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Akhiezer damping in nanostructures
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Dissipation in a nanomechanical resonator under the application of a nearly uniform strain field is investigated
using molecular dynamics simulations. Under the application of a uniform strain field and in the frequency range
studied, we expect Akhiezer damping to be the dominant loss mechanism. The scaling of energy dissipation rate
with frequency for the bulk case and a finite-sized nanostructure are studied and the results are explained by
Akhiezer damping. The size effect on the dissipation rate is also investigated. The results show a significant role
of the surface on the dissipation rate. An increase in the Q factor with a decrease in thickness of the structure is
observed for a certain range. Below some critical thickness, the trend reverses, indicating multiple roles of the
surface contributing to the dissipation process.
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I. INTRODUCTION

Nanoresonators, with high resonant frequencies, find a
variety of applications such as mass detectors for chemical
and biological sensing,1 transducers, etc. Experimental stud-
ies have demonstrated that atomic-scale resolution can be
achieved with these mass sensors.2 The sensitivity of these
mass sensors is limited by the quality factor3 Q, which
is defined as the ratio of the energy stored to the energy
lost per unit period. A high Q factor or low dissipation
rate is required for the high sensitivity of these inertial
sensors. Dissipation plays an important role in the stability
of nanoelectromechanical systems (NEMS).4 The Q factor is
a design parameter required for predicting the dynamic pull-in
voltage of NEMS switches.5

The loss of energy in a mechanical resonator can result
from different processes, which can be classified into intrinsic
and extrinsic dissipation mechanisms. Fluid damping6 and
clamping losses7,8 are two important extrinsic dissipation
mechanisms in a nanoresonator. In the case of an intrinsic
dissipation mechanism, the ordered mechanical energy is
transformed into the disordered internal energy of the system.
Thermoelastic dissipation9–11 (TED) and Akhiezer damping12

are two known intrinsic dissipation mechanisms in a single-
crystal structure. TED takes place due to the spatial variation
of the strain field in a structure, which results in a temperature
gradient and, hence, heat flow leading to entropy generation.
The Q factor due to TED is given as9

Q−1 = α2ET

Cv

ωτtd

1 + (ωτtd )2
, (1)

where Cv is the specific-heat capacity at constant volume,
α is the coefficient of thermal expansion, E is the Young’s
modulus, ω is the angular frequency of oscillation, T is the
mean temperature, and τtd is the thermal diffusion time. For a
temperature gradient developed across a width w in a material
with thermal conductivity κ , τtd = w2Cv

π2κ
. TED, apart from

depending on the material properties, therefore also depends
on the length scale across which the temperature gradient is
developed.

Akhiezer damping takes place as a result of heat flow
between different phonon modes. The applied strain field

modulates the frequency of the thermal phonons. The strength
of coupling between the strain field and the phonon modes
varies and is given by a mode-dependent Grüneisen parameter,
which is a measure of the change in frequency of each
mode with applied strain. The applied deformation, therefore,
results in a temperature difference between different phonon
modes, and each of them then tends to relax toward the mean
temperature value. This results in an intramode heat flow and,
hence, entropy generation leading to dissipation. While TED
depends on the applied strain field, Akhiezer damping rate
is a more fundamental property of the system. Under the
application of a uniform strain field, and in the absence of
any additional mechanism of dissipation, the damping rate in
a structure will be governed by the Akhiezer mechanism.

Since the original work of Akhiezer,12 the absorption of
acoustic waves by Akhiezer mechanism has been the subject
of extensive research. Bommel and Dransfeld13 developed an
expression for attenuation of elastic waves by assuming that the
dominant heat flow takes place between two phonon branches.
Woodruff and Ehrenreich14 derived an expression for damping
of elastic waves by solving the Boltzmann transport equation.
Mason and Bateman15 introduced a nonlinearity parameter D

for the attenuation coefficient due to Akhiezer damping and
found good agreement with the experimental results for silicon
and germanium. The theories developed in these works have
been applied to a number of other experimental works16,17

wherein it has been demonstrated that the Akhiezer mecha-
nism becomes particularly important when the time scale of
oscillation becomes comparable to the phonon relaxation time
τph-ph. A metric for assessing the strength of this mechanism
is the ωτph-ph value. The mechanism plays an important role
for the absorption of acoustic waves in the ultrasonic and the
hypersonic regimes.

