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Scattering of Dirac electrons by circular mass barriers: Valley filter and resonant scattering
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The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random
array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used
to obtain parallel and perpendicular resistivity components within linear transport theory. We found a nonzero
perpendicular resistivity component which has opposite sign for electrons in the different K and K’ valleys.
This property can be used for valley filter purposes. The total cross section for scattering on penetrable barriers
exhibits resonances due to the presence of quasibound states in the barriers that show up as sharp gaps in the
cross section while for Schrodinger electrons they appear as peaks.
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I. INTRODUCTION

Nanostructures have become the system of choice for
studying transport over the past few years.! Starting with
two-dimensional (2D) electron systems at the interface of two
different materials several decades ago,” recently it has shifted
to 2D relativistic materials (e.g., graphene®™ and topological
insulators®7). In pristine graphene the conduction and valence
bands touch each other in six points of the Brillouin zone and
are defined by two independent sets of cones commonly called
K and K’. Near these points the electronic dispersion is linear
which corresponds to the dispersion of massless relativistic
particles, described by the Dirac-Weyl equation.®® Because
of the so-called Klein effect for relativistic particles there
are no bound states in electrically created quantum dots but
only quasibound states.'®"!? This problem can be overcome by
using inhomogeneous magnetic fields which can be created,
for example, by depositing nanostructured ferromagnets.'>!#
The resulting inhomogeneous magnetic structures, mainly
magnetic barriers or steps, are able to confine Dirac electrons
in graphene.'>?! In particular, the spectra of simple dots and
rings were studied in Refs. 15,22-24 and electron scattering
by a magnetic ring in Ref. 25. A gap can be induced by an
electrostatic potential when a mass term is present as was
shown in Refs. 26 and 27.

During the last decades there have been a lot of theoretical
and experimental attempts to use the spin of the electron as
a carrier of information.”® Graphene in addition to the spin
of the electron has two more degrees of freedom, sublattice
pseudospin, and valley isospin or valley index. In order to
scatter an electron from the K valley to the K’ valley a
large transfer of momentum is needed. Typical disorder and
Coulomb-type scattering is unable to provide this momentum
and in such a case the valley isospin is a conserved quantum
number in electronic transport. This allows us to use valley
isospin as a carrier of information. It was shown that graphene
nanoribbons with zigzag edges®>*° can be used as a valley
filter. Another promising possibility to control the valley index
of electrons is by using line defects.3! These can be formed
in graphene when grown on a nickel substrate or by using so-
called mass barriers that can be created by proper arrangement
of dopants in the graphene sheet.’>** Another way to control
valley polarization is by using local strain in graphene which
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induces an effective inhomogeneous magnetic field with the
opposite sign in K and K’ valleys (see Refs. 34-38). Recently
it was shown that the mass term induced by electron-electron
interactions is also able to control the valley isospin.*

The purpose of this work is to apply the above-mentioned
ideas to electron transport in the presence of circular mass
barriers. We solve the Dirac electron scattering problem on
a sharp circular mass barrier and calculate the cross section,
the inverse momentum relaxation time, and the probability
for the electron to be reflected in the perpendicular direction.
In spite of the circular symmetry of the scatterers we obtain
a nonzero perpendicular component of resistivity that allows
us to separate electrons with different chirality, or belonging
to K and K’ valleys. The scattering of Dirac electrons
by a penetrable circular mass barrier is influenced by the
presence of quasibound states that results in resonant behavior.
The obtained results are compared with those for standard
Schrodinger electrons.

The paper is organized as follows. In Sec. II we introduce
the problem and illustrate our formalism by considering first
the more simple problem of Dirac electrons scattered by a
circular hole. In Sec. III the boundary condition is obtained
for a circular barrier (i.e., a mass dot and a mass antidot). The
bound states in the mass dot are calculated in Sec. IV.In Sec. V
the scattering by an impenetrable circle is considered and the
total cross section, relaxation time, and Hall component of the
resistivity is obtained. In Sec. VI we repeat this calculation
for a penetrable circle and compare the results with the results
for standard electrons that are presented in Appendix A. Our
conclusions are presented in Sec. VII.

