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Structural and vibrational properties of α-MoO3 from van der Waals corrected density
functional theory calculations
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Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies
for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The
DFT-D2 [S. Grimme, J. Comput. Chem. 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš et al., J. Phys.:
Condens. Matter 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice
parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements
to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.
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The α-MoO3 compound is a layered oxide that has attracted
interest for a range of applications including catalysis,1 cath-
ode materials for lithium-ion batteries,2 and electrochemical
supercapacitors.3 As shown in Fig. 1, the crystal structure of
α-MoO3 is composed of sheets of distorted, edge-shared MoO6

octahedra. Each octahedron contains three symmetry-distinct
oxygen ions, which occupy 4c Wyckoff positions in the Pbnm
orthorhombic space group.4 The MoO3 sheets are stacked
along the b lattice direction of the orthorhombic unit cell,
and are weakly bonded across a region commonly referred to
as the “van-der-Waals gap.”

Due to the technological interest in α-MoO3, it has been
the topic of several previous theoretical studies, based on elec-
tronic density-functional theory (DFT) within the local density
(LDA)5 and generalized gradient (GGA) approximations,6

GGA plus Hubbard-U corrections for onsite Coulomb
interactions,7 and Hartree-Fock (HF) with a DFT-based cor-
rection for electron correlation.8 Theoretical calculations and
x-ray photoemission experiments,9 establish a mixed ionic and
covalent character for the Mo-O bonding within the sheets,
characterized by a strong degree of hybridization between Mo
4d and O 2p electrons.10 The interactions between the MoO3

sheets are governed by both electrostatic and van der Waals
(vdW) contributions as discussed in Ref. 11.

Due to the fact that vdW interactions are not accurately
described by traditional GGA and LDA calculations, the
equilibrium spacing between the MoO3 sheets is not accurately
predicted by these methods (see below). For studies of the
electronic-structure and bonding properties of α-MoO3, a
practical solution to this problem has been to fix the b

lattice constant at the experimentally measured value.7,9 This
approach is not feasible, however, for computational studies of
defects and processes where large variations in the interlayer
spacing may arise. An example is lithium-ion intercalation,
where variations in Li content are coupled with large ex-
pansions in the interlayer spacing.12,13 For applications of
this type, a method with computational efficiency comparable
to DFT is required, which accurately characterizes both the
equilibrium bond lengths and bond stiffnesses of the host
α-MoO3 compound. In the present work, we assess the accu-
racy of recently proposed vdW corrected DFT-based methods

for this purpose, through a comparison between theoretical
results and experimental measurements for equilibrium lattice
constants, bond lengths, and vibrational frequencies.

Several approaches have been developed for describing van
der Waals interactions within the framework of DFT.14 In the
present work, we focus on two classes of approaches that
feature computational requirements comparable to traditional
DFT methods. The first is the DFT-D approach15 in which the
contribution to the totally energy associated with dispersion
interactions is described by a classical pair potential with the
Cij/R

6
ij form. Three generations of the method have been

developed,16 using different approaches for calculating the Cij

coefficients. The first uses an average of empirical coefficients
from different hybridization states for each atom, while in
the second (DFT-D2), the PBE0 hybrid method17 is used to
obtain atomic ionization energies and polarizabilities in the
determination of Cij . In both methods, these coefficients are
obtained from mixing rules, using values tabulated in terms of
the chemical identity of the atoms i and j alone. The DFT-D3
method makes use of time-dependent DFT16 to calculate the
Cij coefficients through the averaged dipole polarizability as
a function of frequency. Furthermore, it interpolates between
results for different local environments to capture differences
due to bonding geometry. In this method, the Cij coefficients
are derived taking into account structural information as well
as the chemical identity of the atoms.