The angular frequency of oscillation of the fundamental
longitudinal mode ωl of a beam is given as

ωl =
√

E

ρ

π

2L
, (2)

where ρ is the mass density and L is the length of the beam.
For L of the order of few nanometers, frequency in the range
of tens of GHz is obtained. The phonon relaxation time is
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generally of the order of few picoseconds. Thus, for beams
with dimension in the range of nanometers, ωτph-ph will be of
the order of 10−2. The Q factor due to Akhiezer mechanism
scales as13

Q−1 ∝ ωτph-ph

1 + (ωτph-ph)2
. (3)

Q attains a minimum value Qmin for ωτph-ph = 1. For ωτph-ph

of the order of 10−2, Q

Qmin
is of the order of 102 and one expects

the Akhiezer damping to be an important loss mechanism at
such length scales.

A number of experimental as well as theoretical works18,19

have been carried out to elucidate the dissipation mechanisms
in a nanostructure. These works have provided insight into
the different possible dynamics operating at the nanoscale.
Kiselev et al.20 solved the Boltzmann transport equation and
studied the relative importance of TED and Akhiezer damping
in a nanobeam under flexure. The analysis, however, did not
take into consideration the variation in material properties with
size. For example, the value of τph-ph was assumed to be the
same for all sizes. Further attempts to isolate and study the
role of individual dissipation dynamics at such small length
scales have not been made. A more general study of the role
of surface on individual dissipation mechanism is therefore
lacking and we attempt to make some effort in this direction.

In this work, we employ classical molecular dynamics
(MD) to understand Akhiezer dynamics in nanostructures.
The other known dissipation mechanism, namely, TED, is
eliminated by applying a nearly uniform strain field. It is worth
pointing out that additional mechanisms, such as the surface
dissipation, may also be present and mask the dynamics that
would have resulted solely from Akhiezer damping. Attempts
have not been made to isolate such effects. In Sec. II, we
review the dynamics of a beam under longitudinal vibration
and present a case of a nearly linear displacement profile. In
Sec. III, we describe the MD setup to study the vibration of
a nickel nanostructure, using the idea of Sec. II to attain the
desired objective. In Sec. IV, the results are summarized, and
conclusions are given in Sec. V.

II. BEAM DYNAMICS

The equation of motion for the displacement profile u(x,t)
of a purely elastic beam in longitudinal vibration is given by

E
∂2u(x,t)

∂x2
+ ρ

∂2u(x,t)

∂t2
= f (x,t), (4)

where f (x,t) is the applied force. A periodic load f (x,t) =
F0δ(x − L)cos(ωt) is applied at the end where F0 is the
magnitude of the applied load and δ(x) is the Dirac delta
function. The solution of Eq. (4) for such a case is obtained as
u(x,t) = Amsin( πx

2L0
)cos(ωt). Am is a measure of the amplitude

of oscillation and L0 = π
2ω

√
E
ρ

. The physical interpretation of
L0 is that it corresponds to the length of an imaginary beam,
which has the same material properties as stated above and for
which the angular frequency of the fundamental longitudinal

mode is equal to ω. Under the condition that L is sufficiently
smaller than L0, u(x,t) can be approximated as

u(x,t) = Amsin

(
πx

2L0

)
cos(ωt) ≈Am

πx

2L0
cos(ωt). (5)

This results in a linear displacement profile with a uniform
strain field. The amplitude of oscillation at the end of beam A

is then given as A = Am
πL
2L0

. The elastic energy U stored in
the beam is given as

U =
∫ L

0

1

2
SE

(
∂u

∂x

)2

dx, (6)

where S is the cross-sectional area of the beam.
For a linear displacement profile, U is obtained as

U = 1
2kA2, (7)

where k is the effective stiffness of the beam and is given as
k = ES

L
.

