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By performing second-order renormalization group analysis on thin arrays of 4-Angstrom (5,0) carbon nan-
otubes (CNTs) embedded in aluminophosphate–five (AFI) zeolite crystals, we identify singlet superconductivity
instability to be dominant at low temperatures, attributable to the screening of the electron-electron Coulomb
interaction in the array configuration. Our analysis also shows that there is a crossover as the system scales
to lower energy/temperatures, whereby one-dimensional (1D) superconductivity is the ground state, but the
response function of the Peierls distortion/charge density wave (CDW) order dominates at the higher energy
regime. This crossover behavior indicates that for a thin array of (5,0) CNTs the CDW order may represent an
excited state of the array, so that the CDW characteristics can appear at finite temperatures, in conjunction with
1D superconductivity. Experimental results are presented to support this interpretation.
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I. INTRODUCTION

The electronic ground state of single-wall carbon nanotubes
(SWCNTs) is an interesting and still unresolved problem. Ow-
ing to the variety of SWCNT structures, their ground state may
not be unique. This can be true even for the metallic SWCNTs.
Besides the well-known Luttinger liquid (LL) state, intrinsic
superconductivity has been experimentally observed or theo-
retically predicted in SWCNTs,1–13 CNT ropes,14–17 multiwall
CNTs (MWCNTs),18–23 and doped CNTs.24–27 For the case of
ultrathin diameter 4-Angstrom metallic SWCNTs, experimen-
tal observation of the Meissner effect in 20011 has prompted
some theoretical works exploring the possibility of supercon-
ductivity being the ground state of the system. While some
authors predicted Peierls ground state,28–32 others predicted
superconductivity.33–40 More recently, the observation of the
superconducting electrical transition for arrays of aligned
4-Angstrom nanotubes (embedded in AFI zeolite crystals) has
shown that the resistance drop is precipitated by a Berezinskii-
Kosterlitz-Thouless (BKT)-like transition41–43 in the plane per-
pendicular to the c-axis of the nanotubes, thereby facilitating
a 1D to 3D crossover that leads to bulk superconductivity2–4

at low temperatures. Three dimensional magnetic Meissner
characteristics was subsequently also observed on this low
temperature state.5 Such experimental evidences thus strongly
suggest the important role of transverse coupling between the
SWCNTs in determining the ground state.

In this work we study the ground state of thin arrays of
(5,0) 4-Angstrom CNTs. The (5,0) CNTs are noted to have
three bands crossing the Fermi level, denoted as A, A′, and B.
This feature implies that it cannot be completely similar to the
LL44–51 behavior. Theoretically, the LL model may break down
in ultrathin CNTs because in the presence of phonon-mediate
electron-electron interactions, the system may deviate from the
Luttinger fixed point if the net effective interaction is attractive,
which would imply scaling to the strong coupling limit.52–58

Some earlier works59–61 have analyzed the ultrathin SWCNT
system with bosonization46–49 and first-order renormalization
group (RG) approaches.52–58 However, whereas bosoniztion
suffers from the perturbative nature in treating the backward

scattering, first-order RG can lead to unphysical divergence in
the attractive coupling regime.

Here we report the results of the second-order RG52–58

analysis in calculating the electronic instabilities of thin arrays
of (5,0) CNTs. The differential resistance behavior of such
thin arrays is predicted by using the Landauer formula. It
is shown that for a single (5,0) carbon nanotube (CNT), the
ground state at low temperatures is governed by the Peierls
distortion, or the charge density wave (CDW) state, unless
the (5,0) CNT is embedded in a very high dielectric constant
matrix. But for a thin array of (5,0) CNTs embedded in the
AFI crystal (with a dielectric constant ∼6), comprising one
central (5,0) CNT surrounded by six others with an array
cross-sectional diameter of ∼3 nm, there can be a Peierls-1D
superconductivity crossover as the temperature is lowered,
with the superconducting state emerging as the ground state.
We interpret this to mean that the CDW state can be an excited
state of the thin (5,0) array so that at finite temperatures the
characteristics of the Peierls/CDW order can appear even
in the context of a 1D superconducting ground state, and
this interpretation can provide a qualitative explanation to
the otherwise puzzling differential resistance observations on
some selective samples.

In what follows Sec. II is devoted to a RG treatment of the
system. Description of the formalism in Sec. II A is followed
by a presentation of the relevant methodology in Sec. II B. In
Sec. II C we consider the fixed points of the renormalization as
obtained by integrating from the physically reasonable initial
values. In Sec. III we present the device characteristics for the
Peierls/CDW order by considering the effect of the electrical
leads. Based on the results obtained, in Sec. IV we give an
interpretation of the differential resistance behavior observed
in some selective samples of the 4-Angstrom CNTs’ system.

II. RG ANALYSIS OF THE COUPLING CONSTANTS
AND THE RESPONSE FUNCTIONS

A. Interaction Hamiltonian, channels, and coupling constants

The Hamiltonian of a thin array of (5,0) CNTs, comprising
a central CNT surrounded by six others, can be expressed as
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FIG. 1. (a) The linearized single electron-band structure near Fermi level. A and A′ bands are degenerate, with opposite Fermi velocity to
that in the B band. (b) The Brillouin zone. The horizontal axis is k along the tube axis, while the vertical axis is angular momentum around the
tube circumference. The black dots denoted by A±, B± are the Fermi points in the 1D band. (c)–(h) show the schematic diagrams for the six
intratube channels. (i)–(k) illustrate g1‖, g1⊥, and g2 in each channel.

the sum of a linearized noninteracting part plus a part containing the electron-electron interaction:

H =
∑

σ=↑,↓

∑
m

∑
k

(
εkF ma+

kmσ akmσ + ε−kF mb+
kmσ bkmσ

) +
∑
σ,σ ′

∑
n

∑
k,p,q

(
g1‖

n a+
knσ b+

pnσ ′ap+2kF +q,n,σ ′bk−2kF −q,n,σ δσ,σ ′

+ g1⊥
n a+

knσ b+
pnσ ′ap+2kF +q,n,σ ′bk−2kF −q,n,σ δσ,−σ ′ + g2

na
+
kσ b+

p,σ ′bp+q,σ ′ak−q,σ δσ,−σ ′
)
, (1)

where k, p, and q denote momentum, a and b are annihi-
lation operators of electrons for k values around the Fermi
momentum in the electron bands kFm and −kFm, respectively.
Index m denotes the three partially fulfilled electron bands in
the (5,0) band structure. Here m = 0 stands for the B band
and m = ±1 stands, respectively, for the A and A′ bands,
as shown in Figs. 1(a) and 1(b). Index σ means spin, and
εkF m denotes the energy dispersion around the Fermi point
of band m. In the interaction part of the Hamiltonian, n

denotes the different electron-electron interaction channels,
shown in Figs. 1(c)–1(h), in which n = 1 means the channel
shown in Fig. 1(c), n = 2 the channels in Fig. 1(d), etc.
Here a channel is defined as comprising a left-propagating
electron together with a right-propagating electron. For later
considerations it is noted that only if the two electrons
are such that one is left-moving and the other one right-
moving, can there appear logarithmically divergent expansion
diagrams.
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The two electrons interact with each other with a coupling
constant, which can differ from channel to channel. Within
each channel there can be three types of interactions. These
three are schematically illustrated in Figs. 1(i)–1(k), in
which the coupling constant g1‖/g1⊥ is relevant to backward
scattering with spins parallel/antiparallel, while g2 denotes
forward scattering. Hence there are in total 18 intratube
coupling constants. If we consider intertube interactions within
a thin array, consisting of a central nanotube surrounded
by six others, one only needs to consider a pair of the
nearest neighbors, and there can be 12 different channels.
Hence there can be 36 intertube coupling constants, and these
couplings should be taken into account six times, one for
each surrounding CNT. As will be seen subsequently, the
coupling constants are the ones to be renormalized in the RG
analysis.

B. Derivation of scaling equations for the coupling constants

We follow the formalism presented in the literature52–58 to
perform the RG analysis up to the second order. The scaling
equation of coupling constants gi versus cutoff energy E0 can
be generally expressed as

gj ′
n = gj

n{(dm((E′
0/E0),g)dm′((E′

0/E0),g))/(dm(1,g′)
× dm′ (1,g′))}{�̃n,j [(E′

0/E0),g]/�̃n,j (1,g′)}. (2)

Here g′ is the new (renormalized) coupling constant and
g is the original coupling constant; n is the channel index; j

denotes 1//, 1⊥ or 2; �̃
j
n = H

j

ele−ele,n/g
j
n is the dimensionless

interaction vertex (where Hele−ele just denotes the second part
on the right-hand side of Eq. (1)); and dm(m′) =Gm(m′)/Gm(m′)

(0)

is the dimensionless Green function in band m (m′) associated
within each channel n. The dimensionless interaction vertex
and Green function can be perturbatively expanded with the
Feynman diagram technique. The integral over intermediate
states would then yield terms that contain ln(ω/E0), which
are divergent in the low energy limit. The RG technique is

FIG. 2. The logarithmically divergent diagrams, (a), (b), (c), and
(d), in the perturbative expansion of the interaction vertex associated
with the second-order RG. Nondivergent diagrams and higher-order
diagrams are not shown. Here a solid line denotes the right-moving
electron, while a dashed line denotes the left-moving electron.

to reduce the cutoff E0 to a smaller E0
′ and to integrate

the states between E0
′ and E0. A smaller cutoff will cause

the logarithmic function to be less divergent. In this process
the coupling constants must be changed a bit to maintain the
overall physical characteristic, and this change is described
by Eq. (2), denoted the scaling equation, which the electron-
electron couplings must obey.

The electron-electron interaction vertex can be perturba-
tively expanded by using the Feynman diagram technique up
to the two-loop cases, shown in Fig. 2. All vertices must satisfy
the momentum and energy conservation laws, and inner lines
run over all possible states. We integrate inner lines over their
energy and momenta. These middle states are expressed in
free-particle Green function as

Gm±(k,ω) = 1

ω − εm±(k) + iδsgn[εm±(k)]
, (3)

where εm±(k) = vFm(k − kFm±) is the energy dispersion, iδ is
an infinitesimal imaginary constant, and sgn denotes the func-
tion of taking the sign of the argument. The diagrams shown
in Figs. 2(a) and 2(b) are called Bardeen–Cooper–Shrieffer
(BCS) and zero-sound diagrams, respectively. Their integrals
are singular if two inner lines have opposite group velocities,
i.e.,

−i

∫
dk′

2π

∫
dω′

2π
Gm, right−moving(k′,ω′)Gm′, left−moving(−k′,ω − ω′) = − 1

π (vFm + vFm′ )
ln

(
ω

π (vFm + vFm′ ) kC

)
(4)

−i

∫
dk′

2π

∫
dω′

2π
Gm, right−moving(k′,ω′)Gm′, left−moving(k′ − �k,ω′ − ω) = 1

π (vFm + vFm′ )
ln

(
ω

π (vFm + vFm′ ) kC

)
,

in which kC denotes momentum cutoff and �k denotes difference in momenta between two associated Fermi points. Here all
group velocities are taken to be their absolute value.

In general these diagrams give rise to terms in the form of g2ln(ω/E0), and by collecting all these terms we can derive the
RG-scaling functions up to the first order. The next corrections to the scaling equations come from Figs. 2(c) and 2(d), which give
rise to terms in form of g3ln(ω/E0). By collecting diagrams like those shown in Figs. 2(c) and 2(d), we generate the second-order
scaling equations. Here in Fig. 3 we give an example for all the diagrams for �2

1, which belongs to the g2-type interaction vertex
in the A band.

To be consistent, we must also take into account the second-order self-energy correction to the free-particle Green
function, shown in Fig. 4. By following Ref. 56, the corrections to the Green function and the group velocities are
given by

GA−(k,ω) = 1

ω − v′
Ak

[
1 +

∑
n�=AA′BB

1

2π2(v′
m + v′

m′)2

((
g1‖

n − g2
n

)2 + (
g1⊥

n

)2 + (
g2

n

)2)
ln(ω/E0)

+ 1

4π2v′
B(v′

A + v′
B)

((
g

1‖
AA′BB − g2

AA′BB

)2 + (
g1⊥

AA′BB

)2 + (
g2

AA′BB

)2)
ln(ω/E0)

]
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FIG. 3. The diagrams that give rise to ln(ω/E0) for �2
1 . The first four diagrams belong to the first-order RG diagrams, while others belong

to the second-order RG diagrams. The down-triangle diagrams are similar to the up-triangle ones and hence not listed.