The second class of approaches considered in this work is
the so-called van der Waals density functionals (vdW-DF),20

in which the vdW contribution to the total energy is described
through modifications to the correlation energy functional
within DFT. Specifically, the DFT exchange-correlation func-
tional is divided into three parts: Exc = Elc + Enl + Ex , where
Elc is a local correlation energy described within the local
density approximation, Enl is the nonlocal correlation energy,
and Ex is a semilocal exchange functional. The Enl contribution
is given by the integral: Enl = 1

2

∫
drdr′n(r)φ(r,r′)n(r′), over

electron densities, n at r and r′, multiplied by an integration
kernel, φ, which is derived from the adiabatic-connection
theorem through a series of approximations.20 We consider
three different exchange functionals for use with the vdW-DF
approach, as reported in the literature. These are revPBE
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FIG. 1. (Color online) Structure of the orthorhombic α-MoO3

compound. (a) Mo (purple) and O (red) octahedra are illustrated, as
well as the vdW gap (green layer). (b) Symmetry-distinct oxygen
ions in the MoO6 octahedron are labeled O1, O2, and O3. (c) The
conventional unit cell.

as in the original vdW-DF,20 PW86 as in vdW-DF2,21 and
optB88,22 a new exchange functional based on the B88
exchange functional.23 RevPBE and optB88 are both paired
with the same Enl, while the Enl used with PW86 has a changed
parameter that relates how the length scale in Enl is set by a
corresponding GGA calculation. In vdW-DF2 and vdW-DF,
this parameter comes from energy expansions appropriate for
molecules or a slowly varying electron gas, respectively.

All the calculations performed in this work made use of
the projector-augmented-wave (PAW) method,24,25 as imple-
mented in the Vienna ab initio simulation package (VASP).26–29

The wave functions were expanded in a plane-wave basis with
an energy cutoff of 600 eV. For calculations of the structure
of the MoO3 compound, we made use of the orthorhombic
unit cell shown in Fig. 1(c), and sampled the Brillouin zone
employing a 7 × 5 × 7 mesh, using the Methfessel-Paxton
scheme30 with a smearing width of 0.1 eV. The PAW potentials
employed in this work are those labeled “Mo” and “O” in the
VASP PAW-PBE library. Internal coordinates were relaxed until
energy and atomic forces converged to within 0.01 meV/atom
and 0.005 eV Å−1, respectively. The equilibrium lattice param-
eters were computed using conjugate-gradient minimization
with the calculated stress tensors. Vibrational frequencies were
obtained from a frozen-phonon approach. Based on several
numerical tests, the convergence of the results presented below
is estimated to be 0.02 Å for a and c, 0.05 Å for b, and within
6% for the vibrational frequencies.

For the DFT-D calculations, we employed the D2 method,
with values of the dispersion coefficients (Cij ) given in
Ref. 31, and a value of s6 = 0.75. We also explored a
modification of the DFT-D2 method, in which we employed
Grimme’s DFT-D3 codes16 to calculate the Cij coefficients,
based on the experimentally determined geometry of the
α-MoO3 compound. These coefficients were then used in
the VASP DFT-D2 implementation with s6 = 1 as in DFT-D3

TABLE I. A comparison of lattice constants (in the unit of Å)
of α-MoO3 calculated in the current and previous calculations, and
measured experimentally. The asterisk superscript denotes calculated
results where the b lattice parameter was fixed at the experimentally
measured value.

Method a b c

DFT LDAa 3.729 13.036 3.478
PW91b 3.965 14.673 3.721
HFc 3.910 14.271 3.680
PBE∗d 4.023 13.855 3.755

DFT-D DFT-D2 3.931 13.881 3.711
vdW-DF vdW-DF 4.054 14.855 3.728

vdW-DF2 4.043 14.691 3.753
optB88 3.941 14.078 3.732

Expt. Ref. 34 (T = 300 K) 3.962 13.860 3.697
Ref. 35 (T = 300 K) 3.963 13.865 3.693
Ref. 35 (T → 0 K) 3.958 13.750 3.700

aReference 5.
bReference 6.
cReference 8.
dReference 9.

for the n = 6 two-body interaction.16 This modified DFT-D2
method led to a decreased level of agreement with experiment
relative to the original D2 method and will not be discussed
further. In the vdW-DF calculations, we employed the VASP
implementation developed by Klimes̆ et al.,32 which makes
use of an algorithm for efficiently evaluating the integral for
Enl due to Pérez and Soler.33

