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Non-Markovian effects in time-resolved fluorescence spectrum of molecular aggregates:
Tracing polaron formation
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Time-resolved fluorescence spectroscopy of molecular aggregates is described using the response function
theory, which incorporates exciton dynamics through nonequilibrium Green’s functions. The dynamics are
simulated using nonperturbative density matrix theory, which allows us to describe spectral and temporal
signatures of various system-bath coupling regimes. We find that the conventional excitonic picture of eigenstates
is valid in the Markovian regime. In the non-Markovian regime, the exciton concept breaks down and renormalized
quantities can be introduced. Effective intermolecular coupling, widely used in polaron theories, can be used to
account for the effects of the bath.
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I. INTRODUCTION

Electronic excitation dynamics in molecular aggregates is
extensively studied both theoretically1,2 and experimentally.3–7

Recent development of two-dimensional (2D) electronic
spectroscopy has led to a greater understanding about the
exciton relaxation and dephasing in these systems.8 Even
though simulations of excitonic aggregates of various sizes
are possible,9–12 interpretation of the results is a considerable
challenge, and the very applicability of the exciton approach
when subjected to the coupling to different types of the bath
ranging from water to proteins is still under debate.7 The
conventional Redfield theory, which is the second order to the
system-bath coupling,2 has been successful for both small13,14

and large11 systems, but a range of invoked assumptions are
not easy to validate for large aggregates. The strong system-
bath interaction limit is problematic for these perturbative
approaches, although it was recently shown that perturbative
treatment of intermolecular couplings instead of system-bath
coupling is possible.15 The electronic states in molecular solids
are known to be strongly affected by phonons: these can
transform the states themselves. The problem of electron-
in-the-lattice has been extensively studied using the Holstein
Hamiltonian,16–20 which was shown to yield useful results for
photosynthetic systems as well.21–23 The net effect is that the
lattice experiences deformation, which leads to localization
and trapping of delocalized electronic states. The system then
can be described by effective parameters such as effective
mass, effective coupling, and effective bandwidth.24

Absorption and fluorescence (emission) spectroscopy are
the core experimental tools when probing electronic states
in molecular aggregates. They can be denoted as conju-
gate techniques since the absorption probes the electronic
ground-state equilibrium (of the bath), while the fluorescence
probes the electronic excited-state equilibrium. Time-resolved
fluorescence (TRF) adds an additional degree of freedom. It is
a probe of the excited-state relaxation dynamics in molecular
systems25,26 after excitation by laser pulses. It was recently
demonstrated that TRF is useful for studying disordered
systems.27 The TRF has a lot of advantages compared to other
types of time-resolved spectroscopies such as pump probe

or the recently developed 2D coherent spectroscopy, as the
TRF spectra are much easier to analyze due to absence of
the excited-state absorption and the ground-state bleaching
processes (and also much more computationally friendly since
double excitons are not involved). Thus, the TRF can be
considered as the direct probe of the excited-state relaxation
dynamics.28

Theoretical description of the TRF can be based on the
third-order response function theory25,29 and involves the
system relaxation dynamics due to the coupling with the bath.
For a single molecule using the adiabatic approximation for
electronic energy levels and the Gaussian bath, exact expres-
sions for the third-order response function can be obtained
using lineshape functions29 (the second-order cumulants) and
TRF can be easily calculated (shown in the following). The
TRF spectra of a two-level electronic system then demonstrates
how the spectral lineshapes turn from Lorentzian to Gaussian
and how the Stokes shift emerges (Fig. 1). As is well known,
in that case, the regimes corresponding to fast- and slow-
bath dynamics can be clearly identified for an overdamped
Brownian oscillator bath spectral density by inspecting the
dimensionless parameter 2λkBT γ −2, where λ is the system-
bath coupling strength, kBT is the thermal energy, and γ −1 is
the relaxation time scale of bath fluctuations.29 However, this
theory may be violated for molecular aggregates as the exciton
levels may cross each other due to fluctuations.

The same issues are inherent in the Redfield theory when
applied to aggregates. It is suitable for exciton transfer in
the case of weak system-bath interaction and when the bath
dynamics are relatively fast.7,30–33 Recently, the Redfield
equation was challenged as unsuitable for energy-transfer
analysis in photosynthetic systems.33 The full Redfield theory
is sometimes plagued by the positivity problem as it can not
guarantee non-negative population values.34 To overcome this
problem, the secular approximation is often employed,30 but it
leads to the stationary solution corresponding to the Boltzmann
distribution of the bare system. Various second-order quantum
master equations (QMEs) were studied recently,35 and it
was demonstrated that nonsecular theories lead to deviations
from excitonic Boltzmann distribution, as is the case of the
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FIG. 1. (Color online) (a) Schematic representation of a TRF in a two-level molecule (for definition of parameters, see the text), (b) the
TRF spectra in the fast-dynamics (Markovian) regime (2λkBT γ −2 = 0.1479), and (c) the slow-dynamics regime (2λkBT γ −2 = 14.79). In both
cases, the bath spectral density corresponds to the overdamped Brownian oscillator and the reorganization energy λ = 100 cm−1 is chosen for
calculations (see Sec. II).

fourth-order QME.36 In order to learn more realistic equilib-
rium solutions, the nonperturbative theory is needed.

A possible strategy to overcome these inconsistencies of
approximate methods is to study small aggregates using
nonperturbative theory and to extend the obtained insights
and conclusions to large aggregates. Various approaches,
such as path integral formalism or direct integration of the
Nakajima-Zwangzig equation, could be used in order to deter-
mine the system evolution nonperturbatively.37 Hierarchical
equations of motion (HEOM), which follow from another
nonperturbative theory of open quantum system dynamics for
a reduced density matrix,38,39 gained a lot of attention by their
recent application to electronic excitation dynamics.40 The
HEOM theory was used to analyze dynamics in a separate
peripheral light-harvesting LH2 complex (the B850 ring) of
photosynthetic bacteria and between them.41 The HEOM
theory was used to model the spectroscopic experiments as
well: time-dependent emission40 and absorption spectra42 of
molecular systems were calculated. Also, the 2D spectra of
a molecular dimer43 and the Fenna-Matthews-Olson (FMO)
protein complex44 were simulated. As a nonperturbative the-
ory, the full HEOM theory is numerically very expensive and
scales unfavorably with the system size. Some approximate
versions, appropriate for relatively high temperatures, were
developed.45,46 They approximate the correlation function by
a finite set of exponential decays. In this work, we use the
HEOM theory to describe the TRF of a molecular aggregate.