GB+(k,ω) = 1

ω − v′
Bk

[
1 +

∑
n�=AA′BB

1

2π2(v′
m + v′

m′ )2

((
g1‖

n − g2
n

)2 + (
g1⊥

n

)2 + (
g2

n

)2)
ln(ω/E0)

+ 2

4π2v′
A(v′

A + v′
B)

((
g

1‖
AA′BB − g2

AA′BB

)2 + (
g1⊥

AA′BB

)2 + (
g2

AA′BB

)2)
ln(ω/E0)

]

v′
A = vA + (vA − vB)

vA + vB

2vB

((
g

1‖
AA′BB − g2

AA′BB

)2 + (
g1⊥

AA′BB

)2 + (
g2

AA′BB

)2)
ln(ω/E0)

v′
B = vB + (vB − vA)

vA + vB

2vA

((
g

1‖
AA′BB − g2

AA′BB

)2 + (
g1⊥

AA′BB

)2 + (
g2

AA′BB

)2)
ln(ω/E0), (5)

FIG. 4. The diagrams for the second-order self-energy correction to the Green function. The first five diagrams (top row) are related to the
A/A′ band, while the last five diagrams (bottom row) are related to the B band.
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where we can see that the difference between vA and vB vanishes with scaling and is therefore unimportant. Therefore
we do not take the differnece between vA and vB into account in what follows.

From Eq. (5) we obtain the second-order dimensionless Green function, which can be combined with the vertex corrections
shown in Figs. 2 and 3 to lead to the second-order RG equations using Eq. (2). Below we show the RG equations in the subspace
of intratube couplings. The whole set of scaling equations containing intertube couplings are too tedious to list explicitly.

dg1⊥
1

d ln(ω/E0)
= 1

2πvA

(−2g1⊥
2 g2

2 + 2g1⊥
1 g

1‖
1 + 2g1⊥

2 g
1‖
2

) + 1

(2πvA)2

(
g1⊥

1

((
g1⊥

1

)2 + (
g

1‖
1

)2 + (
g1⊥

2

)2

+ (
g

1‖
2

)2 + (
g1⊥

3

)2 + (
g

1‖
3

)2) + 2g2
2

(
g1⊥

3 − g1⊥
1

)(
g

1‖
2 − g2

2

)) + 1

π2(vA + vB)2
g1⊥

1

((
g1⊥

5

)2 + (
g

1‖
5

)2)

+ 1

2π2vB(vA + vB)

(
2g1⊥

5 g2
6

(
g

1‖
6 − g2

6

) + g1⊥
1

((
g

1‖
6 − g2

6

)2 + (
g1⊥

6

)2 + (
g2

6

)2))

dg2
1

d ln(ω/E0)
= 1

2πvA

((
g1⊥

1

)2 − (
g2

2

)2)

+ 1

(2πvA)2

(
g

1‖
1

((
g1⊥

1

)2 + (
g1⊥

3

)2) + g
1‖
3

(
g1⊥

2

)2 − (
g2

3 − g2
1

)((
g

1‖
2 − g2

2

)2 + (
g1⊥

2

)2 + (
g2

2

)2))

+ 1

π2(vA + vB)2
g

1‖
1

(
g1⊥

5

)2 + 1

2π2vB(vA + vB)

(
g

1‖
5

(
g1⊥

6

)2 + (
g2

1 − g2
5

)((
g

1‖
6 − g2

6

)2 + (
g2

6

)2 + (
g1⊥

6

)2))

dg
1‖
1

d ln(ω/E0)
= 1

2πvA

(−2g2
2g

1‖
2 + 2

(
g1⊥

1

)2 + (
g1⊥

2

)2 + (
g

1‖
2

)2)

+ 1

(2πvA)2

(
2g

1‖
1

((
g1⊥

1

)2 + (
g1⊥

3

)2) − (
g

1‖
3 − g

1‖
1

)((
g

1‖
2 − g2

2)2 + (
g2

2

)2 − (
g1⊥

2

)2))

+ 1

π2(vA + vB)2

(
2g

1‖
1

(
g1⊥

5

)2) + 1

2π2vB(vA + vB)

((
g

1‖
1 − g

1‖
5

)((
g

1‖
6 − g2

6

)2 + (
g2

6

)2) + (
g

1‖
1 + g

1‖
5

)(
g1⊥

6

)2)

dg1⊥
2

d ln(ω/E0)
= 1

2πvB

(
2g2

6g
1⊥
6

) + 1

2πvA

(
2g1⊥

3 g2
2 + 2g1⊥

2

(
g2

3 + g
1‖
1 − g2

1

) + 2g1⊥
1

(
g

1‖
2 − g2

2

))
+ 1

(2πvA)2
g1⊥

2

(
2g2

3

(
g

1‖
1 − g2

1

) + (
g

1‖
1 − g2

1

)2 + 2g2
1

(
g

1‖
3 − g2

3

) + (
g

1‖
3 − g2

3

)2 + (
g

1‖
2 − g2

2

)2

+ (
g2

2

)2 + (
g1⊥

2

)2 + (
g2

3

)2 + (
g1⊥

3

)2 + (
g2

1

)2 + (
g1⊥

1

)2)
+ 1

π2(vA + vB)2
g1⊥

2

((
g

1‖
5

)2 + (
g1⊥

5

)2) + 1

2π2vB(vA + vB)
g1⊥

2

((
g

1‖
6 − g2

6

)2 + (
g2

6

)2 + (
g1⊥

6

)2)

dg2
2

d ln(ω/E0)
= 1

2πvA

(
2g1⊥

3 g1⊥
2 + 2g2

2

(
g2

3 − g2
1

)) + 1

2πvB

((
g2

6

)2 + (
g1⊥

6

)2) + 1

(2πvA)2
2g1⊥

1 g1⊥
3

(
g

1‖
2 − g2

2

)
+ 1

π2(vA + vB)2
g

1‖
2

(
g1⊥

5

)2 + 1

2π2vB(vA + vB)
g2

2

((
g

1‖
6 − g2

6

)2 + (
g2

6

)2 + (
g1⊥

6

)2)