Table I compares the current results for the equilibrium
lattice constants with those obtained by DFT-based approaches
in previous calculations and experimental measurements. The
temperature-dependent experimental data reported in Ref. 35
shows an anomalously large thermal expansion coefficient for
the b lattice parameter. In what follows, we will therefore
assess the level of agreement between experiment and theory
using the extrapolations of the measured lattice constant values
to zero temperature presenting in Ref. 35. The LDA results,
taken from Ref. 5, feature theoretical lattice constants that
are smaller than these measured values by 6% for a and c,
and about 5% for b, respectively. For calculations where the
value of the b lattice constant is unconstrained, it is seen
that GGA (PW91) predicts values for a and c that agree
to within 1% of the measured values, while the calculated
b lattice constant is roughly 7% larger. The Hartree-Fock
based results from Ref. 8 give values that are 1% and
0.5% smaller than measured values for a and c, and 4% larger
for b, respectively. Thus the previous LDA, GGA, and HF
calculations give rise to predictions for the interlayer spacing
that are accurate to no better than 4% in comparison with
experimental measurements.

We consider next the vdW-corrected DFT results obtained
here. The PBE-based DFT-D2 method is seen to provide an
excellent level of agreement with experiment for each of
the three lattice constants, with the calculated values being
0.5% larger for a, 0.3% larger for c, and 1% larger for b.
The vdW-DF results are found to vary significantly between
the original vdW-DF implementation and the vdW-DF2 and
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TABLE II. Calculated Mo-O bond lengths (in units of Å) obtained
by the DFT-D2 and optB88 methods are compared with previous
calculations and experimental results. The labeling of the bonds in
the first column corresponds to the notation introduced in Fig. 1(c).

DFT-D2 optB88 PBEa Expt.b Expt.c

dMo-O1 1.702 1.705 1.703 1.68 1.63
dMo-O2 1.771 1.778 1.761 1.74 1.74
d∗

Mo-O2 2.187 2.188 2.278 2.25 2.24
dMo-O3 1.954 1.964 1.975 1.95 1.96
d∗

Mo-O3 2.397 2.394 2.340 2.31 2.30

aReference 9.
bReference 34.
cReference 35.

optB88 parametrizations. The original vdW-DF functional
gives lattice constants that are uniformly larger than the
measured values, by 1%, 4%, and 0.7% for a, b, and c,
respectively. The vdW-DF2 approach leads to a slightly worse
prediction for each of the lattice constants relative to the
original vdW-DF. Of the three vdW-DFs considered in this
work, the best level of agreement between experiment and
calculations is obtained with the optB88 functional. This
approach gives rise to predictions for a and c within 0.8%
of measurements, and the b lattice constant is 2% larger than
the experimental value. The improved accuracy of the optB88
functional obtained here for α-MoO3 is similar to that found
for metallic, covalent, and ionically bonded solids in Ref. 32,
where the improvements of the optB88 functional for solids
relative to the original vdW-DF and vdW-DF2 methods is
attributed to a smaller exchange enhancement factor for small
reduced gradients.

Overall, the best level of agreement between experiment
and theory for the lattice constants is obtained with the
DFT-D2 and optB88 vdw-DF methods. In what follows, we
further assess the accuracy of these two methods, focusing on
results for bond lengths and vibrational frequencies. Table II
lists the bond lengths obtained from the present calculations,
previous calculations,9 and experimental measurements. The
results obtained by the DFT-D2 and vdW-DF methods show
excellent agreement with available experimental data, as well
as previous PBE calculations, with the exception of d∗

Mo-O2
and

d∗
Mo-O3

where the vdW-corrected calculations are smaller and
larger than measurements by approximately 0.06 and 0.09 Å,
respectively.