It was demonstrated using the HEOM theory that equilib-
rium excitonic populations in the B850 ring do not fully coin-
cide with excitonic Boltzmann distribution.41 Thus, it is clear
that the bath affects the equilibrium states of the system. Effects
caused by the bath play a significant role in polaron theory,
where effective coupling is often employed to demonstrate that
strong system-bath coupling reduces the effective bandwidth
of the electronic excitations in the system.24,36 The exciton
system is different from the electron-in-the-lattice system since
excitons are nonequilibrium particles. The influence of the
bath on the excitonic systems is still not perfectly clear, and
the simplest excitonic description needs to be revisited. In this
paper, we study exciton dynamics in the case of moderate and
strong system-bath interaction and its manifestation in the TRF
spectroscopy. We find that the excitonic picture is valid only
in a specific range of system-bath parameters and it depends
on the delay after excitation.

This paper is organized as follows. In Sec. II, we develop
the microscopic theory of the TRF for molecular aggregates.
First, we describe our model Hamiltonian. Second, we show
how the third-order response theory is used to calculate the
TRF spectra. Third, we present the HQME (an approximate
HEOM theory used in this paper for calculations), and we
describe how to connect the TRF with the HQME. Then, in
Sec. III, we present the simulated time-resolved fluorescence
spectra of a dimer. Special interest is paid to finding out how
bath parameters affect the spectra. In Sec. IV, we discuss
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the features of Markovian and non-Markovian regimes and
their manifestations in the TRF spectra and then present
calculations of evolutions of density matrix elements of the
system under consideration. Then, we analyze how stationary
states of the system are affected by the bath and introduce
effective coupling as a qualitative parameter to account for the
effects of the bath. Finally, the conclusions are given in Sec. V.

II. MICROSCOPIC THEORY OF
TIME-RESOLVED FLUORESCENCE

A. Model Hamiltonian

We consider an aggregate made of N weakly interacting
molecules (chromophores) embedded in some molecular
environment (solvent, solid matrix, protein) as schematically
shown in Fig. 2. The chromophores compose an open quantum
system, which is coupled to the bath. The total Hamiltonian
then consists of the following terms:

Ĥ = Ĥe + Ĥph + Ĥe-ph + Ĥe-F . (1)

The chromophores are neutral and interact through dipole-
dipole electrostatic fields. Additionally, electron exchange
between molecules is neglected. The electronic (system) part
Ĥe is then determined by the well-known Frenkel exciton
Hamiltonian.1 In the system we consider, only the ground
state, where no excitation is present, and the single-exciton
manifold, where one molecule is excited. Such blocks are
described by

Ĥe =
N∑
n

(
ε0
n + λn

)|n〉〈n| +
N∑

m�=n

Jmn|m〉〈n|. (2)

Here, |n〉 represents a state of the aggregate where only the
nth molecule is in its excited electronic state and all others are
in their ground state, ε0

n is the energy gap between the excited
and ground states of the nth molecule, λn is the reorganization
energy reflecting the excited-state potential displacement in
comparison with that in the ground state of the nth molecule,
and Jmn is the resonance coupling between the mth and nth
molecules. The ground state is isolated and its energy is chosen
to be 0. This setup allows us to introduce excitonic delocalized
states of the electronic aggregate, i.e., the excitons. The number
of possible excitons (single excitons) is N : they form a band of
states of ∼2zJ width (J is the maximal value of the resonance
coupling between the nearest-neighboring molecules, z is the
molecular coordination number in the aggregate), separated

ε0
1

λ1

J12

ε0
2

λ2

J23

.......

FIG. 2. Schematic representation of a molecular aggregate (see
text for details).

from the ground state by an optical gap, which is of the order
of a mean transition energy.

The bath is modeled by an infinite set of harmonic
oscillators

Ĥph =
∑

j

ωj

2

(
p̂2

j + x̂2
j

)
, (3)

which are linearly coupled to chromophores

Ĥe-ph = −
N∑
n

∑
j

ωjdnj x̂j |n〉〈n|. (4)

The bath parameters are as follows: ωj , p̂j , and x̂j are the
frequency, momentum, and coordinate (both dimensionless)
of the j th bath mode. dnj is the dimensionless displacement
of the equilibrium configuration of the j th bath mode between
the ground and excited electronic states of the nth molecule.
In this scheme, the reorganization energy λn = ∑

j ωjd
2
nj /2 is

the main parameter characterizing the system-bath coupling.
All parameters are indicated in Fig. 2. Note that we use
frequency units for energy (h̄ = 1) throughout the paper.
The system-bath coupling expression can be simplified by
introducing distinct system and bath operators Q̂n = |n〉〈n|
and F̂n = −∑

j ωjdnj x̂j :

Ĥe-ph =
N∑
n

F̂nQ̂n. (5)

Notice that this form denotes that the bath is not coupled to
the electronic ground state.

It can be shown30 that the effects of the bath are determined
by a fluctuation correlation function

Cmn(t) = Trph
[
F̂ I

m(t)F̂ I
n (0)ρ̂ph

eq

]
. (6)

Here,

F̂ I
m(t) = eiĤpht F̂me−iĤpht (7)

represents operator F̂m in the interaction representation. The
correlation function depends on temperature T of the bath.
It is convenient to derive the temperature-independent bath
characteristics, the spectral density, which is given by the
Fourier transform of the imaginary part of the correlation
function29

C ′′
mn(ω) = i

∫ ∞

−∞
eiωt ImCmn(t)dt. (8)

The correlation function can be now conveniently expressed
as

Cmn(t) = 1

π

∫ +∞

−∞

1

1 − e−βω
e−iωtC ′′

mn(ω)dω. (9)

Here, β = (kBT )−1 and kB is the Boltzmann constant. In the
following, we assume that bath modes associated with different
chromophores are not correlated:

C ′′
mn(ω) = δmnC ′′

n (ω). (10)
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Using this formulation, we have the following independent
spectral densities:

C ′′
n (ω) = π

∑
j

ω2
j d

2
nj

2
[δ(ω − ωj ) − δ(ω + ωj )]. (11)

However, instead of infinite sum over delta sticks, we use a
continuous function representing an overdamped Brownian
oscillator, which has been widely used for describing the
spectral properties of molecular aggregates:7,8,10–12,14,33,40–44

C ′′
n (ω) = 2λn

ωγn

ω2 + γ 2
n

; (12)

γ −1
n is the decay time of the bath correlation for the nth

chromophore and λn (the reorganization energy) now describes
the coupling strength.

The last term in the Hamiltonian represents coupling to a
classical radiation field

Ĥe-F = μ̂ · E(t) ≡
N∑
n

[μgn · E(t)](|n〉〈g| + |g〉〈n|), (13)

where μ̂ is the dipole operator, μgn is the transition dipole
vector for molecule n, and |g〉 is the ground state of the
aggregate when no excitations are present. In the following, we
assume that the field is a short excitation pulse, much shorter
than the relevant bath-induced system dynamics. It thus can
select relevant resonant exciton states, but their evolution is
much slower than the pulse duration. In this case, the incident
field is responsible only for the preparation step for the later
system evolution.