+ 1

(2πvA)2
g2

2

(−2
(
g

1‖
1 − g2

1

)(
g

1‖
3 − g2

3

) − 2g2
1g

2
3 + (

g
1‖
2 − g2

2

)2 + (
g2

2

)2 + (
g1⊥

2

)2

+(
g

1‖
3 − g2

3

)2 + (
g2

3

)2 + (
g1⊥

3

)2 + (
g

1‖
1 − g2

1

)2 + (
g2

1

)2 + (
g1⊥

1

)2)
dg

1‖
2

d ln(ω/E0)
= 1

2πvA

2
((

g
1‖
3 − g

1‖
1

)
g2

2 + (
g

1‖
1 − g

1‖
3 + g2

3 − g2
1

)
g

1‖
2 + (

g1⊥
1 + g1⊥

3

)
g1⊥

2

)

+ 1

2πvB

(
2g2

6g
1‖
6 − (

g
1‖
6

)2 + (
g1⊥

6

)2) + 1

π2(vA + vB)2
2g

1‖
2

(
g1⊥

5

)2

+ 1

(2πvA)2
g

1‖
2

(−2
(
g

1‖
1 − g2

1

)(
g

1‖
3 − g2

3

) − 2g2
1g

2
3 + 2g1⊥

1 g1⊥
3 + (

g
1‖
2 − g2

2

)2 + (
g2

2

)2

+ (
g1⊥

2

)2 + (
g

1‖
3 − g2

3

)2 + (
g2

3

)2 + (
g1⊥

3

)2 + (
g

1‖
1 − g2

1

)2 + (
g2

1

)2 + (
g1⊥

1

)2)
+ 1

2π2vB(vA + vB)
g

1‖
2

((
g

1‖
6 − g2

6

)2 + (
g2

6

)2 + (
g1⊥

6

)2)
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dg1⊥
3

d ln(ω/E0)
= 1

2πvA

(
2g2

2g
1⊥
2 + 2g1⊥

3 g
1‖
3

) + 1

2πvB

(
2g2

6g
1⊥
6

) + 1

π2(vA + vB)2
g1⊥

3

((
g

1‖
5

)2 + (
g1⊥

5

)2)

+ 1

2π2vB(vA + vB)

(
2g1⊥

5 g2
6

(
g

1‖
6 − g2

6

) + g1⊥
3

((
g

1‖
6 − g2

6

)2 + (
g2

6

)2 + (
g1⊥

6

)2))

+ 1

(2πvA)2
g1⊥

3

(
2g2

1

(
g

1‖
1 − g2

1

) + ((
g

1‖
1 − g2

1

)2 + (
g2

1

)2 + (
g1⊥

1

)2) + 2g2
3

(
g

1‖
3 − g2

3

)
+ ((

g
1‖
3 − g2

3

)2 + (
g2

3

)2 + (
g1⊥

3

)2) + ((
g

1‖
2 − g2

2

)2 + (
g1⊥

2

)2 + (
g2

2

)2)) + 1

(2πvA)2

(
2g1⊥

1 g2
2

(
g

1‖
2 − g2

2

))
dg2

3

d ln(ω/E0)
= 1

2πvA

((
g1⊥

3

)2 + (
g2

2

)2 + (
g1⊥

2

)2) + 1

2πvB

((
g2

6

)2 + (
g1⊥

6

)2) + 1

π2(vA + vB)2
g

1‖
3

(
g1⊥

5

)2

+ 1

(2πvA)2

(
g

1‖
3

((
g1⊥

1

)2 + (
g1⊥

3

)2) + g
1‖
1

(
g1⊥

2
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C. The scaling of response functions

Our aim is to obtain response functions that describe the
instabilities, because the response function ultimately decides
the state of the system. There are four types of response
functions: CDW Nn, spin density wave (SDW) χn, singlet
superconductivity (SS) �s,n, and triplet superconductivity
(TS) �t,n. The competition among these response functions
determines the ground state in the low energy limit. Following
the formalism presented in the literature,52–58 we write down
the scaling equation of the response functions in channel n up
to the first order:

d ln Nn(ω/E0)

d ln(ω/E0)
= 2

π (vFm + vFm′ )

(
g1⊥

n + g1‖
n − g2

n

)
(7a)

d ln χn(ω/E0)

d ln(ω/E0)
= 2

π (vFm + vFm′)

(−g2
n

)
(7b)

d ln �s,n(ω/E0)

d ln(ω/E0)
= 2

π (vFm + vFm′ )

(
g1⊥

n + g2
n

)
(7c)

d ln �t,n(ω/E0)

d ln(ω/E0)
= 2

π (vFm + vFm′ )

(−g1‖
n + g2

n

)
, (7d)

where Eqs. (7a), (7b), (7c), and (7d) are related to the response
functions of CDW, SDW, SS and TS, respectively. They yield
the power-law exponents of the response functions, which are
only the right sides of the relevant equations. The response
function with the largest power-law exponent dominates as the
energy scales to zero. It should be noted that Eqs. (2) and (7) are
evaluated simultaneously so that the right-hand sides of Eq. (7)
are continuously replaced by the latest renormalized coupling
constant obtained from Eq. (2). When the coupling constants
are renormalized to their respective fixed-point values, then the
response functions would approach a power law as a function
of ω/E0, in which the slope of ln(response function) versus
ln(ω/E0) is precisely given by the fixed-point values of the
coupling constants.