We consider next a comparison of calculated and exper-
imentally measured vibrational frequencies. A comparison
between the present calculations and measured values for the
frequencies of the infrared and Raman-active modes presented
in Ref. 39 shows average agreement at the level of 3% for
both DFT-D2 and optB88 methods. In Table III, we give
representative comparisons for the stretching modes of Mo-O
bonds (first three rows), as well as the modes illustrated
in Fig. 2, involving O-O bonds across the vdW gap. As
shown in Table III, the DFT-D2 method overestimates the
frequency of the Mo-O1 stretching mode by about 1%, while
giving predicted values of the Mo-O2 and Mo-O3 stretching
modes that are about 3% smaller than measurements. In
comparison, the optB88 method gives rise to predictions of

TABLE III. Experimentally measured vibrational frequencies (in
units of cm−1) in α-MoO3 are compared to calculated results obtained
with the DFT-D2 and optB88 methods. The first three rows list the
Mo-O bond stretching vibrations and the next two the interlayer
interaction vibration frequencies. The labels for the modes are taken
from Ref. 36.

Symmetry Assignment DFT-D2 optB88 Expt.a Expt.b Expt.c

A1g vO = Mo 1006 996 996 – –
B1g vOMo2 801 796 820 – –
B3g vOMo3 640 632 666 – –
B2u Lattice 54 63 – 58 53
B3u modes 50 42 – 46 44

aReference 37.
bReference 36.
cReference 38.

Mo-O1 stretching mode that are in good agreement with
the most recent experiment,37 and the Mo-O2 and Mo-O3

stretching modes are about 3 and 5% smaller than the
experimental observations, respectively. Similar calculations
have been performed within the GGA + U framework,7 where
calculated frequencies for the three Mo-O stretching modes are
reported as 1023, 898, and 711 cm−1, respectively.

The strength of the nonbonded interactions between the
sheets can be assessed through the frequencies of the two
modes illustrated in Fig. 2. These are referred to as the
lattice mode (B2u) and rigid-layer mode (B3u) by Py and
Maschke.36 The lattice mode has partial shear character, but
the rigid-layer mode involves only relative displacements
that are normal to the vdW gap. Both modes probe the
strength of the force constants between ions spanning the
vdW gap. The computed vibrational frequencies based on
DFT-D2 and optB88 methods are shown in Table III to
agree with experimental measurements to within 10%.36,38

This is an encouraging level of accuracy, suggesting that the
DFT-D2 and optB88 methods represent reasonably well the
competition between electrostatic and vdW forces underlying
the interatomic interactions across the vdW gap in α-MoO3.

To demonstrate the utility of the vdW-corrected DFT
approaches more broadly, we end with results for the effect
of Li-ion intercalation on the lattice constants in α-MoO3.
Li-ion intercalation into the vdW gap of α-MoO3 leads to
a pronounced expansion of the b lattice constant,12,13 which
can be sufficient to cause fracture of the host material. An
important parameter for modeling such phenomena is the
solute expansion coefficient α ≡ ∂ln b/∂x, where x is the mole
fraction of Li ions. Using the DFT-D2 and optB88 methods,

FIG. 2. (Color online) Two typical low-frequency vibration
modes for α-MoO3 between adjacent layers: (a) lattice mode (B2u)
and (b) rigid-layer mode (B3u).

012104-3



BRIEF REPORTS PHYSICAL REVIEW B 85, 012104 (2012)

we obtain α = 0.51 and 0.42, respectively. We emphasize
that the calculation of intercalation-induced strains requires
a method such as the vdW-corrected DFT methods considered
here, which accurately describes the equilibrium bond lengths
and force constants across the vdW gap.

In summary, vdW-corrected DFT methods have been
applied to the calculation of the structure and vibrational fre-
quencies of the α-MoO3 compound. The DFT-D2 and optB88
methods yield calculated lattice parameters and bond lengths
that agree with experimental measurements to within 0.8 and
1.6%, respectively. The calculated frequencies for stretching
of Mo-O bonds agree with experimental measurements to
within 5%, and for the modes that probe the force constants
across the vdW gap, the frequencies are predicted with an

accuracy of approximately ten percent. The present results
show an encouraging level of accuracy in the application of
vdW-corrected DFT methods for characterizing both bonded
and nonbonded interatomic interactions in α-MoO3.
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