B. Time-resolved fluorescence of the aggregate

The equilibrium fluorescence (emission) is a process
wherein a molecule relaxes from an excited state into its ground
state by a photon emission. Such a process is described in the
density matrix theory by two interactions with the radiation
field (left and right sides) due to Ĥe-F .29 It is thus reverse to the
linear response, which describes, e.g., absorption. However,
the excited-state preparation process is not included in such
a description of the emission. The TRF is the more general
concept, which tracks the time after the excitation event. This
delay time allows us to observe the relaxation process in the
excited state. As described in the Introduction, the TRF is
a probe of the excited-state relaxation dynamics. Possible
experimental realizations with femtosecond resolution have
been described elsewhere.28 Using the density matrix theory,
the excitation process involves two primary interactions with
the radiation field, while two more are needed for the later
emission, as described previously. The TRF is characterized
by four system-field interaction events and thus falls into the
third-order nonlinear response theory.

The third-order response function relates the induced third-
order optical polarization P (3)(t) with the incoming electric
field Ein(t) :

P (3)(t) =
∫∫∫

dt3 dt2 dt1 R(3)(t3,t2,t1)Ein(t − t3)

×Ein(t − t3 − t2)Ein(t − t3 − t2 − t1). (14)

The outgoing signal field can then be calculated using the
Maxwell equations. Here, for simplicity we assume that the
output signal is proportional to the polarization: Eout(t) ∝ P (3).
The third-order response function R(3)(t3,t2,t1) describes all
nonlinear properties of the system up to the third order. Using
the Liouville space notation [for density matrix we have
|ρ〉〉 ⇔ ρ̂, and 〈〈μ|ρ〉〉 ⇔ Tr(μ̂ρ̂) ], it can be given as the
following trace:29

R(3)(t3, t2, t1) = i3〈〈μ|Ĝ(t3)μ̂lĜ(t2)μ̂lĜ(t1)μ̂l|ρgg〉〉, (15)

where |ρgg〉〉 represents the initial ground state, Ĝ is the
free-field Liouville-space evolution superoperator, and μ̂l is
a dipole superoperator. The latter can be expressed as a sum
of two terms that correspond to action from the left, μ̂l

L, and
from the right, μ̂l

R:

μ̂l|ρ〉〉 = μ̂l
L|ρ〉〉 + μ̂l

R|ρ〉〉,
μ̂l

L|ρ〉〉 ⇔ μ̂ρ̂, (16)

μ̂l
R|ρ〉〉 ⇔ −ρ̂μ̂.

The trace is taken over the whole system + bath composite
supersystem. Expanding all commutators gives eight terms
in the total response function, which may be associated with
various processes. For the TRF calculations, we can make
some restrictions. The first part of an incoming field is a
single pulse, which resonantly excites a single exciton state
e and creates its population. Time t1 is thus limited within the
excitation pulse and Ĝ(t1) is responsible for the preparation
process. The second delay t2 is the “gap” when the field is
off. During the third delay time t3, the emission takes place
by a transition from some exciton state e′ to the ground state
and the dynamics of e′g quantum coherence generates the
outgoing field, which is being detected by a spectrograph [this
outgoing field thus serves as Ein(t − t3) in Eq. (14)]. Within
these restrictions, only two terms in the response function are
related to the TRF (Refs. 25 and 29):

RTRF(t3, t2, t1) = i3
[〈〈μ|Ĝ(t3)μ̂l

RĜ(t2)μ̂l
LĜ(t1)μ̂l

R|ρgg〉〉
+ 〈〈μ|Ĝ(t3)μ̂l

RĜ(t2)μ̂l
RĜ(t1)μ̂l

L|ρgg〉〉
]
. (17)

We next assume the impulsive limit for the excitation and for
detection and denote the free-field propagation time as t ≡ t2.
The TRF is then given as

F (ω, t) = Re
∫ ∞

0
dτ eiωτ iRTRF(τ, t, t1 → 0). (18)

We have assumed that, during the excitation, only one excited-
state population is resonantly excited. It can be achieved when
the incoming field frequency is tuned to specific transition
energy in the system and the spectrum of the pulses are not too
broad, thus we set

μ̂l
RĜ(0)μ̂l

L|ρgg〉〉 = μ̂l
LĜ(0)μ̂l

R|ρgg〉〉 ≈ −|ρ(g)
ee 〉〉, (19)

where |ρ(g)
ee 〉〉 denotes the excited-state e population with the

bath equilibrium corresponding to the ground state. Therefore,
the final expression for the TRF kernel is

RTRF(τ, t) = −i3〈〈μ|Ĝ(τ )μ̂l
RĜ(t)|ρ(g)

ee 〉〉 (20)

in calculation of Eq. (18) (we skipped t1 = 0).
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FIG. 3. Double-sided Feynman diagram corresponding to the
time-resolved fluorescence.

This type of response function contribution to the TRF
[Eq. (20)] is illustrated by the Feynman diagram presented
in Fig. 3. The system starts in its ground-state population
|g〉〈g|. After two successive interactions (both happen within
the single-laser excitation pulse), the excited-state population
|e〉〈e| is created. The system then evolves in the excited
state during the waiting time t (population transfer and
population to coherence transfer events are possible), leaving
the system in another state configuration |a〉〈b|. Time τ

separates two interactions after which the system returns to
state |g〉〈g|. The evolution during this last interval determines
the emission spectrum, which is obtained by the Fourier
transform.

Our assumptions describe the ideal experiment with max-
imum time and frequency resolution. On one side, we have
vanishing interaction window, thus zero-time uncertainty, and
on the other side, the perfect selectivity of excitons, i.e., zero-
frequency uncertainty. This idealized case is never perfectly
available. Realistic femtosecond pulses can not select specific
excitons, while narrow-band pulses have picosecond time
resolution. However, some systems have favorable setup of
transition amplitudes that a specific exciton can be excited. For
instance, only one exciton state carries most of the absorption
intensity in J or H molecular aggregates.

