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Anomalous and negative reflection of Lamb waves in mode conversion
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Mode conversion is an important feature of wave propagation used in ultrasonic nondestructive testing with
Lamb waves. When a wave packet with a given central frequency, and a correspondent central wavenumber,
impinges on the free edge of a plate, the reflected wave generally is a weighed combination of all the possible
modes compatible with the given frequency. Under particular conditions, only one wave packet is reflected with a
distinct central wavenumber compared to the incident one. In such a case, according to Snell’s law, the reflection
angle is different from the incident one (anomalous reflection). In this article, experimental results are presented
on anomalous reflection on a free edge of a thin plate of a Lamb wave packet; moreover, experimental results are
reported on a Lamb wave packet that is reflected at an angle lying on the same side, with respect to the normal
direction, of the impinging wave (negative reflection). Negative reflection of Lamb waves has been obtained
through mode conversion taking place at the free edge of a thin plate of constant thickness: More precisely, a
symmetric S1 Lamb mode has been converted into the same mode but with phase velocity antiparallel to group
velocity, so obtaining the so-called backward-propagating Lamb wave packet.
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I. INTRODUCTION

Since the pioneering work by Vecelago1 in 1968 on the
existence of left-handed electromagnetic waves, a number of
different topics have been introduced and developed both in
electromagnetism and acoustics relative to new realms in wave
propagation phenomena. The search for materials with definite
characteristics gave rise to a series of new tailored crystals,
differently called metamaterials,2,3 photonic crystals,4–6 and
phononic crystals,7,8 that may create backward propagation,
amplification of evanescent waves, negative refraction effect,
and, ultimately, superlenses.9,10 Negative refraction index,
needed for switching the magnetic field counterphase with
respect to the electric one, is proper to electromagnetism, but
some of its effects are shared by acoustics as well, when
resorting to specific properties of dispersion curves, as in
the case of regions of negative slopes, since a main feature
both for negative refraction (superlenses effect) and negative
reflection, is the opposite flow between phase and group
velocities, whatever be the method for producing the effect, be
either negative refraction index in special materials or mode
conversion in guided ultrasonic waves.11

In this Brief Report, a common feature of acoustic plate
waves is properly exploited in order to put into evidence
the effect of negative reflection arising from the backward
propagating mode of a wave. Particularly, the effect of a
beam reflection at angles lying on the same side of the
impinging beam is put in evidence for mode S1 in steel
plates in the MHz frequency region. Acoustic plate modes,
commonly known as Lamb waves, do have to satisfy stress-free
boundary conditions on the limiting surfaces that link the
dilatational and shear components of the wave in such a way
as to produce dispersive effects for backward propagation,
with energy flowing opposite to the wave vector. Recently,
mode conversion between forward- and backward-propagating
Lamb waves at the interface between two regions of different
thickness of an aluminum plate has been used by S. Bramhavar
et al. for obtaining negative refraction effect and the focusing
of the elastic waves.12 Actually, in our experiment, negative

reflection of elastic waves has been achieved by using a
simple homogeneous plate of constant thickness through
mode conversion between forward- and backward-propagating
Lamb waves occurring at the free edge of the plate itself.

Lamb wave modes are widely used in nondestructive testing
techniques. All structures, indeed, in which one dimension at
least is small compared to the others, as in the case of plates,
shells, wires, rods, pipes, etc., are suitable for being inspected
for cracks and defects through the use of multimode Lamb
wave analysis.13–16 The highly dispersive multimode analysis
became essential for optimal defect detection; preliminary
study of interactions between modes multireflected at free
edges is a necessary condition for modeling interaction with
obstacles, defects, inhomogeneities, holes, cracks, delamina-
tions, inclusions, etc. All these abrupt changes of homogeneity
and isotropy is a cause for the scattering of the guided waves
that, differently from the bulk case, involves all possible
modes, real, complex and imaginary, at the specific frequency,
depending on the dispersion equation.