D. Fixed points

There are two approaches to obtaining the fixed points. One
is to explicitly solve the scaling equations so as to obtain all
the fixed points of the coupling. That can be difficult and,
in addition, not all the fixed points are relevant. The other
approach is to use initial values of the coupling constant and
then to integrate the scaling equations. This is the approach
we shall follow.59

The 1D Coulomb repulsion in momentum space can be
written as59,62

VC ≈ 2e2

κ
ln

(
kc + k

k

)
, (8)

where e is the electron charge, κ denotes the dielectric constant
of the medium, with k being the momentum transfer in the
scattering process and kc the inverse of CNT radius R. The
strength of interaction can be expressed in units of dimen-
sionless ratio e2/(2πvF κ). Since vFA is ∼2.8 × 105 ms−1,
and e2/c = 1/137, we get e2/(2πvF κ) ≈ 8/2πκ . In forward
scattering, Eq. (8) has to be estimated with a cutoff at small
k, with k ∼ 10−3kc. Therefore, the initial values of the
forward scatterings coupling constants g̃2

1 ,̃g2
2 ,̃g2

4 ,̃g2
5 (note that

g̃
j
n = g

j
n/(π (vFm + vFm′ )), n being the channel index and j

the coupling-type index) with zero-momentum transfer are
VC

2πvF
≈ e2

2πvF κ
2 ln( kc

10−3kc
) ∼ 15.9/κ . Other Coulomb repulsive

interactions can be evaluated in a similar manner.
The phonon mediated electron-electron coupling is in the

form

Viji ′j ′ = −2gii ′gjj ′
ωk

−ω2 + ω2
k

, (9)

where gii ′ , gjj ′ are the electron-phonon coupling constants, and
ωk is the phonon frequency. The phonon mediated electron-
electron interaction, with momentum transfer 2kFA, is given
by ∑

ν

2
(
g

(ν)
AA(2kFA)

)2
/2πvFAω

(ν)
2kFA

≈ 0.095 (10)

for the AA channel, where the summation runs over different
phonon branches denoted by ν. For the BB channel the same
is given by∑

ν

2
(
g

(ν)
BB(2kFB)

)2
/2πvFAω

(ν)
2kFB

≈ 0.175. (11)

For the g̃2
3, g̃1⊥

3 ,̃g1⊥
5 ,̃g1⊥

6 , the value is 0.0796.
It follows that for a single (5,0) CNT, the initial values of

the coupling constants are as follows:

g̃1⊥
1 ,̃g1⊥

2 = −0.095 + 0.573/κ,

g̃2
1, g̃

2
2, g̃

2
4, g̃

2
5 = 15.9/κ,

g̃1⊥
4 = −0.175 + 0.175/κ,

g̃1⊥
5 , g̃1⊥

6 = −0.0796 + 0.0796/κ,

g̃2
6 = −0.0796 + 0.0478/κ,

g̃2
3, g̃1⊥

3 = −0.0796 + 0.0079/κ.

It should be noted that if not indicated, the spin-parallel
backward-scattering coupling constant g̃

1‖
n always equals to

antiparallel ones, g̃1⊥
n , in the whole scaling process.

The scaling result is noted to depend on the dielectric
constant κ . If κ = 1, the fixed-point values for a single (5,0)
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CNT case are

g̃2
1 → 16.05,

g̃2
2, g̃2

4 → 15.55,

g̃2
3 → −0.5,

g̃1⊥
5 → −2/3,

g̃2
5 → 15.71,

g̃1⊥
6 → 0.76,

and all others are zero. In this case the CDW and SDW response
functions dominate. While if κ > 1.11, which is in the range
of the AFI medium, the fixed-point values are

g̃1⊥
1 ,̃g1⊥

5 → 0,

g̃2
1 ,̃g

2
5 → 0.268 + 15.03/(κ − 0.064),

g̃2
2 ,̃g

2
4 → g̃2

1 − 1,

while all others are −1. In this case channels 1 and 5 scale
to the LL fixed point if considered by themselves, and in
other channels the system scales to strong coupling. Since
all six channels are coupled, they necessarily scale to the
strong coupling fixed point obtained by the second order RG
calculation. It is at this fixed point that the dominant response
function depends on the value of κ . If κ < 22 the CDW order
is the most favored, and if κ > 22, the SS order is the most
favored.

If a (5,0) CNT is embedded in a thin array consisting of six
other (5,0) CNTs, the situation is different from that of a single
(5,0) CNT. As mentioned previously, besides the intratube
interactions, there are intertube ones that participate in the
scaling equation. In addition, the screening of the Coulomb
interaction will influence the initial value, which in turn
would influence the resulting fixed-point values. As described
in Ref. 59, the screening effect reduces the initial value
of forward-scattering couplings. In what follows, we shall
approximate the Coulomb interaction between two nearest-
neighbor CNTs in a thin array by that in an infinite periodic
array. The initial values obtained from such an approximation
will then be used to evaluate the fixed points of the thin array.

In a periodic CNT array, the partially Fourier-transformed
Coulomb potential along the CNT’s c-axis direction is given
by

Vl,l′ (k) = 2e2

κ
K0(k|l − l′|), (12)

where K0(x) denotes the modified Bessel function of zeroth
order, and l and l′ denote the positions of the two CNTs along
the transverse direction of the bundle. The modified Bessel
function diverges logarithmically when x → 0 and decays
exponentially as x > 1. The potential shown in Eq. (12) serves
as the input to the calculation of the screened potential, which
can be derived from the RPA approximation with the following
Dyson equation:

V RPA
l,l′ (k) = Vl,l′ (k) + �

∑
l′′∈bundle

Vl,l′′ (k)V RPA
l′′,l′ (k), (13)

where � is the polarizability of 1D Fermi gas,

�(k) = 2

L

∑
q

f (εq+k) − f (εq)

εq+k − εq

, (14)

with f being the Fermi-Dirac function and L the length of
CNT. By performing a 2D Fourier transform of Vl,l′ (k) and
V RPA

l,l′ (k) along the transverse direction of the periodic array,
we have

Vl,l′ (�k) =
(

d

2π

)2 ∫
BZ

d2 �p(�k, �p)ei �p·(l−l′), (15)

in which BZ means integration over the first Brillouin zone of
the transverse lattice of CNT arrays. Here d denotes the lattice
constant between two nearest-neighbor CNTs, which in our
case is about 1 nm. Then the Fourier-transformed potentials 

and RPA obey a simplified Dyson function:

RPA(�k, �p) = (�k, �p) + �(�k)(�k, �p)RPA(�k, �p). (16)

Finally one can write down the screened Coulomb potential
with momentum transfer k along the tube-axis direction
between two electrons located on tubes l and l′:

V RPA
l,l′ (�k) =

(
d

2π

)2 ∫
BZ

d2 �p (�k, �p)

1 − �(�k)(�k, �p)
ei �p·(l−l′). (17)

Following this method, we get the initial values of the
intratube (with l = l′) forward-scattering coupling constants
in the presence of intertube coupling, which are

g̃2
1 = g̃2

2 = g̃2
4 = g̃2

5 ∼ 0.1,

where it is seen that the screening can efficiently reduce the
initial value of the Coulomb repulsion.