The calculation of the fluorescence dynamics requires us
to calculate the propagator Ĝ(τ ) of the full density matrix,
so all the information about the system and the bath is fully
specified if the total density operator is known. That is easily
accomplished for a single two-level system (N = 1) using the
cumulant expansion,29 which gives

RTRF(τ, t) = i3 exp[−i(ε0 + λ)τ ]exp{−g∗(τ )

+ 2i Im[g(t) − g(t + τ )]}, (21)

where g(t) = g′(t) + ig′′(t) is the lineshape function with its
real and imaginary parts

g′(t) = λ

γ
cot

(
βγ

2

)
[exp(−γ t) + γ t − 1]

+ 4λγ

β

∞∑
k=1

exp(−νkt) + νkt − 1

νk

(
ν2

k − γ 2
) , (22)

g′′(t) = − λ

γ
[exp(−γ t) + γ t − 1]. (23)

The sum in Eq. (22) is over the Matsubara frequencies νk =
2πkβ−1. These equations were used to calculate the TRF of a
single two-level system shown in Fig. 1.

The calculation of TRF for an aggregate if we go beyond
the adiabatic approximation can not be given in terms of the
lineshape functions. Instead, we solve equations of motion
for the reduced density operator (RDO) of the system ρ̂ =
Trph(ρ̂T ) based on the hierarchical equations of motion.

C. HQME

Hierarchical equations of motion (HEOM) follow from
the nonperturbative theory describing the exciton dynamics
in the open quantum systems.47 Because the usage of full
theory is computationally expensive, here we utilize a modified
HEOM theory termed by the authors as hierarchical quantum
master equation (HQME).45 It is still nonperturbational, but
is restricted to the following approximate form of the bath
correlation function:

Cn(t) =
(

2λn

β
− βλnγ

2
n

6

)
e−γnt − iλnγne

−γnt

+ λnγnβ

3
δ(t). (24)

This form follows from Eq. (9) using the spectral density
of Eq. (12) and expanding the Bose-Einstein function up to
the (βω)1 term (this expansion corresponds to [0/0] Padé
decomposition of the spectrum48):

1

1 − e−βω
= 1

βω
+ 1

2
+ βω

12
+ O[(βω)3]. (25)

Conventional high-temperature approximation (HTA)
schemes use only the first two terms of this expansion. Here,
all three terms are used and the rest of the correlation function
is accounted as the Markovian-white-noise residue ansatz.45

In Fig. 4(a), we plot the real part of the bath correlation
function obtained from Eq. (9) versus the exponential form in
Eq. (24), which shows that the two functions are different only
at short times (<10 fs). This part is additionally compensated
by a delta-function term in Eq. (24).

The criterion of applicability certainly depends on temper-
ature: it was shown to represent adequate dynamics when45

ζ = min{n(γn)/�S,κn} � 2. (26)

Here, n(γn) = [
√

12 + (βγn)2 + 6]/β, �S is the characteris-
tic frequency of the system and κn = √

6n(γn)/(βλnγn). We
choose �S to be equal to the exciton bandwidth.

The HQME for the correlation function given in Eq. (24)
is written in the Liouville space as a hierarchy of coupled
differential equations for auxiliary density operators (ADOs)
denoted by |ρn(t)〉〉 (Ref. 45):

d

dt
|ρn(t)〉〉

= −iL̂e|ρn(t)〉〉−
N∑

m=1

(γmnm+δR̂m)|ρn(t)〉〉

+
N∑

m=1

nmÂm

∣∣ρn−
m
(t)

〉〉+i
N∑

m=1

Q̂×
m

∣∣ρn+
m
(t)

〉〉
, (27)
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FIG. 4. (a) Real part of the bath correlation function for T =
300 K, λ = 100 cm−1, γ −1 = 100 fs: full line is obtained by using
Eq. (9) with the spectral density defined by Eq. (12) and the open
triangles correspond to the exponential part of the expression given in
Eq. (24). (b) 2D contour plot of ζ determining the HQME applicability
when T = 300 K and �S = 223.6 cm−1 [see Eq. (26)]. Suitable
space of parameters is confined by inequality ζ > 2, while the space
that is not suitable for HQME (ζ < 2) is shaded. Points on the plot
correspond to sets of parameters used in our simulations of the TRF
spectra.

where the auxiliary superoperators

δR̂m = λmγmβ

3
Q̂×

mQ̂×
m, (28)

Âm = i

[(
2λm

β
− βλmγ 2

m

6

)
Q̂×

m − iλmγmQ̂◦
m

]
(29)

are introduced. Here, Q̂×
m• ⇔ [Q̂m,•] (• is an arbitrary

operator) denotes the commutator and Q̂◦
m• ⇔ {Q̂m,•} is

the anticommutator. In Eq. (27), |ρ0(t)〉〉 corresponds to the
physical reduced density operator (RDO), n is a vector
of indices n ≡ (n1,n2, . . . ,nN ), and we use notation n±

m ≡
(n1,n2, . . . ,nm ± 1, . . . ,nN ). All ADOs with any negative
index are set to zero.

Formally, the hierarchy in Eq. (27) is infinite, thus, the
equations are nonperturbative and non-Markovian. In this pa-
per, we adopt the simplest truncation scheme where all ADOs
with their tier level L = ∑N

m=1 nm greater than truncation
level Ltrunc are simply discarded. Other truncation schemes
are also possible.42,49 The truncation level Ltrunc was chosen
to guarantee the convergence of the simulation results.

The HQME is used in the TRF as follows. The HQME
propagates all ADOs; therefore, instead of Eq. (20) in accord
with ADOs, we can define the hierarchy of response functions

RTRF
n (τ, t) = −i3〈〈μ|ĜADO(τ )μ̂l

RĜADO(t)|ρn(t = 0)〉〉, (30)

where ĜADO(t) is the full propagator of the HQME and
RTRF

0 (τ, t) ≡ RTRF(τ, t) is the physically observable response
function.50 We calculate all propagations numerically by
integrating ADO equations of motion using the standard
fourth-order Runge-Kutta technique as implemented in the
MATLAB software. The initial condition for simulation |ρn(t =
0)〉〉 assumes that the electronic state is e, while the
bath is in the ground-state equilibrium, so |ρn(t = 0)〉〉 =
δn,0|ρee〉〉 (nonzero ADOs correspond to system-environment
correlations,50 which are absent in the electronic ground
state according to our Hamiltonian). Starting from this state,
we then perform full HQME propagation for time t . After
this propagation, we multiply all resulting ADOs |ρn(t)〉〉
with the μ̂l

R . Next, propagation is for time τ and then we
multiply resulting ADOs by 〈〈μ| to get RTRF

n (τ, t). The relevant
observable is given by only RTRF

0 (τ, t) (we can therefore ignore
all nonrelevant ADOs during the last multiplication by 〈〈μ|).