III. SIMULATION SETUP

A nickel structure was generated by arranging atoms on a
face-centered cubic (fcc) lattice with a lattice spacing of 3.5374
Å. A schematic of the simulation setup is illustrated in Fig. 1.
20 unit cells, corresponding to a length of 7.07 nm, were taken
in the longitudinal [100] direction, while the cross-section
area was varied from 3.53 × 3.53 nm2 to 7.07 × 7.07 nm2 for
different studies. All atoms within one unit cell from the left
end were fixed by setting the forces on them to be zero. This
corresponds to a clamped boundary condition. The embedded
atom method (EAM) potential21 was used to model the
force field. Large-scale atomic/molecular massively parallel
simulator22 (LAMMPS) was used for all MD simulations.
The structure was equilibrated at 300 K using a Nosé-Hoover
thermostat with a time constant of 0.1 ps. A time step of 1
fs was used for the entire simulation. After equilibration of
the structure for 2 ns, a periodic force was applied to the
atoms on the right longitudinal edge in the x direction. The
system was further evolved as a canonical (NVT) ensemble
for a simulation time of 30 ns.

For a perfectly elastic structure, the mean displacement of
the end atoms would be in phase with the applied periodic
force. However, because of dissipation, a phase lag exists
between the applied force and the response. The work done
by the applied force per unit period is a measure of the
energy dissipation rate. In an isolated system (microcanonical
ensemble), this work would result in an increase in the internal
energy, and hence the temperature, of the system. For a system

FIG. 1. A schematic of the simulation setup.
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evolved as a canonical ensemble, the thermal bath takes away
the excess energy and keeps the mean temperature constant.
The energy dissipated per unit period Ediss is equal to the work
done by the external force and is given as

Ediss = ω

2πTf

∫ Tf

0

∑
ne

f0 cos(ωt)vxdt, (8)

where f0 is the magnitude of the applied force on each of the
end atoms, vx is the x component of the velocity, Tf is the
total time for which the force is applied, and ne is the number
of atoms at the end on which the external force is applied. F0

is related to f0 as F0 = nef0. We neglected an initial transient
of 2 ns from the time the external force was imposed for
computing the energy dissipation rate. In order to compute the
energy stored, the Fourier transform of the x component of
the center-of-mass displacement of the edge atoms was taken.
The Fourier transform showed a dominant peak corresponding
to the frequency of the applied force. The amplitude of
oscillation was computed from the peak magnitude as

A = max{abs[FFT(x-data)]}/(2×ndata), (9)

where x-data is the time-series data of the center of mass of
edge atoms and ndata is the number of data points.

The effective stiffness of the structure was determined using
a separate equilibrium simulation. After an initial equilibration
at 300 K for 2 ns, a static force was applied on the end
atoms. The structure was relaxed for 1 ns, the length value
corresponding to the applied force was then computed using
the data obtained for a subsequent time of 1.5 ns. The force
magnitude was then increased and the procedure described
above was followed to compute the new relaxed length for
the increased applied force value. This was repeated with
subsequent force increments and the length value was obtained
for different magnitude of the applied force. The slope of the
force-displacement curve gives the value of k.

The energy stored Estored was then computed as

Estored = 1
2kA2. (10)

The Q factor is then given as

Q = 2π
Estored

Ediss
. (11)

IV. RESULTS AND DISCUSSION

We first studied the frequency dependence of Q factor for
the bulk case. The bulk case was simulated by imposing the
periodic boundary condition in the lateral direction. A size
independence for a simulation domain with cross-sectional
area larger than 3.53 × 3.53 nm2 was observed. Figure 2(a)
shows the plot of the Q factor versus frequency as obtained
for the bulk case. The Q factor decreases and, hence, the
dissipation rate increases with the increase in frequency.