The new intertube couplings’ initial values (denoted with
upper bar to distinguish from intratube couplings), with |l −
l′| = d ∼ 1 nm, are given by

g̃2
1 = g̃2

2 = 0.00032κ,

g̃1⊥
1 = g̃1⊥

2 = 0.045/κ.

The fixed points are also dependent on the dielectric
constant. If κ = 1, the fixed points are given by

g̃1⊥
1 ,̃g1⊥

2 ,̃g1⊥
4 → 1,

g̃
1‖
1 ,̃g

1‖
2 ,̃g

1‖
4 → −1,

g̃2
4 → −0.42628,

g̃1⊥
1 ,̃g1⊥

2 → 0.40825,

g̃
1‖
1 ,̃g

1‖
2 → −0.40825,

while other coupling constants scale to zero. In this case g̃1⊥
n

and g̃
1‖
n are no longer identical to each other. All the response

functions remain small, and the largest among them, when
scaling to low energy limit, is the CDW in channel 5, shown in
Fig. 1(g). When κ > 1.38, then the fixed points are similar to
the case of a single CNT case at κ > 1.11, with the fixed-point
value

g̃2
1 ,̃g

2
5 → 0.287,
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when κ = 3, while the largest response function is the SS type
in the g̃

1‖,1⊥,2
6 , g̃

1‖,1⊥,2
4 , g̃

1‖,1⊥,2
3 , and g̃

1‖,1⊥,2
2 channels. The

calculated fixed points for the SS channel, where it is noted
that

2

π (vFm + vFm′ )

(
g1⊥

n + g2
n

) = 2
(
g̃1⊥

n + g̃2
n

)
,

are respectively, 0.573, −4, −3.427, −3.427, 0.573, and −4
in the six channels. For the CDW it is noted that

2

π (vFm + vFm′ )

(
g1⊥

n + g1‖
n − g2

n

) = 2
(
g̃1⊥

n + g̃1‖
n − g̃2

n

)
,

and the fixed-point values are −0.573, −2, −2.573, −2.573,
−0.573, and −2, respectively. Therefore, the most divergent
response function is now the SS in the channels g̃

1‖,1⊥,2
2 and

g̃
1‖,1⊥,2
6 . SDW and TS are less divergent and therefore not

as important. This result can be attributed to the small initial
values of g̃2

1 and g̃2
5, which imply that the screening effect

plays an important role in the appearance of superconductivity.
Another interesting feature is the crossover between the CDW
and SS response functions during the scaling to the low energy
limit, as shown in Fig. 5. This crossover means63 that at
the beginning of the scaling process the CDW response in
the g̃

1‖,1⊥,2
3 , g̃

1‖,1⊥,2
4 , and g̃

1‖,1⊥,2
5 channels (CDW in channel

g̃
1‖,1⊥,2
4 is the largest) dominate, but as scaling proceeds to

lower energies the SS response functions eventually wins
because it is the most divergent. In Fig. 6 we summarize
in the form of a phase diagram, plotted as a function of
the dielectric constant; the results are obtained from our
calculations. In Fig. 6(a) the phase diagram is for a single
(5,0) CNT, whereas in Fig. 6(b) the phase diagram is for a thin
array of (5,0) CNTs comprising a central nanotube surrounded
by six others, with a separation of ∼1 nm. It is seen clearly that
for the thin array case the superconducting phase is favored
at a much smaller value of the dielectric constant κ , mainly
owing to the screening effect on the Coulomb interaction
offered by the neighboring nanotubes. Our results thus support
the appearance of superconductivity in 4-Angstrom CNTs
embedded in an AFI zeolite matrix, which has a κ = 6.

FIG. 5. (Color online) The crossover of the CDW and SS orders.
Only the two most divergent response functions of CDW and SS are
shown.

FIG. 6. (Color online) The phase diagram of the most dominant
response function of the (5,0) electronic system plotted as a function
of the dielectric constant κ of the embedding matrix, as analyzed by
the second-order renormalization group calculations. The case of a
single (5,0) CNT is shown in (a), and in (b) the case of a thin array
of (5,0) CNTs, comprising one central nanotube surrounded by six
others with a separation of 1 nm, is shown. Here the Y -axis denotes
the scaling factor −ln(ω/E0). Increasing Y implies decreasing
energy/temperature. Different phases are delineated by different
colors/shades of gray, with the number following the abbreviation for
each phase denoting the divergent channel. For example, “CDW4”
in the central part of Fig. 6(a) means that in this region, the largest
response function is the CDW order in the fourth channel, etc. The
vertical lines at κ = 1.11 and κ = 1.38 mark the division between
different fixed points. Within the array configuration, the SS order is
favored over a large range of dielectric constant κ . In particular, for
the AFI zeolite with κ = 6, superconducting ground state is favored.

III. DEVICE MANIFESTATION OF THE CDW STATE

In order to experimentally observe the state of the CNT thin
array, it is generally necessary to make electrode contact to the
sample. Hence the device behavior necessarily involves the
electrodes. Here we deduce the manifestation of the CDW
order in anticipation of our interpretation of the observed
experimental results.