III. SIMULATIONS OF TIME-RESOLVED
FLUORESCENCE SPECTRA OF

AN EXCITONIC DIMER

In this section, we study the TRF spectra of the simplest
molecular aggregate, a dimer constructed by a pair of coupled
molecules. We thus have N = 2 and only two excited states
|1〉 and |2〉 and the ground state |g〉. As mentioned earlier,
the ground state is isolated. The exciton eigenstates of the
electronic Hamiltonian of a dimer are labeled by |e1〉 and
|e2〉.1 Their wave functions make the transformation matrix
between site basis and exciton basis, which can be given by
the matrix

Û =
(

cos θ − sin θ

sin θ cos θ

)
, (31)

where

θ = 1

2
arctan

(
2J(

ε0
1 + λ1

) − (
ε0

2 + λ2
)
)

(32)

is the mixing angle (−π/2 < θ < π/2). When the bath is
neglected, the eigenstates are directly triggered by optical
fields; they do not “see” chromophores, but see the eigenstates
of the whole aggregate. The eigenstates are thus the main
characteristic of the system. In the following discussion, we
label excitonic states with increasing eigenenergy, so εe1 < εe2 .

In simulations, we use the dimer parameters resembling
realistic molecular aggregates of dyes or photosynthetic com-
plexes, where transition energies are in the visible range, e.g.,
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20 000 cm−1 for the green light at 500 nm. This absolute shift
is not relevant for exciton dynamics and can be neglected. We
thus choose ε0

1 = 200 cm−1, ε0
2 = 100 cm−1 for some weak

asymmetry. The intermolecular coupling in various molecular
aggregates ranges from 50 cm−1 in plant photosystem II
(PS-II) and FMO to 500 cm−1 in bacterial circular aggregates
or self-organized molecular J aggregates.51 The important
quantity, however, is the ratio of various energy parameters.
We take the intermolecular coupling |J | = 100 cm−1 and
the temperature is T = 300 K. The excitation and emission
amplitudes are determined by the transition dipoles. For
simplicity, we choose the transition dipoles of the dimer
molecules to be parallel so that orientational averaging is not
relevant. We choose molecular dipole moments to represent
either H- or J-type aggregate by specifically setting transition
dipole amplitudes. In the case of the H-type aggregate, we
have J > 0 and we set molecular dipole moments to guarantee
that transition to the lower-energy excitonic eigenstate is
forbidden, |μe1g

| = 0, (dark) and the other, higher-energy
state is bright. The molecular dipole moments in this case
are μ1g = (1, 0, 0) and μ2g = (tan(θ ), 0, 0). In the case of the
J-type aggregate, we have J < 0 and we set molecular dipole
moments so that transition to higher-energy excitonic state is
forbidden, |μe2g

| = 0, and the transition to the lower-energy
state is allowed. The molecular dipole moments in this case are
μ1g = (1, 0, 0) and μ2g = (− 1

tan(θ) , 0, 0) [note that since J <

0 and tan(θ ) < 0, molecular dipole moments are collinear]. For
simplicity, we also set λ1 = λ2 = λ and γ1 = γ2 = γ , which
is commonly justified for the same type molecules in the same
environment. We will analyze how bath parameters λ and γ

affect the TRF spectrum of the system under consideration.
At this point, we can check the applicability of HQME

according to Eq. (26). In Fig. 4(b), we show a two-dimensional
plot of the criterion [Eq. (26)] using T = 300 K and �S =
223.6 cm−1, which for our dimer is the energy gap between
the exciton states. All sets of parameters used in our TRF
simulations, shown as points on the plot, appear in the range
of validity.

To analyze how the TRF depends on the bath relaxation time
γ −1, we calculate TRF spectra of the H- and J-type aggregates
by setting the system-bath coupling at λ = |J | = 100 cm−1,
which corresponds to the intermediate coupling regime.
Figure 5 demonstrates the emission spectrum at various delay
times for the H aggregate when the initial excitation at t = 0
is at |e2〉. In all spectra, the emission maximum at initial times
coincides with the corresponding single-exciton transition
energy. When γ −1 = 10 fs, the Lorentzian lineshapes are
observed in Fig. 5(a). This means that these parameters
correspond to the Markovian or fast-bath dynamics regime.
As γ t goes from 0 to 1, the spectra remains unchanged, while
at γ t = 10, we see a loss of the intensity that can be attributed
to population transfer to the dark state. When γ −1 = 100 fs
[Fig. 5(b)], the spectra evolves with the delay time much
more dramatically. First, the lineshapes are Gaussian instead
of Lorentzian as was the case for γ −1 = 10 fs. Second, the
Stokes shift develops when γ t goes from 0 to 1. Third, similar
to the case of γ −1 = 10 fs, the e2 peak loses intensity due to
population escape at longer delay time; however, additionally,
another lower-energy peak appears. In Fig. 6, we present
the same type of the analysis for the J-type aggregate. The

FIG. 5. (Color online) Time-resolved fluorescence spectra of the
H-type dimer when (a) γ −1 = 10 fs, (b) γ −1 = 100 fs. λ is set to
100 cm−1. All spectra here and in the following figures are normalized
in such a way that, when delay time t is zero, the maximum intensity
is equal to unity.

excitation at t = 0 appears at excitonic eigenstate |e1〉 in this
case. In Fig. 6(a), we see the Lorentzian lineshapes, clearly
indicating that these parameters are in the Markovian regime.
The peak intensity decreases with increasing the delay time.
This can be attributed to population transfer to the second
excitonic state. The other state is dark since it is not visible
in the spectrum. When γ −1 increases to 100 fs, the lineshapes
turn into Gaussian [see Fig. 6(b)] and the Stokes shift formation
can be resolved very clearly. Further increase of γ −1 does not
lead to any noticeable changes in the TRF spectra of either
J- nor H-type aggregate when time is measured as γ t (not
shown).

What this simple analysis tells us is that fast-bath (Marko-
vian) and slow-bath regimes lead to very different TRF
spectra. The fast-bath case is in agreement with the Markovian
exciton theory derived by using the Redfield approach: the
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FIG. 6. (Color online) Time-resolved fluorescence spectra of the
J-type dimer when (a) γ −1 = 10 fs, (b) γ −1 = 100 fs. λ is set to
100 cm−1.

peak positions coincide with the exciton eigenstates, the
peak lineshapes are Lorentzian, and the dark states defined
according to the exciton representation are not visible in the
spectrum. The slow bath creates much more complicated
TRF dynamics: some effects, such as Gaussian lineshapes,
emergence of the lower-energy peak in the H aggregate can
not be explained in terms of the Markovian approach.

Next, we examine the effects of reorganization energy
λ on the TRF spectra at γ −1= 100 fs (we expect richer
dynamics with this time scale according to the previous
paragraph). Time-resolved spectra of the H-type dimer with
different λ values are presented in Fig. 7. Again, the bright
(second) excitonic eigenstate |e2〉 was excited at t = 0. In the
case of small reorganization energy [Fig. 7(a)], the spectral
linewidth is narrow, the lineshape is Lorentzian, and the
Stokes shift is absent. With the delay time, the emission peak
drops due to population transfer. Thus, by reducing λ from
100 to 5 cm−1, we recover the Markovian regime even at

FIG. 7. (Color online) Time-resolved fluorescence spectra of the
H-type dimer when (a) λ = 5 cm−1 and (b) λ = 200 cm−1. γ −1 is set
to 100 fs.