Under the single-mode relaxation-time approximation, the
Q factor for Akhiezer damping is given as13

Q−1 = CpT λ2
av

ρv2

ωτph-ph

1 + (ωτph-ph)2
, (12)
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FIG. 2. (Color online) (a) Q factor vs frequency for 7.07 ×
4.24 × 4.24 nm nickel structure with periodic boundary condition
in the lateral directions. (b) The relaxation relation for the bulk case
is illustrated by this plot.

where v is the sound velocity, Cp is the specific-heat capacity
at constant pressure, λav is the mean value of the Grüneisen
parameter, ω is the angular frequency of the applied strain
field, and τph-ph is a measure of the phonon energy mean
transfer time. Equation (12) states that, for ωτph-ph � 1, the
Q factor decreases with the increase in frequency. The phonon
relaxation time is generally of the order of few picoseconds,
and the above inequality is valid if the frequency is of the order
of few gigahertz. Equation (12) can be further recasted as

Qω = mω2 + c, (13)

where m = ρτph-phv
2

CpT λ2
av

and c = m

τ 2
ph-ph

. Equation (13) states that Qω

and ω2 have a linear relationship. Figure 2(b) shows the plot
of Qω versus ω2 as obtained for the bulk case and a linear
dependence between Qω and ω2 is observed. The slope and
the intercept of the linear fit were used to compute the τph-ph

value, which was estimated to be 1.72 ps.
Different studies have estimated different values of τph-ph.

According to Bommel and Dransfeld,13 the value of τph-ph
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FIG. 3. (Color online) (a) Longitudinal phonon relaxation time for bulk nickel in the [100] direction. (b) Transverse phonon relaxation time
for bulk nickel in the [100] direction.

should be taken to be same as that of the thermal relaxation
time τth given as

τth = 3κ

Cvv2
. (14)

Mason and Bateman15 used a value of τph-ph = 2τth for
longitudinal mode and obtained very good agreement with
the experimental data. Heino and Ristolainen23 computed the
phonon mean-free path l and v for nickel using MD, although
they used a different version of the EAM potential to model
the force field. Making use of τth = l

v
and using the data given

by Heino and Ristolainen,23 the value of τth comes out to be
0.96 ps. The ratio τph-ph

τth
= 1.8, it then follows that the relation

given by Mason and Bateman15 holds more applicable for our
case.

Phonon relaxation time can also be computed by taking
the correlation of the mode potential or kinetic energy.24 20 ×
10 × 10 unit cells of nickel with periodic boundary condition
in all directions were used. The relaxation time for phonons in
the direction of 20 unit cells, which corresponded to the [100]
direction in a fcc lattice structure, is computed at 300 K. A
phonon is a propagating wave for which the mode shape is
given as

�up(�x,t) = �P exp (i�k.�x) exp (iω0t), (15)

where �x is the position vector of each atom, �up is the
displacement from the mean position, �k is the wave vector,
ω0 is the phonon frequency, and �P is the polarization vector. �k
is given by the boundary condition. For a given value of �k, one
can construct a force constant matrix25 using second-order
derivative of the potential function; the eigenvectors of the
force constant matrix then give �P and the eigenvalues scaled
with atomic mass give ω2

0. �k and �P completely characterize a
mode shape. MD displacement and velocity are then projected
on the mode shape to get the mode displacement dm and
the mode velocity vm. The mode kinetic energy Kem is then
computed as Kem = 1

2mv2
m. The correlation function of Kem

was taken to estimate the decay rate. Figure 3 shows the
relaxation time for the transverse and longitudinal phonons

as obtained for the bulk case. The phonon density of states
(PDOS) was computed by taking the fast Fourier time (FFT)
of the function C(t),26 given as

C(t) = 1

natoms

〈∑
natoms

�vi(t0).�vi(t0 + t)

〉
, (16)

where natoms is the total number of atoms and �vi(t) is the
velocity vector of the ith atom obtained from MD. Figure 4
shows the PDOS obtained for the bulk case using MD. The
PDOS has two peaks. The peak at around 6 THz corresponds to
the transverse mode, while the peak near 9 THz corresponds to
the longitudinal mode. At 5.73 GHz, the transverse mode has
a relaxation time of 2.97 ps and at 8.8 GHz the longitudinal
mode has a relaxation time of 0.78 ps; the mean of these
two values comes to be 1.875 ps, which is comparable to the
phonon relaxation time estimated from Q versus ω scaling.

