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Berry curvature and the anomalous Hall effect in Heusler compounds
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Berry curvatures are computed for a set of Heusler compounds using density functional calculations and the
wave functions that they provide. The anomalous Hall conductivity is obtained from the Berry curvatures. It is
compared with experimental values in the case of Co2CrAl and Co2MnAl. A notable trend cannot be seen but the
range of values is quite enormous. The results for the anomalous Hall conductivities and their large variations as
well as the degree of the spin polarization of the Hall current can be qualitatively understood by means of the
band structure and the Fermi-surface topology.
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In connection with the emerging field of spintronics,1

the anomalous Hall effect (AHE) is presently receiving new
attention. The AHE in ferromagnets was explained long ago
by Karplus and Luttinger,2 who invoked spin-orbit coupling
and perturbation by the applied electric field to expose an
additional term to be added to the usual electron velocity.
Rather recently,3 this additional term was discovered to be
related to the Berry curvature4 in momentum space. It is an
important correction to all transport properties5 that rely on
velocity. In particular, it describes the leading contribution to
the AHE.6

Heusler compounds, especially those based on Co, with
their regularities in many physical properties such as the
Slater-Pauling behavior,7,8 invite the question of whether such
regularities are also present in the AHE. This is one of the
questions we turn to here. Furthermore, a considerable number
of Heusler compounds are half-metallic ferromagnets, i.e.,
they are gapped in one spin channel.9 Therefore, in notable
applications one tries to make use of spin currents, for which
our calculations can serve as guidelines in estimates of the
degree of spin polarization of the current.

The Berry curvature follows from the Berry vector,

A(k) = i
∑

n

〈uk,n|∇k|uk,n〉, (1)

where uk,n(r) is the crystal-periodic eigenfunction having
wave vector k and band index n. The sum extends over the
occupied states, which for metals vary with k. The Berry
curvature is written as

�(k) = ∇k × A(k). (2)

It is obviously gauge-independent, in contrast to the Berry
vector. The Berry curvature can be calculated in different ways.
The common procedure is via a Kubo-like approach, where one
calculates essentially a Green’s function; see, e.g., Yao et al.10

and more recently Lowitzer et al.11 The other, less common,
approach is via the wave functions directly, which, together
with a fast band-structure method such as the linear muffin-tin
orbital (LMTO) of Andersen,12 is extremely efficient.

The numerical treatment used here to calculate � is
basically a finite-difference approach. Some details may be

summarized using Refs. 13–16 as follows. One begins by
computing the so-called link-variable,13

Uj(k) = det[〈unk|umk+j〉], (3)

where the determinant is evaluated for the occupied states n

and m. The component of A(k) along j is then

Aj(k) = Im lnUj(k), (4)

which yields by finite differences for the z component of the
Berry curvature (except for a scaling factor)

�z(k) = Im ln
Uy(k + k̂x)Ux(k)

Uy(k)Ux(k + k̂y)
. (5)

The logarithm implies that the results are mod 2π .
The Heusler compounds of interest here are face-centered-

cubic possessing L21 symmetry, except for Mn2PtSn, which is
tetragonal with space-group no. 119. They are ferromagnetic;
time-reversal symmetry is therefore broken, which leads to a
nonzero Berry curvature.5,6

The wave functions are calculated in the local density-
functional approximation (LDA)17 using the augmented spher-
ical wave (ASW)18 method, which, just like Andersen’s
LMTO,12 is extremely fast and efficient. The bispinor func-
tions are expanded inside the atomic spheres using a minimal
basis composed of numerical solutions of the Schrödinger
equation and spherical harmonics.12,18 Spin-orbit coupling
(SOC), which is essential for this theory, is included in a second
variation.19

The anomalous Hall conductivity, σxy , is given by the Berry
curvature as

σxy = −e2

h̄

1

N

∑

k∈(BZ)

�z(k)f (k), (6)

where f (k) is the Fermi distribution function, �z(k) is the z

component of the Berry curvature for the wave vector k, N

is the number of electrons in the crystal, and the sum extends
over the Brillouin zone (BZ).

In the figures to be presented, the z component of the Berry
curvature is shown in a cut through the fcc BZ; this was chosen
to be the kz = 0 plane. While the number of k points (441) to
obtain these figures could be chosen sufficiently large for the
plots to show significant details, yet being small enough to use
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TABLE I. Collection of experimental and calculated data relevant
for the Hall conductivity. NV is the number of valence electrons, a is
the lattice constant, Mexp is the experimental and Mcalc the calculated
magnetic moment in μB , σxy is the Hall conductivity in (� cm)−1,
calculated by means of Eq. (6), and P is an estimate of the spin
polarization of the Hall current.