γ −1 = 100 fs. As expected, the increase of the reorganization
energy to λ = 200 cm−1 [Fig. 7(b)] leads to wider peaks in
the spectra. Also, the lineshapes change to Gaussian and
the Stokes shift becomes clearly visible. In both cases, the
intensity of the spectra decreases when delay time increases.
However, in the case of bigger λ, we see again that the peak
corresponding to the lower-energy state, which is dark in the
exciton picture, emerges. The TRF spectra of the J-type dimer
with different λ values, excited into the lower-energy bright
state e1 behaves similarly as follows from Fig. 8. In the case of
small reorganization energy [Fig. 8(a)], the dynamics reflects
the Markovian case, while when λ increases [Fig. 8(b)], the
Stokes shift emerges. Also, we note that with the increase
of delay time γ t , the spectra loses some intensity due to
population transfer to the dark higher-energy state. This is
because while there is some upward population transfer, at
thermal equilibrium the population of the lower energy state
is much higher.
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FIG. 8. (Color online) Time-resolved fluorescence spectra of the
J-type dimer when (a) λ = 5 cm−1 and (b) λ = 200 cm−1. γ −1 is set
to 100 fs.

IV. SYSTEM DENSITY MATRIX DYNAMICS

The simulation results presented in the preceding section
show that the TRF spectrum of a simple molecular aggregate
strongly depends on the bath parameters λ and γ . Different
dynamic regimes can be observed and several types of
dynamical processes can be associated with the spectral
dynamics. We can clearly distinguish two processes: the first
is the bath relaxation after the excitation, the second is the
system dynamics between different electronic levels due to
the coupling with the bath.

In a single two-level molecule, the electronic dynamics is
absent and only bath relaxation is taking place (see Fig. 1).
It is noteworthy to mention that the analysis based on the
cumulant expansion technique is equivalent to nonperturbative
treatment of system-bath interaction via the HEOM theory. In
the Markovian regime, the bath relaxation is faster than the
signal formation, i.e., the relaxation time of the fluctuation
correlation function is shorter than the induced polarization

relaxation time. In that case, the optical measurements show
the relaxed bath effects such as constant dephasing resulting
in the Lotentzian lineshapes and absence of the Stokes shift.
In the slow-bath regime, the bath does not relax before the
emission event. We therefore can observe the bath relaxation,
e.g., the dynamic Stokes shift, in the TRF measurements.

Parameter γ controls the TRF spectrum of a dimer as is the
case of the monomer. For both H and J aggregates, when γ −1 is
small [Figs. 5(a) and 6(a)], we find the Lorentzian lineshapes
and no Stokes shift. Because the relaxation time scale of the
bath correlation is very fast, the system reacts very quickly
to external perturbations and thus the Stokes shift is absent.
Note that not only the bath time scale is important for the
Markovian regime, but also the system-bath coupling strength
λ: the Markovian regime can be reached even with larger time
γ −1 if the λ value is smaller. The Markovian regime for the
dimer can therefore be described by the same inequality as is
known for a monomer: 2λkBT γ −2 < 1 denotes the Markovian
regime and 2λkBT γ −2 > 1 corresponds to the non-Markovian
regime. The absence of the electronic relaxation (no population
transfer) in the monomer is the only difference between the
dimer and that of the monomer in the Markovian case. In
the case of the J-type aggregate, the intensity of the emission
spectra decreases only slightly since population is transferred
to the higher exciton state. In the opposite, the emission decays
considerably for the H aggregate since the population transfer
is downward. Thus, in the Markovian regime, both J- and
H-type aggregates behave along with the excitonic picture and
the dynamics can be described by the Redfield theory.

When the bath time scale is intermediate or slow, the TRF
dynamical properties of the molecular dimer are much more
complicated. In this case, the dynamic Stokes shift emerges
and it is significant similar to the case of the monomer. Results
presented in Figs. 5(b) and 6(b) show that the time scale of
the Stokes shift is clearly determined by γ . That is obviously
the case in the monomer [see Fig. 1(c)]. In all cases, the shift
is nearly complete when γ t = 1. That is related to the bath
relaxation and it constitutes the dynamics in the case of a single
molecule. However, the molecular dimer shows additional
effects related to the excitation dynamics in the electronic
subsystem. The most noteworthy result shown in Figs. 5(b) and
7(b) is the emergence of the lower-energy peak corresponding
to the optically forbidden state in the case of the H-type
aggregate. The same effect is also present in the J aggregate,
however, it is weak since the population largely remains
in the lowest, optically allowed state. Note that this effect
contradicts the exciton picture, which states that amplitudes
of the exciton transition are defined by the excitonic transition
dipole moments and the zero transition should not be visible in
the spectra. When λ = 200 cm−1, this effect is strong, while it
is weak when λ is only 5 cm−1 [see Fig. 7(b)]. The same can be
seen in Fig. 5(b). The breakdown of the exciton picture is thus
related to the value of reorganization energy and the time scale
of the bath relaxation, i.e., it correlates with the breakdown of
the Markovian regime. Thus, the non-Markovian system-bath
regime destroys excitonic picture and the meaning of exciton
eigenstates in the course of time.

In order to learn underlying system dynamics in these re-
sults, we simulated the evolution of the reduced density matrix
of the system. In Fig. 9, we present evolutions of populations
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FIG. 9. (Color online) The evolution of the population of the
lower-energy excitonic state (a) and coherence between excitonic
states (b) of the H-type dimer (for parameters see text). Initial
condition of propagation was ρ̂(0) = |e2〉〈e2|. The asterisk line in
(a) corresponds to population of the first excitonic state according to
the Boltzmann distribution.

and coherences involved in the TRF at different reorganization
energies using the HQME theory. We have chosen the same
parameters that were used in spectra calculations of Fig. 7(b),
namely, ε0

1 = 200 cm−1, ε0
2 = 100 cm−1, |J | = 100 cm−1,

T = 300 K, and γ −1 = 100 fs. Initial conditions were chosen
as follows: ρ̂(0) = |e2〉〈e2|, once again corresponding to the
case of the H dimer [see Fig. 7(b)]. The population of the
first exciton state [see Fig. 9(a)] goes to equilibrium in
about 2 ps except when the reorganization energy is small,
λ = 5 cm−1. The obtained equilibrium should be comparable
to the Boltzmann distribution between populations of the
exciton eigenstates if the exciton description holds. However,
the equilibrium populations do not match the Boltzmann
distribution, as the value of ρe1e1 is lower than expected. This
deviation is confirmed by inspecting excitonic coherences,

which are expected to decay to zero. Evolutions of the excitonic
coherences [Fig. 9(b)] show that, after initial oscillations,
they reach constant equilibrium values depending on the
reorganization energy. The fact that they do not decay to
zero supports the conclusion that the distribution between
the exciton states does not correspond to the Boltzmann
equilibrium in this case.