In this Brief Report, the reflection of a Lamb mode wave
packet is considered, as it is produced at the free edge of an
isotropic and homogeneous steel plate. This will be studied in
two different cases: first, when mode conversion takes place
between modes bearing the same direction both for the group
and the phase velocity (incident mode: S2, reflected mode:
S0) and second, with mode conversion between waves whose
envelope frequency is centered on two different regions of the
dispersion curve of the same mode (incident and reflected
mode: S1) so that to concurrent directions of the phase
velocities there corresponds an opposite direction of the group
velocity. While the first case leads to a reflected angle different
from the incident one but on the opposite side with respect to
the normal direction (anomalous reflection), the same side for
the two angles (negative reflection) is found in the second case.

II. EXPERIMENTAL DETAILS

Preliminary characterization of the plate material was
performed, and the wave dispersion curves were derived from
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numerical integration of the Rayleigh-Lamb equations, once
the ratio between longitudinal, V�, and shear, Vs , velocities
of the bulk waves was properly introduced.17 A steel plate
(thickness 1.99 mm, length 400 mm, width 300 mm) was
used, for which the longitudinal and shear velocities were
experimentally obtained through a pulse echo technique with
multiple reflections, where increasing the number of echoes
permits us to increase the precision; to check the plate
homogeneity, measurements have been performed at several
points of the plate surface: longitudinal bulk wave velocity
and shear bulk wave velocity is V� = 5789 ± 4 m/s and Vs =
3188 ± 3 m/s, respectively. As rolled steel plates can have
considerable texture, elastically isotropy of the plate used in
the experiment has been tested by measuring the phase velocity
of the S1 Lamb mode propagating along various directions: All
the values have been found in the range between 8050 m/s and
8220 m/s within the 2% estimated error. The values of the bulk
velocities are then inserted into the Rayleigh-Lamb equations
and the dispersion relations obtained. Indeed, Lamb modes
result from the coupling of longitudinal and shear vertical
(SV, with displacement vector normal to the plate surfaces)
components and split into two families, the symmetric and
the antisymmetric one, where the symmetry is referred to the
motion of the material particle with respect to the plane parallel
to and equally distant from the plate surfaces: The symmetric
modes satisfy the equation

tan[ktsd/2]

tan[ktld/2]
= − 4β2ktlkts

(
k2
ts − β2

)2 (1)

and the antisymmetric modes the equation

tan[ktsd/2]
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= −
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)2

4β2ktlkts

, (2)

where ktl and kts are the transversal components of the
wavenumber for longitudinal and shear waves, respectively, ω
is the angular frequency, and �β is the Lamb wave vector satisfy-
ing the relations k2

t l = (ω/Vl)2 − β2 and k2
ts = (ω/Vs)2 − β2.

By solving these equations numerically, one obtains the
dispersion curves governing the Lamb modes that propagate
in an infinite homogeneous and isotropic plate; they have been
numerically integrated,18 and Fig. 1(a) shows the first three
solutions for the symmetric modes named S0, S1, and S2;
experiments were performed at two different frequencies, ν1 =
2.3 MHz and ν2 = 1.371 MHz, indicated by the two horizontal
dashed lines; the corresponding wavelengths for the different
modes are also shown. It has to be noted that the S0 mode
has no cutoff frequency and that, for low wavenumber values,
the S1 mode has a negative group velocity (proportional to
the slope of the tangent at the curve) and a positive phase
velocity. That means that a wave packet with a wavenumber β

centered in this region would have phase and group velocities
pointing to opposite directions, giving rise to what is called
a backward-propagating wave packet. Figure 1(b) shows an
enlargement of the dispersion curve for the S1 mode in the
frequency range used in the experiment.