Compounda NV a (nm) Mexp Mcalc σxy P (%)

Co2VGa 26 0.5779 1.92 1.953 66 65
Co2CrAl 27 0.5727 1.7 2.998 438 100
Co2VSn 27 0.5960 1.21 1.778 −1489 35
Co2MnAl 28 0.5749 4.04 4.045 1800 75
Rh2MnAl 28 0.6022 4.066 1500 94
Mn2PtSnb 28 0.4509 (1.3477) 6.66 1108 91
Co2MnSn 29 0.5984 5.08 5.00 118 82
Co2MnSi 29 0.5645 4.90 4.98 228 100

aExperimental data from J. Winterlik (private communication) and
compilations in Ref. 8.
bTetragonal, space-group no. 119, c/a ratio in parentheses.

a notebook for the calculations, the Hall conductivity σxy at
T = 0 K, which was calculated by means of Eq. (6), needed
very large numbers of k points for convergence. Our results
are converged to within about 20%, with approximately 2000
points in the irreducible wedge of the BZ.

Haldane20 showed that Fermi-liquid theory is still valid
even though it appears that the Hall conductivity, Eq. (6),
depends on all states below the Fermi energy. He showed
that the Berry curvature can be transformed to the Berry
phase on the Fermi surface only. Thus an alternative to
our calculations exists.6,21 This is a transformation to Berry
phases on the Fermi surface, but it requires special techniques
to handle the three-dimensional surfaces. Our calculations,
in contrast, are indeed quite straightforward. The results of
our calculations are collected in Table I, where an estimate,
P , of the degree of spin polarization of the Hall current
is also given. This is obtained by counting the number
of majority-spin electron states within 40 meV (arbitrarily
chosen) below the Fermi energy, N+, in the irreducible wedge
of the BZ, and similarly the number of minority-spin states,
N−, then P = N+/(N+ + N−). These numbers are given by
N± = ∑

k n±(k), where the spin-resolved norms, n±(k), are
either 0 or 1 if SOC is ignored, but SOC mixes into a given
spin state contribution of the opposite spin, thus a “spin filter”
finds the n±(k) larger than 0 or smaller than 1. No broadening
was used for the determination of n±(k).

Starting with the valence electron number NV = 26, the
Hall conductivity is calculated for Co2VGa and is given in
Table I. The Berry curvature for Co2CrAl with NV = 27
valence electrons is shown in Fig. 1 and the integrated value
is given in Table I. All states within 40 meV below the
Fermi energy are majority-spin states. This agrees with the
value of P given in the table. The density of states of
Co2CrAl shown in Fig. 2 also agrees with P = 100%. The
features to be noticed in Fig. 1 are the large positive and
negative peaks near the X and W points, respectively. They
are caused by Fermi-surface sections. It is seen that the positive
values dominate, which is in line with the integrated value of
σxy = 438 (� cm)−1 give in the table. There is an experimental

FIG. 1. (Color online) The Berry curvature in the kz = 0 plane
for Co2CrAl. The color codes are in units of (� cm)−1. The labels
follow the standard notation for the face-centered-cubic crystal. The
Berry curvature is entirely due to majority-spin electrons. Top and
bottom show projections.

value22 of σxy = 125 (� cm)−1 to be compared with our value.
The difference is significant, but the rather low value measured
for the magnetic moment of 1.7μB cannot be explained by our
density of states shown in Fig. 2, which results in a magnetic
moment of 3μB . The reason is most likely that the sample
is disordered and does not have the ideal Heusler L21 crystal
structure. Furthermore, it is possible but less likely that the
other contributions to the Hall effect, i.e., side jump-and-skew
scattering mechanisms, contribute considerably here.6

The Heusler compound Co2VSn also with NV = 27 valence
electrons is not a half-metallic ferromagnet8 having a measured
moment of 1.21μB and a calculated one of 1.78μB . In Fig. 3,
we show the Berry curvature in the kz = 0 plane as a projection
only. The band structure reveals in Fig. 4 a Dirac cone below
the Fermi energy describing minority-spin electrons. This cone
disappears when SOC is neglected. These states show up in the
Berry curvature as the semicircle and the white dots around