We have performed tunneling-resistance calculations by
using the Landauer-Buttiker formula.64,65 Consider a 1D Fermi
gas in contact with two leads at x1 and x2 (x1 < x2); the
self-energy of the contact can be expressed as

�L,R(x,ω) =
∑

n∈lead

|Vk,n(x)|2 1

ω − εn

, (18)
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FIG. 7. (a) and (b) are the calculated differential resistance versus the energy-scaling variable in channels 1 and 4. Both are characterized
by a peak in differential resistance at the Fermi level.

where V is the tunneling potential between the 1D channel and the lead, k denotes the states in the 1D Fermi gas, n

denotes the states in the lead, � denotes the self-energy, and L and R denote left and right leads, respectively. This self-energy
can be incorporated in the Hamiltonian H0 + Hint, and a scaling analysis can be performed.65,66 First we write down the
eigenfunctions of H0,

φk(x) = 1√
2π

eikx, (19)

φ−k(x) = 1√
2π

e−ikx, (20)

around the two Fermi points. Then owing to the self-energy of the electrode, the new wave functions can be evaluated with the
Dyson equation:

ψk(x) = 1√
2π

⎧⎪⎨⎪⎩
eikx + e−ikx�L,k,−k + e−ikx�R,k,−k x < x1

eikx + eikx�L,k,k + e−ikx�R,k,−k x1 < x < x2

eikx + eikx�L,k,k + eikx�R,k,k x > x2

, (21)

ψ−k(x) = 1√
2π

⎧⎪⎨⎪⎩
e−ikx + e−ikx�L,−k,−k + e−ikx�R,−k,−k x < x1

e−ikx + eikx�L,k,−k + e−ikx�R,−k,−k x1 < x < x2

e−ikx + eikx�L,k,−k + eikx�R,k,−k x > x2

, (22)

where x1, x2 denote the positions of the electrodes. It can be shown that the previous basis functions directly diagonalize the
lead self-energy in conjunction with H0. Hence it would be convenient to express the electron-electron interaction part of the
Hamiltonian, Hint, in this new basis. For simplicity we assume the electrode to be a point-contact. We define annihilation operators
ak ,bk that destroy an electron for the wave functions shown in Eqs. (19) and (20), respectively, while cq , dq destroy an electron
for the wave functions shown in Eqs. (21) and (22), respectively. By making a transformation of the four operators as

akσ =
∫

dq
[
A

qσ

k cqσ + B
qσ

k dqσ

]
, bkσ =

∫
dq

[
C

qσ

k dqσ + D
qσ

k cqσ

]
, (23)

and by taking x1 → −∞ and x2 → ∞, we find

A
qσ

k = TL

[
i

k − q + iδ
− i

k − q − iδ

]
, B

qσ

k = RL

[
i

k − q + iδ
− i

k − q − iδ

]
(24)

C
qσ

k = TR

[
i

k − q + iδ
− i

k − q − iδ

]
, D

qσ

k = RR

[
i

k − q + iδ
− i

k − q − iδ

]
,

in which we have defined TL = 1 + �L,k,k , RL = �L,k,−k , TR = 1 + �R,k,k , and RR = �R,k,−k .
Consider the electron-electron interaction Hamiltonian,

Hint = 1

2π

∫
dkdpdq

∑
σσ ′

[g1a
+
kσ b+

−pσ ′ap+2kf +q,σ ′b−k+2kf +q,σ + g2a
+
kσ b+

−pσ ′b−p−q,σ ′ak−q,σ ]. (25)
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We find that it can also be expressed under the new basis as

Hback = 1

2π

∫
dkdpdq

∫
dq1dq2dq3dq4

∑
σσ ′

[
g1

(
A

q1σ+
k c+

q1σ
+ B

q1σ+
k d+

q1σ

)(
C

q2σ
′+

−p d+
q2σ ′ + D

q2σ
′+

−p c+
q2σ ′

)
×(

A
q3,σ

′
p+2kf +qcq3,σ ′ + B

q3,σ
′

p+2kf +qdq3,σ ′
)(

C
q4,σ

−k+2kf +qdq4,σ + D
q4,σ

−k+2kf +qcq4,σ

)]
,

Hforward = 1

2π

∫
dkdpdq

∫
dq1dq2dq3dq4

∑
σσ ′

[
g2

(
A

q1σ+
k c+

q1σ
+ B

q1σ+
k d+

q1σ

)(
D

q2σ
′+

−p c+
q2σ ′ + C

q2σ
′+

−p d+
q2σ ′

)
(26)

×(
D

q3σ
′

−p−qcq3σ ′ + C
q3σ

′
−p−qdq3σ ′

)(
A

q4σ

k−qcq4σ + B
q4σ

k−qdq4σ

)]
.

Consider a reduction of the bandwidth from E0 to E0–δE0. By performing a scaling52,65,66 on the Hamiltonian, we get a new
Hamiltonian which is defined on a narrower energy band by eliminating degrees of freedom in the energy range (E0–δE0, E0).
This is accomplished by replacing the product of two Fermi operators by their averaged value in this range. In the presence of
leads there are nondiagonal parts in the interaction Hamiltonian,

Hint = const ∗
∫

dpdk
2δE0

E0 + ε(k) + ε(q)

∑
σσ ′

(g1 − g2δσσ ′)

× [(
T σ∗

L
Rσ ′∗

R
T σ ′

L
T σ

R
+ T σ∗

L Rσ ′∗
R Rσ ′

L Rσ
R + T σ∗

L T σ ′∗
R Rσ ′

L T σ
R + Rσ∗

L Rσ ′∗
R Rσ ′

L T σ
R

)
c+
kσ dq,σ

+ (
Rσ∗

L Rσ ′∗
R T σ ′

L Rσ
R + T σ∗

L T σ ′∗
R T σ ′

L Rσ
R + Rσ∗

L T σ ′∗
R T σ ′

L T σ
R + Rσ∗

L T σ ′∗
R Rσ ′

L Rσ
R

)
d+

kσ cqσ

]
. (27)

From Eq. (18) we can see that the self-energy �k,k′ depends on the tunneling potential V that connects states inside the
1D Fermi system with those states in the electrode. We can assume this tunneling to be independent of k so that Vk,n = V−k,n,
where n denotes states inside the electrode. It follows from Eq. (14) that �k,k = �k,−k . If in addition we assume the leads to be
symmetric, i.e., RL = RR , TL = TR , then the Hamiltonian can be renormalized back to its original diagonal form by transforming
Tσ → Tσ + δTσ (and similarly for Rσ since they are related). The necessary δTσ that will do the job is given by