Generation of Lamb waves has been obtained by mode
conversion of longitudinal waves launched by a piezoelectric
transducer onto a lucite wedge with variable angle, placed on
the steel plate: A train wave signal at the transducer generates a

FIG. 1. (Color online) (a) Lamb wave dispersion curves for the
first three symmetric modes for the steel plate used in the experiment.
(b) Enlargement of the dispersion curve relative to the S1 Lamb mode.
The horizontal lines are the operating frequencies. The points indicate
the central wavenumber of the wave packets: points A and C refer
to the S2 and the S1 incident forward modes, respectively; points B

and D are the corresponding converted and reflected S0 (forward)
and S1 (backward) modes. The wavelengths of each mode are also
indicated.

longitudinal wave packet, traveling at a speed Vw = 2720 m/s
in the wedge with wavenumber kw = ω/Vw, and impinges on
the plate surface with an angle φ with respect to the normal
to the plate surface that selects the Lamb wavenumber β

through the relation β = kw sin φ. The frequency ω and the
Lamb wavenumber β ought to match the values on the
dispersion curves for the selected mode to be generated.

The Lamb wave packet then impinges on the free edge of
the plate at variable angles θi : Stress-free boundary conditions
have to be satisfied, and, since the longitudinal component
of the Lamb wave changes sign upon reflection while the
shearing stress does not, the reflected wave will not only have
the same wavelength of the incident wave packet, but it will
contain all the possible modes with different wavelengths such
as to satisfy the condition of zero traction force at the free
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edge. All modes, indeed, may be generated in this process,
provided that they have the same symmetry of the incident
mode, with real, complex, or imaginary wavenumber, but, for
any given frequency, only a finite number of real modes will
be reflected as propagating waves.19,20 Stress-free conditions
are satisfied within an error less than 1% if one considers
the first twenty modes at the boundary are considered;20 only
a small fraction of them, however, will be reflected as real
modes for not too high values of the product frequency times
plate thickness. Consequently, experimental conditions can be
selected to have an almost complete mode conversion from one
impinging mode into just one reflected mode with the same
frequency but different wavelength.

III. RESULTS AND DISCUSSION

The reflection by the plate edge of two different Lamb
waves has been studied: In the first case, a symmetric S2
mode is generated at frequency ν1 [point A in Fig. 1(a)]; in the
second case, a symmetric S1 mode is generated at frequency
ν2 [point C in Fig. 1(b)]. For both cases, the driving electric
signal sent to the transducer consists of a tone burst 20 cycles
long, and, at first, normal incidence on the plate edge has
been studied. A laser vibrometer has been used to detect the
normal component of the plate surface displacement along a
line parallel to the propagation direction of both the incident
and reflected wave. Measurements have been carried out along
a line where the incident and the reflected wave packet were
separated in time so that they have been easily detected and
analyzed, leading both to the measure of the phase and group
velocity and to the determination of the direction of Poynting
vector flow as well.21

It has been found that when the S2 mode at 2.3 MHz is
normally incident on the free edge of the plate, the reflected
wave packet is entirely mode converted into the S0 mode at
the same frequency [point B in Fig. 1(a)], which is consistent
with the numerical simulation of mode conversion showing
an inessential contribution of S1 mode at this frequency-
thickness parameter with respect to the other two real modes
involved, S2 and S0.19 In the second case, when the S1
mode at 1.371 MHz is normally impinging on the plate
edge, the mode conversion produces a reflected wave packet
whose wavenumber is centered around a point lying on the
descending branch of the dispersion curve of the S1 mode
[point D in Fig. 1(b)]: This mode is a backward-propagating
wave because the group velocity is antiparallel to the phase
velocity.