The scaling of Q factor with ω was then studied for
the finite-sized case. A free surface boundary condition
was imposed in the lateral direction. We considered three
different cases, each of them having a length of 7.1 nm
in the longitudinal direction, and with cross-sectional areas
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FIG. 4. (Color online) Phonon density of states for bulk nickel.
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FIG. 5. (Color online) (a) Q factor vs frequency for 7.1 × 7.1 nm2 nickel nanostructure. (b) Q factor vs frequency for 5.1 × 5.1 nm2 nickel
nanostructure. (c) Q factor vs frequency for 3.5 × 3.5 nm2 nickel nanostructure.

as 3.53 × 3.53 nm2, 5.29 × 5.29 nm2, and 7.07 × 7.07 nm2.
Figure 5 shows the plot of Q versus frequency for the three
cases. For all the sizes, the dissipation rate was found to
increase with the increase in the frequency. The plot also shows
a Q = Bω−1 curve, with B obtained using the least-squares
fit from the data points. For the case of cross-sectional area of
7.1 × 7.1 nm2, the Q value closely follows the Bω−1 curve.
For the smallest size, the MD data and the inverse relationship
became slightly deviant. Further, for all three cases, a linear
dependence between Qω and ω2, as has been observed for the
bulk case, was not seen.

The Q versus ω relation, as stated in Eq. (12), was derived
by Bommel and Dransfeld13 under the assumption that the
Grüneisen parameter for a given phonon branch is independent
of frequency and two phonon groups are present. This is
applicable for a bulk structure for which only the longitudinal
and transverse modes are present. In a low-dimensional
structure, such as a nanowire, the presence of a surface splits
the phonon spectrum into a subband.27,28 The assumptions
used in deriving Eq. (12) are, therefore, not applicable for
nanostructures. A linear dependence between Qω and ω2 is,
therefore, not observed in the case of free surface boundary
condition.

Under the approximation ωτph-ph � 1, Woodruff and
Ehrenreich14 derived an expression for damping of elastic
waves by solving the Boltzmann transport equation. An

expression for the attenuation coefficient αt was obtained as

αt = β
ω2T

ρv2

∑
q,j

τ (q,j )λ2(q,j )C(q,j ), (17)

where β is a numerical coefficient, and τ (q,j ), λ(q,j ), and
C(q,j ) are the relaxation time, the Grüneisen parameter, and
specific-heat capacity of the phonon branch labeled as q,j . Q

is related to αt as Q = ω
2αt

and, hence, Eq. (17) shows that Q

scales as ω−1. This explains the trend as has been observed for
the case of 7.1 × 7.1 nm2 cross-sectional area.

We studied the size dependence of the Q factor for a fixed
frequency of 25 GHz. The cross-sectional area was varied
from 12.51 to 50.41 nm2. Figure 6 shows that the Q factor
first shows an improvement with the decrease in size and then
drops below some critical size. This trend in the variation of
Q factor with size indicates the role of different competing
factors.

The initial decrease in the dissipation rate with the decrease
in size can be explained by the role of surface on the ensemble
of thermal phonons. Akhiezer damping takes place as a result
of the modulation of thermal phonons with the applied strain
field. The strain field disturbs the equilibrium of the thermal
phonons, which then relax toward equilibrium with a finite
relaxation time. Faster relaxation of phonons toward thermal
equilibrium would decrease the lag between the stress and
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FIG. 6. (Color online) Variation of Q factor with cross-sectional
area for square nickel beam with a length of 7.1 nm at 25 GHz.