δTσ =
[

R∗
σ Tσ (TσT ∗

σ + RσR∗
σ )

[(Tσ + Rσ )(T ∗
σ + R∗

σ )2]

(
g2 − g1‖

2πvF

)
− R∗

σ Tσ (T−σ T ∗
−σ + R−σR∗

−σ )

[(T−σ + R−σ )(T ∗
σ + R∗

σ )(T ∗−σ + R∗−σ )]

(
g1⊥

2πvF

)]
2δE0

E0 + ε
. (28)

Substituting � into Eq. (28) (note that R = � and T = 1 + �) leads directly to Eq. (29):

d�

d ln(ω/E0)
= −�∗ (1 + �) (|1 + �|2 + |�|2)

[(1 + 2�)(1 + 2�∗)2]

1

πvF

(g1⊥ + g1‖ − g2). (29)

Then we can see that the self-energy � is also a power-law
function of energy scale ω/E0, and the asymptotic power-law
exponent is the same to the CDW exponent. Because in Eq. (18)
the Green function of the lead will not be affected by scaling,
Eq. (29) actually describes the scaling of tunneling potential
V . If the line-width � is assumed to have the same behavior
as the self-energy �, then the device behavior can be obtained
by using the Landauer-Buttiker formula

j = ie

h̄

∫
dε

2π
[fL (ε) − fR (ε)] T (ε) , (30a)

where

T (ε) = T r

{
�L(ε)�R(ε)

�L(ε) + �R(ε)
[Gr (ε) − Ga(ε)]

}
. (30b)

Here j denotes the current of the device fL, and fR

are the Fermi-distribution functions of left and right leads,
respectively. In Eq. (30b), Tr{} means taking the trace of the
argument, and Gr and Ga are retarded and advanced Green
functions, respectively. The transmission coefficient T and
therefore the differential conductance is proportional to the
linewidth �, so the differential resistance has the exponent
given by 1

πvF
(g1⊥ + g1‖ − g2), the same as that for the CDW

order.

In the case of (5,0) CNT thin array comprising 7 CNTs, we
have used the values of g̃1⊥

1 , g̃2
1, g̃

1‖
1 and g̃1⊥

4 , g̃2
4, g̃

1‖
4 for the

CDW order and numerically integrated the scaling equation
to obtain the differential resistance in the two channels 1 and
4. Results are shown in Fig. 7. It is interesting to note that
in the g̃

1‖,1⊥,2
1 channel there is a minimum in differential

resistance curve next to central peak. It can be seen that
the most prominent feature of the CDW order is the peak
in differential resistance around the Fermi level.

IV. RELEVANCE TO THE OBSERVED PHENOMENA

A. Description of the measured data

An example of the measured differential resistance data is
shown in Fig. 8. It is seen that at low temperatures there is a
smooth dip that is characteristic of a fluctuating supercurrent in
the system. In the inset we show the temperature dependence
of the measured resistance. Its behavior informs of the
system being in the 1D superconducting state. However, as
the temperature was increased above 2.5 K, a peak clearly
emerged. The differential resistance was measured in the
four-probe configuration and hence must reflect the intrinsic
property of the system. This particular sample was prepared
in a similar manner as described in Ref. 2, with the (5,0)
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FIG. 8. (Color online) Differential resistance plotted as a function
of the bias current. At temperatures above 2.5 K, a zero-bias resistance
peak is clearly seen. At low temperatures, a dip in resistance appears
that indicates the existence of supercurrent. Inset is the corresponding
R-T curve under 0 and 4 T magnetic field. No difference is seen.
The temperature dependence of the resistance and its magnetic field
independence clearly demonstrate that the overall behavior is that of
1D superconductivity.

CNTs being recognized by their radial breathing mode (RBM)
Raman shift of 550 cm−1. The fact that the measured results are
insensitive to applied magnetic field, up to 9 T in addition to the
smooth variation of resistance with both applied current and
temperature, serves as evidence for the particular behaviors
to arise from very thin arrays of the (5,0) nanotubes to which
the superconducting characteristics are attributed. This is in
contrast to the magnetic field dependent behavior observed in
the BKT-like transition.2–4 A plausible scenario is that the thin
array(s) acts as the main link in the conducting path connecting
the two voltage electrodes for this particular sample.

B. A potential explanation based on the scaling results

From the previous section it is seen that while the SS
response is the most dominant for a thin array of (5,0), the

CDW order can be close by in terms of energy since in the
single (5,0) CNT case it is the dominant order. Hence our
interpretation is that the behavior shown in Fig. 8, especially
the appearance of the differential resistance peak, can be due
to the thermally activated higher-energy CDW order with
the differential resistance peak around the Fermi level, as
seen in the previous section. Such an explanation is plausible
since the peak in differential resistance appears gradually with
increasing temperature, centered at zero-bias current, while
the overall temperature dependence of resistance is still given
by that of 1D superconductivity (see inset to Fig. 8).

In accordance with the previous interpretation, there should
be a continuous transformation of the 1D superconducting
behavior (with a Peierls/CDW excited state) from that of a thin
array of (5,0) CNTs to the BKT-like transition in the transverse
plane perpendicular to the c-axis of the aligned CNTs of a
large array.2 Such a transformation may be characterized by
an increasing energy separation (of the Peierls/CDW excited
state from the superconducting ground state) as the array size
increases, so that the characteristics of the Peierls/CDW order
become more suppressed (with increasing array size) until
they no longer appear in the relevant temperature regime; this
occurs simultaneously with the appearance of the BKT-like
transition. This can explain the absence of the differential
resistance peak, e.g., in sample 1 of Ref. 2.

V. CONCLUDING REMARKS

In conclusion we have performed second-order RG calcula-
tions and obtained the fixed points in the strong coupling limit.
Our results indicate the possibility of the Peierls/CDW order
existing as a higher energy excited state in thin arrays of (5,0)
CNTs, with the 1D superconductivity being the ground state.
Our interpretation provides a plausible explanation for the
experimental observations. First-principles calculations along
this direction are currently being pursued.
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