have been predicted
to enhance phonon-mediated electron-electron attraction and
Cooper-pair formation.38

The large coupling of the Al rattling mode to long-
wavelength acoustic phonons, as characterized by mode
Grüneisen parameters γ G

RM = 24 and γ V
RM = 54–73, is also

extraordinary. Because of the uncertainty in our sample
composition, we consider these values to be lower bounds.
Although the body of literature now shows ample evidence
for strong anharmonicity and rattling-mode–acoustic-phonon
coupling, to our knowledge this is the first time that the
coupling strength has been quantified. Among all materials,
only a few examples of such strong coupling are known.
Based on the present data, it seems reasonable to conclude
that the rattling-mode–acoustic-phonon coupling in VAl10.1

can be explained in terms of avoided crossings of the rattler
and acoustic-phonon branches.

At low temperatures, the rattling modes in VAl10.1 cou-
ple strongly to the electrons and dominate the temperature
dependence of the resistivity. For T < 12 K, ρ(T ) can be
explained in terms of electron scattering from a damped
sextic oscillator, where the damping is assumed to arise from
the strong electron-phonon interaction. For T < 6 K, this
coupling results in a T 3 dependence of the resistivity. At higher
temperatures, the rattling modes seem to have little connection
to the saturation of the electrical resistivity. Likewise, although
the temperature dependence of the thermal conductivity shows
a plateau that is akin to that seen for glasses, disordered
crystals, and other rattling-mode materials, it does not appear
to be associated with the rattling.
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