FIG. 2. Density of states of Co2MnAl and Co2CrAl. The upper
parts of the figure describe majority-spin electrons and the lower
parts describe minority-spin electrons. In contrast to spin up and
down, these terms are well defined even in the spin-orbit coupled
systems.
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FIG. 3. (Color online) The Berry curvature in the kz = 0 plane
for Co2VSn. Color code and labels as in Fig. 1. The red and white
dots mark band energies of majority-spin and minority-spin electrons,
respectively, within 40 meV below the Fermi energy.

the � point. The states seen near the W points are due to
majority-spin electrons (red dots). The Dirac cone results in
negative contributions to the Hall conductivity, while the other
states give positive contributions resulting in a calculated Hall
conductivity of σxy = −1489 (� cm)−1 and a polarization of
only 35%.

Next is Fig. 5 for Co2MnAl with 28 valence electrons. The
magnetic moment is measured and calculated to be 4.04μB .
Here we obtain the high value of σxy = 1800 (� cm)−1. In the
density of states, Fig. 2, the Fermi energy sits in tails of states
at the low-energy side of the gap, therefore we see minority-
spin electrons in the Fermi surface near � and majority-spin
electrons near X and W . The latter contribute positively to σxy ,

FIG. 4. (Color online) Band structure near the Fermi edge of
Co2VSn. Majority-spin electron states appear in red, minority-spin
states in black. Note the Dirac cone at the � point at about −0.22 eV.

FIG. 5. (Color online) The Berry curvature in the kz = 0 plane for
Co2MnAl. The small values near the � point originate from minority-
spin electrons, the large peaks from majority-spin electrons.

while negative contributions originate from the former. The
Fermi surface near � shows up in Fig. 5 as the small elevation
near the origin. The large peaks indicate a large integrated
value for σxy , but negative contributions in other parts of the
BZ reduce the value considerably.

There is a recent study of the AHE for Co2MnAl by Vidal
et al.23 that allows for an estimate of the Hall conductivity. If
one takes their measured saturation value of the Hall resistivity
of ρxy

∼= 20 μ� cm and their estimated specific resistivity of
order of 100 μ� cm, then the Hall conductivity is obtained to
be approximately 2000 (� cm)−1. This could be considered
to be in good agreement with the theory were it not for

FIG. 6. (Color online) The Berry curvature in the kz = 0 plane for
tetragonal Mn2PtSn. Color code and dots as in Fig. 3. The symmetry
labels are the standard ones for the bct lattice.
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FIG. 7. (Color online) The Berry curvature in the kz = 0 plane
for Co2MnSi. The entire structure is due to majority-spin electrons.

experimentally disordered Mn and Al sites in the samples,
a fact that is stressed by Vidal et al.23

To guide the search for other ferromagnetic compounds
with a large Hall conductivity, we enquired into the role of
the strength of SOC. For this reason, we increased the SOC
strength by 40% and found for Co2MnAl a conductivity of
σxy = 2150 (� cm)−1. This increase originates from the states
near X in Fig. 5. The increased role of SOC is realized
in Rh2MnAl through the heavier element Rh, for which,
therefore, the Hall conductivity was calculated and found to be

1500 (� cm)−1. This is within the value obtained for Co2MnAl
but does not show the expected increase.

Since it is the valence electron number of NV = 28
where the conductivity is especially large, we calculated
the electronic structure of the tetragonal Heusler compound
Mn2PtSn, which also has 28 valence electrons. The Berry
curvature is shown in Fig. 6 in a projection that allows for an
easy comparison with Fermi-surface data. It is seen that the
minority-spin states result in negative contributions to the Hall
conductivity, the total (Table I) σxy = 1108 (� cm)−1 being
only reasonably large.

For Co2MnSi, finally, the Berry curvature is shown Fig. 7.
This compound has 29 valence electrons. It is a half-metallic
ferromagnet having a measured magnetic moment of 4.90μB

that is calculated to be 4.98μB . The spin polarization of the
Hall current is 100%; still, the Hall conductivity is only σxy =
228 (� cm)−1. A comparison of Fig. 7 with Fig. 5 may be
helpful to appreciate the difference between Co2MnSi and
Co2MnAl, but the relatively low value of σxy is not obvious.

Summarizing, we state that strong trends such as the
Slater-Pauling behavior are not seen in the Hall conductivity.
However, large values of the Hall conductivity can be found
in special cases such as Co2MnAl and other systems having
28 valence electrons. The strength of SOC is shown to be but
one ingredient to ensure large values of σxy , however a general
rule still has to be found.
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