Once all the involved modes have been identified and their
characteristics measured for normal incidence, reflection at
oblique incidence to the plate edge has been experimented
on. In this case, the spot of the laser vibrometer has been
moved along a line parallel to the edge crossing the path of
both emitted and reflected beams; at each step, the maximum
amplitude of the signal has been measured and a profile of
the amplitudes versus direction angle obtained. In Fig. 2,
surface vibration amplitude profiles are shown versus the
angle of the reflected wave vector directions in the far field
approximation in three cases: In (a), the S2 Lamb mode
impinges at an angle of θi = +40◦ with respect to the normal
and the maximum value of S0 reflected mode is centered on
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FIG. 2. (Color online) Profiles of the surface vibration amplitudes
along a line parallel to the plate edge. On the right side, diagrams of
the relative geometrical relationships: the solid vectors refer to wave
vectors, the broken ones to energy propagation directions. Case (a):
S2 forward mode incident on the plate edge at an angle θi = +40◦ is
converted to S0 mode and reflected at angle θr = −13 ± 2◦ (position
of the wave packet center). Mode conversion causes the reflection
angle to change from the incident one (anomalous reflection). Case
(b): S1 forward mode incident on the plate edge at an angle θi =
+20◦ is converted into S1 backward mode and reflected at angle
θr = +35 ± 2◦. Conversion from forward to backward mode causes
the angle of reflection to be changed from the incident one and lying
on the same side with respect to the normal (negative reflection). Case
(c): Same as case (b) but with θi = +25◦ and θr = +40 ± 2◦.

the opposite (negative) side with respect to the normal; the
profile of the reflected mode is strongly widened due to the
traveled path and the high dispersive properties of the mode.
In measurements (b) and (c) of the same figure, the case of
the S1 incident forward mode (group and phase velocities

012102-3



BRIEF REPORTS PHYSICAL REVIEW B 85, 012102 (2012)

having same verse) with S1 backward mode (group and phase
velocities having opposite verses) reflected is considered for
two different values of the incident angle, θi = +20◦ and
θi = +25◦, (b) and (c) respectively. Amplitude profiles show
that the angles of reflection are on the same side, with respect to
the normal to the plate surface, of the incident angles. Since the
reflected wave is a backward one, the energy (group velocity) is
reflected back away from the plate edge while the wavenumber
vector (phase velocity) still points toward the plate edge,
therefore negative reflection through mode conversion takes
place because there is no inversion of the normal component
of the incident wavenumber vector.

Snell’s law conservation of the tangential wavenumber
components is verified as shown by the experimental results: If,
following the dispersion curves (see Fig. 1), values of central
wavenumber for all the involved modes are assigned, Snell’s
law provides the angles of reflection in the three cases. In
particular, for the first case with S2 mode incident at θi = +40◦
and the S0 mode reflected, the corresponding wavelengths
are λS2 = 3.7 mm and λS0 = 1.3 mm such that the expected
angle of reflection of the S0 mode is θr = − arcsin[λS0/λS2 ·
sin(40◦)] = −13.2◦. For S1 forward mode, at a frequency
of 1.371 MHz, the wavelength is λforw

S1 = 6.1 mm, while for
the S1 backward mode the wavelength is λbackw

S1 = 9.5 mm.
When the two incident angles for the S1 forward mode are
θi = +20◦ and θi = +25◦, the expected angles of reflection

for the S1 backward mode are θr = +32.4◦ and θr = +41.4◦,
respectively. Interpolation and fitting of the slightly deformed
wave packets received after reflection (see Fig. 2), give for
the maxima of the packets the following experimental values
for the angle of reflection θr : −13 ± 2◦ [case (a)], +35 ± 2◦
[case (b)], and +40 ± 2◦ [case (c)], in good agreement with
the theoretical expected values −13.2◦ [case (a)], +32.4◦
[case (b)], and +41.4◦ [case (c)].

IV. CONCLUSIONS

In conclusion, negative or anomalous reflection and nega-
tive refraction, as well their applications (ideal perfect lens or
focusing plane mirrors), relay on the different or even coun-
terdirected directions for the phase and the group velocities.
Such an effect can be obtained through the use of special
metamaterials with negative refraction index or, as presented
in this Brief Report, through mode conversion phenomena in
the field of ultrasonic guided waves. We have shown that Lamb
waves mode conversion, at the free edge of a plate of constant
thickness, may cause the reflection angle either to change from
the incident one (anomalous reflection) or to change from
the incident one and lying on the same side, with respect
to the normal direction, of the impinging wave (negative
reflection). For this latter case, a backward propagating wave,
characteristics for Lamb waves have been used.
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