This effect strongly depends on λ: equilibrium population
values are closer to 0.5 than expected from the Boltzmann
distribution with increasing λ. It means that effectively the
energy gap between the true eigenstates, which take into
account the bath, becomes smaller with increasing λ. All this
indicates that the exciton eigenstates, which are obtained by
diagonalizing the system part of the Hamiltonian, are no longer
eigenstates of the combined system + bath supersystem. This
behavior is similar to the polaron problem, where the increase
of the system-bath coupling also effectively reduces the energy
gap.24

The HEOM as the nonperturbative theory allows us to
calculate the TRF independent of the chosen basis set.
Moreover, the density matrix itself can be also represented
in an arbitrary basis set. It is worthwhile to point out that the
exciton basis (EB) as well as the site basis (SB) are not the
true eigenstate basis of the whole system under consideration,
including its environment. As follows from our analysis of
the TRF, this eigenstate basis could also evolve in the course
of time as the bath equilibrates. The asymptotic values of the
reduced eigenstate basis for the whole system (the bath is
traced out) can be obtained from the equilibrium conditions
of the reduced density matrix. We denote this basis as the
global basis (GB). The density matrix in the site basis can be
transformed to the representation of the exciton eigenstates as

ρ̂EB = Û †ρ̂SBÛ (33)

by means of the unitary transformation given by Eq. (31). The
transformation to the global basis can be similarly defined by

ρ̂GB = V̂ †ρ̂SBV̂ , (34)

where V̂ is an unknown unitary operator. Therefore, we need
to find V̂ in order to use the basis of the global eigenstates.
It is known from the statistical physics that the ensemble-
averaged equilibrium density operator must be diagonal in the
GB representation. Thus, if we diagonalize the equilibrium
density operator, we transfer it to its global eigenbasis

ρ̂
eq
GB = V̂ †ρ̂

eq
SBV̂ , (35)

where ρ̂
eq
GB is diagonal. Since we calculate ρ̂

eq
SB by propagating

the HQME, we can find ρ̂
eq
GB and V̂ using the numerical

diagonalization.
The knowledge of the relationship between the site and

global basis allows us to investigate the effects of the bath on
the electronic subsystem. As seen in Fig. 9(a), the increase
of the reorganization energy effectively lowers the effective
electronic energy gap in the system. The diagonal values of
ρ̂

eq
GB correspond to equilibrium populations, from which we

can recalculate the electronic energy gap of the GB basis:

�GB = 1

β
ln

((
ρ

eq
GB

)
α1α1(

ρ
eq
GB

)
α2α2

)
, (36)
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where α1 (α2) denotes the lower- (higher-) energy eigenstate.
So, �GB is the energy gap between the global system
eigenstates. Thus, the effective system Hamiltonian in the
global eigenstate basis reads as

(Ĥe)GB =
(

Hα1α1 0
0 Hα1α1 + �GB

)
. (37)

It is the Hamiltonian that governs the system equilibrium
excited state, thus, it includes all bath-induced reorganization.
Its elements should therefore depend on bath parameters γ , λ,
and kBT .

This procedure of finding the GB basis set requires explicit
propagation of the excited state until the system reaches
equilibrium. It shows dynamic flow of the basis-set functions,
however, it is a numerically expensive procedure. When
the intermediate steps of the relaxation are not important,
e.g., in long-time steady state, it would be useful to derive
how the bath asymptotically affects the original molecular
Hamiltonian. In the following, we describe the possibility of
the original Hamiltonian rescaling in order to directly obtain
the equilibrated excited state.

Since we know the transformation operator V̂ , we can
represent the Hamiltonian of Eq. (37) in the site basis by
applying a unitary transformation

(Ĥe)SB = V̂ (Ĥe)GBV̂ † ≡
(

εeff
1 Jeff

Jeff εeff
2

)
, (38)

and we get the effective molecular Hamiltonian dressed up
by coupling to the bath. This Hamiltonian represents the
asymptotic effect of the bath, thus, one would “observe” this
Hamiltonian in, e.g., stationary emission spectrum. We get two
effective parameters: the effective energy gap between molec-
ular states �eff

SB = εeff
2 − εeff

1 and the effective coupling Jeff .
We have investigated how parameters �eff

SB and Jeff depend
on reorganization energy λ. These results are shown in Fig. 10.
First, we note that since the excitonic picture is not perturbed
in the case λ → 0, the parameters corresponding to the

FIG. 10. (Color online) Dependence of effective system parame-
ters on the reorganization energy.

effective Hamiltonian coincide with the parameters of the
original Hamiltonian at small reorganization energy values.
Second, the effect of λ to �eff

SB is small, which means that
the bath affects both molecules independently, the optical
energy gaps of both molecules may change similarly, and the
intermolecular energy gap �eff

SB remains almost unaffected. To
confirm this statement, it is worthwhile to mention that small
dependence at large λ values is due to the HQME approach,
while it disappears when using calculations based on the
full HEOM theory. Third, effective coupling Jeff decreases
strongly with increasing the reorganization energy, i.e., the
molecules become more individual as the coupling to the bath
increases. Therefore, it is an important parameter to describe
the effects of the bath on the system.

We have additionally analyzed how Jeff depends on other
parameters. Our results show that Jeff does not depend
on molecular energies or γ , while it strongly depends on
temperature. From our simulations, we find that in the case
where the molecular reorganization energies λ1 and λ2 are
different, the effective coupling can be accurately described
by the following formula:

Jeff = J exp

(
− a

λ1 + λ2

kBT

)
, (39)

where a is a constant (see Fig. 11). The numerical value
of constant a was found to be 0.15. It can be seen that the
exponential law gives an accurate estimate over a large range
of (λ1 + λ2)/(kBT ) values.

The fact that the effective coupling was found to increase
with increasing temperature is opposite to predictions of
the Holstein polaron theory.24 In the Holstein Hamiltonian,
each site is coupled to a single harmonic oscillator, which
renormalizes stationary exciton (and the oscillator) states.24,36

In our model, each site is coupled to a continuum of
frequencies, and the system and whole bath relaxes to thermal
equilibrium. Thus, our model considers the integral effect of
the continuum surrounding. Formally, such perturbation is
taken into account via the auxiliary density matrix elements

FIG. 11. (Color online) Effective coupling dependence on (λ1 +
λ2)/kBT . Black dashed line corresponds to values calculated by
means of Eq. (39).
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of the HQME. These differences are responsible for the
differences in renormalization factor of the resonance coupling
value.