the strain and would result in a lower dissipation rate. A
manifestation of this effect was observed by Harding and
Wilks,29 who found that the attenuation of sound in liquid
helium decreased by the addition of a small amount of 3He
impurity. The presence of surfaces acts as an additional
scattering mechanism30,31 and reduces the relaxation time of
thermal phonons in nanostructures. Such an effect has been
studied before and has been accounted for as a reason for the
decrease in the thermal conductivity of nanowires.32

The phonon relaxation time for a finite-sized case was
computed using the method described by McGaughey and
Kaviany.24 A nickel structure with 20 × 12 × 12 unit cells
(7.1 × 4.24 × 4.24 nm) was used with a periodic boundary
condition in the direction of 20 unit cells and a free sur-
face boundary condition in the other directions. Computing
the phonon relaxation time in this case would entail using
the eigenmodes for the one-dimensional structure. The mode
shapes were computed using the method described before for
the case of bulk system. For large wave vectors, the bulk modes
corresponded to the eigenmodes of the structure considered.
This was evident from the correlation function of the mode
potential or kinetic energy, which showed a dominant single
frequency. The relaxation time was computed only for large
wave vectors for which the eigenmodes are sufficiently given
by the bulk mode shapes. Figure 7 shows the plot of relaxation
time for longitudinal phonons as obtained for the finite-sized
case. The bulk values are also plotted for comparison. For the
higher-frequency values, both the finite structure and bulk have
similar relaxation time. In this case, the relaxation is dominated
by the umklapp process. The relaxation time deviates with the
decrease in frequency, with the finite-size case having a lower
value. The presence of surfaces therefore reduces the mean
phonon relaxation time.

The autocorrelation function S(t) of the heat current vector
�q(t) can be used to estimate phonon mean relaxation times.33

For a fcc crystal, S(t) shows a two-stage decay. A biexponential
fit of S(t) gives two relaxation times.34 The relaxation time
with the smaller value is the mean lifetime of short-wavelength
phonons τsp. Physically, τsp corresponds to the time an atom
takes to transfer energy to its neighboring atoms. The second
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FIG. 7. (Color online) Relaxation time for longitudinal phonons
in nickel nanowire and its comparison with bulk value.

relaxation time obtained from the biexponential fit is the long-
wavelength phonons mean lifetime τlp.

τsp and τlp values were estimated for nickel nanowires of
varying cross-sectional area. The periodic boundary condition
was used in the longitudinal direction, while the free surface
boundary condition was used otherwise. S(t) was computed
by taking the autocorrelaton of the component of �q(t) in the
longitudinal direction. A total simulation time of 6 ns was
used to compute S(t). The biexponential fitting was done on
the values of S(t) for a period of 5 ps. τsp was estimated to be
of the order of a few femtoseconds. For the frequency range
under consideration, this time scale is not of importance and
hence was not considered for analysis. Figure 8 shows the τlp

values for different cross-sectional areas. The plot shows that
τlp decreases with the decrease in size. This decrease in τlp

value with the decrease in size is expected to govern the Q-
factor variation for larger sizes. For the Akhiezer mechanism,
dissipation rate and relaxation time have a direct relationship
and, hence, the dissipation rate initially decreases with the
decrease in size.
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FIG. 8. (Color online) Variation of the long-wavelength phonons
mean relaxation time τlp with size.
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The surface atoms, because of lower coordination number,
have intrinsic properties that are different from the bulk atoms.
The increasing role of surface atoms, with the increase in
surface to volume ratio, results in change in the properties
of a nanostructure. The length scale at which such an effect
becomes important is of the order of a few nanometers. The
magnitude of this length scale depends on the material property
of interest and the nature of the material itself. For example, the
Young’s modulus of a silicon nanowire drops sharply below a
cross-section area of 10 nm2.35

The physical origin of the Akhiezer damping mechanism
lies in the flow of heat current between different phonon modes.
The flow of heat takes place due to the difference in λ(q,j )
values between different modes, with λ(q,j ) being a measure
of the change in temperature of each mode when strained
adiabatically. The higher the difference in the λ(q,j ) value for
different modes, the higher will be the temperature difference.
This effect on the dissipation rate is quantified by a nonlinearity
parameter15 D given as

D = 3

[
3
∑

q,j [λ2(q,j )]

n
− λ2CvT

E0

]
, (18)

where n is the number of the modes, E0 is the total
thermal energy, and λ is the volume Grüneisen constant. The
attenuation due to the Akhiezer mechanism is related to D as
αt = Dω2E0τph-ph

6ρv3 .

D by definition is therefore a metric of the variance in
the λ(q,j ) value. In a bulk crystal, the main contribution to
D comes from the difference in the λ(q,j ) value between
the transverse and the longitudinal branches. The presence of
surface leads to additional modes in a nanostructure. Some
of these modes, called the surface modes, have displacement
profiles in which the surface atoms share most of the amplitude.
λ(q,j ) for such modes will therefore depend on the property of
the surface atoms and will be different from that of the bulklike
modes. The presence of such modes will therefore contribute
to an increase in the value of D and, hence, an increase in the
dissipation rate. The fraction of such modes to the total number
of modes depends on the ratio of the number of surface atoms
to that of the bulk atoms and is expected to become significant
only at very small dimension.

The local quasiharmonic (LQHM) model36 was used to
estimate the D value for nickel nanobeams. In the LQHM
model, the motion of each atom is decoupled from the rest. A
local stiffness matrix �(α) is obtained by taking the double
derivative of the potential energy with respect to displacement
vector of an atom α. From the eigenvalues of �(α), three
vibrational frequencies ωαi(i = 1,2,3) are determined. The
local Grüneisen parameter λαi is given as λαi = − V

ωαi

dωαi

dV
,

where V is the volume of the crystal. We define Cαi as Cαi =
kb( h̄ωαi

kbT
)2exp( h̄ωαi

kbT
)

[exp( h̄ωαi
kbT

)−1]2
and Eαi as Eαi = h̄ωαi

exp( h̄ωαi
kbT

)−1
, where kb is the

Boltzmann constant, h̄ = h
2π

, and h is the Plancks constant. In
the LQHM model, λ is obtained as

λ =
∑nt

α=1

∑3
i=1 Cαiλαi∑nt

α=1

∑3
i=1 Cαi

, (19)
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FIG. 9. (Color online) Variation of the nonlinearity parameter D

with size as computed using the LQHM model.

where nt is the total number of atoms in the structure. Cv and
Eo in the LQHM model are given as Cv = 1

V

∑nt
α=1

∑3
i=1 Cαi

and E0 = 1
V

∑nt
α=1

∑3
i=1 Eαi .

Finite-sized nickel nanostructrues, as used in the MD
simulations, were considered for LQHM analysis. λαi values
were computed by imposing a uniaxial deformation on the
structure. The values of λαi , λ, Cv , and E0 thus obtained using
the LQHM model were substituted in Eq. (18) to get the value
of D. Figure 9 shows the value of D for nickel nanobeams of
different cross-sectional area. The plot shows that D increases
with the decrease in size. For the smallest size considered, the
increase in the value of D is expected to become significant
and compensate for the decrease in the relaxation-time value.
This effect of surface on the D value plausibly explains the
observed nonmononotic scaling of the Q factor with size.

V. CONCLUSIONS

MD simulations have been used to investigate the dissi-
pation in a nickel nanowire. A nearly uniform strain field
was applied to eliminate TED. In such a case, we expect
the dissipation to be dominated by the Akhiezer mechanism.
From the scaling of the Q factor with ω for the bulk
case, τph-ph was estimated. The value was comparable with
the estimate obtained from other methods. The finite-sized
case showed an inverse scaling of Q factor with ω, and for
the smallest size considered, a slight deviation was observed.
The size dependence of the Q factor showed a positive role of
the surface wherein the Q factor initially increased with the
decrease in thickness. This was explained by the role of the
surface as a scattering medium for the thermal phonons. For
dimensions below some critical value, a drop in Q factor with
size was observed, and this was attributed to the contribution
of surface atoms to increase the variance in the λ(q,j ) value.
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