Note, however, that our renormalization is for the relaxed
electronic excited state. Only the emission properties depend
on Jeff . The absorption spectrum reflects the relaxed ground
electronic state, which reflects the J coupling. In order to
find the Jeff , we have to perform a computationally expensive
numerical propagation. However, we find an exponential
renormalization relation with the bath parameters. The GB
basis can now be achieved by inserting the effective couplings
into the original Hamiltonian. In this way, we may need no
numerical propagation. All we have to do is to diagonalize
the system Hamiltonian, having replaced coupling J with
effective coupling Jeff , which is defined by Eq. (39). We
find exponential relation for an electronic dimer: it has to
be proven that some similar relation can be derived for an
arbitrary molecular aggregate. Obtaining the renormalized
Hamiltonian parameters for an arbitrary system is our future
research direction.

The exponential renormalization relation may be related
to the properties of the spectral density. Our model of the
bath has been used in a range of simulations. However, other
spectral densities have been used in other simulations.52,53

Realistic (determined from the spectral line-narrowing ex-
periment) spectral density for pigment-protein aggregates is
a multipeak function,54 which can only be approximated by
simple analytical functions. The sharp peaks in the spectral
density are indications of high-frequency molecular vibrations
strongly coupled to electronic transitions. These are important
in some aggregates (e.g., some self-organized J aggregates51),
however, they can be neglected for bacteriochlorophylls in
FMO aggregate. We did not consider high-frequency coherent
vibrational modes. The spectral density can be alternatively
extracted by performing atomistic molecular-mechanics (MM)
simulations,55 which at the moment are a standard procedure
for proteins, but have difficulties for interaction potentials
describing the chlorophyll-based pigments. The HEOM can
be written for an arbitrary spectral density,40,50 however, its
numerical implementation at the moment is possible only for
simple bath models.

Our results clearly show that bare excitonic states might
not be suitable to analyze the system in the case of strong-
system bath coupling. Interaction with bath modes perturbs
the system so that the coupling J is quenched and thus the
energy difference between the eigenstates becomes lower.
The introduction of effective bath coupling allows us to
easily explain the emergence of the peak corresponding to
lower-energy state in the TRF spectra of the H-type aggregate
in Figs. 5(b) and 7(b). Reduction of the effective intermolecular
coupling with system-bath coupling strength means that the
excitons tend to shrink due to coupling to the bath, i.e., the
exciton delocalization is smaller than predicted from bare
excitonic couplings. The monomer dipole moments were
chosen keeping the mixing angle definition of Eq. (32) in
mind, and when J → Jeff , this definition no longer guarantees
that the dipole moment of the lower-energy state is zero.

Our renormalization is not static property. It develops
dynamically in the electronic excited state. When the system
is in the ground state, the exciton picture is not perturbed

(no coupling to the bath). This has to be understood as the
reference state and the excitons, which are created by the
absorption event, are reference states. After excitation, the
exciton basis starts to evolve due to system-bath coupling
and the new effective excitons, which are more localized,
develop in time. That picture may be very important for
considering recent time-resolved experiments with femtosec-
ond time resolution,4,5,7 where such time-dependent exciton
transformation could be traced out.

In our simulations, we did not consider the disorder
effect on the system dynamics. Diagonal disorder creates
inhomogeneous broadening. The inhomogeneous broadening
can be approximated by static bath modes included into
the spectral lineshape functions.10 This induces Gaussian
broadening, but excludes effects such as exciton localization.
However, if the error of such protocol can be ignored, the
resulting convolution procedure is numerically much faster
than explicit statistical averaging over the disorder. The explicit
simulation of the diagonal disorder exactly incorporates the
static fluctuation effects. If we can distinguish fast and static
modes of the bath, then the Redfield theory can be used for
fast-bath modes: the static modes can be included explicitly
by ensemble averaging.9,12 That may be the most efficient
strategy for large aggregates. However, our results demonstrate
the dynamic bath effects such as dynamic formation of the
Stokes shift, slow-bath-induced population transfer, which go
beyond the static disorder. If these effects are important, then
the HEOM theory should provide a more accurate solution.

V. CONCLUSIONS

We have studied exciton dynamics in a simplest molecular
aggregate and found that the Markovian parameter regime
guarantees accurate system dynamics within the excitonic
eigenstate picture. The main signatures of the Markovian
regime are the Lorentzian lineshapes and the conservation
of excitonic symmetries imposed by molecular geometry. In
the case of moderate and strong system-bath interaction, the
excitonic picture becomes approximate and the system param-
eters have to be rescaled due to coupling with the bath similar
to the polaron formation in molecular electronics. Then, the
excitonic picture of the eigenstates becomes distorted, and the
dark states may turn out in the spectrum.

The TRF spectroscopy is very powerful in displaying
the details of the exciton relaxation and renormalization
properties. Note that the absorption reflects the ground-state
equilibrium configuration, and if the excitonic picture is based
on that configuration (as is the case in the absorption), it
may not be valid for the electronic excited state where the
bath relaxes to a new minimum. The TRF explicitly displays
that relaxation process, and the effective new set of system
parameters for the electronic excitons of the excited bath
equilibrium can be obtained.

Our theory of the TRF is derived for an arbitrary excitonic
molecular aggregate with an arbitrary coupling strength to
the bath. We did simulations only for a dimer. However, the
important concepts of renormalization of the intermolecular
couplings in the case of strong system-bath interaction in the
electronic excited state is a general concept for an arbitrary
aggregate. These renormalized parameters enter into the
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energy-transfer rates, which dictate the functionality of the
photosynthetic complexes and their efficiency. The quenching
of the intermolecular coupling by the bath is important for
J-type aggregates. It is known that for the aggregates having
one molecule per unit cell, the exciton bandwidth equals
to 4J in the case of nearest-neighbor couplings.56 If J

were quenched, it should be perceptible in the spectroscopy
measurements (TRF or 2D spectra) as the peak position of the
J band should be dependent on bath parameters.

Our results suggest a few promising areas that are worth
further exploration. First, the full HEOM theory might be
used to enlarge the range over which our effective coupling
dependence on bath parameters hold, and when, if ever, it fails.

Second, the effects of quenched coupling should be analyzed in
the case of larger aggregates. Finally, it might be worthwhile
to use the HEOM theory to study systems described by the
Holstein Hamiltonian as polaron formation dynamics could
be observed.
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