II. PROBLEM

We consider a Dirac electron interacting with circular
barrier structures shown in Fig. 1 by the shadowed regions. In
the long wave approximation it is described by the stationary
equation,

{H—E}V =0, ey
with the following Dirac Hamiltonian:
o-p+ko 0
Hp = ( 0 c , ) )
o' -p—«'o;
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FIG. 1. (Color online) Layout of the mass barrier profile: (a) dot,
(b) antidot, and (c) penetrable circle (i.e. a ring-shaped barrier).

This 4 x 4 matrix Hamiltonian describes low energy excita-
tions in K and K’ valleys. Due to its diagonal form it is possible
to separate the scattering problems in each K or K’ valley. We
choose the following 2 x 2 Hamiltonians:

H =0 p+«()o,, (3a)
H =o*-p—«'(r)o,, (3b)

where o = {0,,0,} and o, stand for the Pauli matrices,
and «,(r), «'(r) characterizes the mass barrier for K and
K’ electrons, respectively. We use dimensionless variables
where velocities are measured in Fermi velocity unit vg,
all coordinates are measured in the radius R of the circular
scattering barrier, shown in Fig. 1 by the solid red line, and the
electron energy—in /ivg /R units. From now on all equations
are for K valley electrons, except if otherwise specified.
According to standard scattering theory we present the wave

function as
U= elEx + _elEr, (4)
() + L

consisting on the incident wave in the x direction and the
scattered part. The scattered part is characterized by the two
component scattering amplitude,

for=(" 5
o) = (B> )

As the incoming wave-function part is normalized to unit flow
density the differential cross section is equal to the radial flow
of electrons corresponding to the scattered wave-function part,
namely,

a(9) = fT(@)o -nf(p) =e“AB* +eYA*B, (6)

where n = (cos ¢, sin @) is the unit vector in the considered
direction.

Besides the above differential cross section we shall
consider the total cross section,

2w
o =/ dyo (), (N
0
and two more averages: the inverse electron momentum

relaxation time (the quantity proportional to the dissipative
component of resistivity),

27
14 =/0 deo(p)(1 — cosg), (8

and the quantity,

2
n=/ dyo (@) sing, 9)
0
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that corresponds to the perpendicular component of resistivity
(or the analog of the Hall component in the case with magnetic
field).

Due to the azimuthal symmetry of our problems it is
convenient to use polar coordinates. Thus, assuming the total

wave function as
(UM
W(r) = <V(r))’ (10)

we shall solve the set of equations,

. 0 10 .
el ——-— )V =IE—-xU, (11a)
ar radp
. 0 i0 .
el —+-——)U=1i(E+«k)V, (11b)
ar  rade

for the wave-function components.
Now we expand the wave function into partial waves,

UOY & ()
(wr))_mz_oow’”e (z‘ewvmm)’ 12

replacing Eq. (11) by the following set of two radial equations:

d 1
<_+m+ )va(E—K)Mm,
dr r

d m
<_ _ _> m = —(k + E)om.
dr r

These equations are our main instrument when considering
the problems shown in Fig. 1.

(13a)

(13b)

III. BOUNDARY CONDITIONS

For the sake of simplicity we restrict ourselves to model
problems with large mass potentials, and replace the potentials
by proper boundary conditions on the electron wave functions.
In fact, this is the standard way of describing low energy
scattering. For this purpose we have to solve the appropriate
equations in the barrier region, to apply the standard boundary
conditions for both wave-function components on the solid
circles shown in Fig. 1, and to calculate the limit k — co. We
start with the system shown in Fig. 1(c). Thus, we have to
solve the following approximate set of radial equations:

Ev = —Ku, (14a)
d = (14b)
dru = —Kv,

in the thin shadowed region I/ which is delimited by two
circles of radius 1 &= § (§ < 1). Its solution reads

u = FeK(r—l) + Ge—K(r—l)
V= _Fe/((rfl) + Ge*/{(rfl).

(15a)
(15b)
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Now satisfying the boundary conditions on the two circles
demarcating the region /1 we obtain the following set of four
algebraic equations,

ur(l —8) = Fe ™ + Ge*?, (16a)
vi(1 —8) = —Fe ™% 4 Ge*?, (16b)
ur(148) = Fe + Ge™?, (16¢)
v (1 +8) = —Fe* + Ge™°. (16d)

Eliminating the coefficients ' and G we obtain in the limit
8 < 1 the boundary conditions,

vrrr(1) —vr(1) = —{uyr (1) + u (1)} tanh(x6),
urr(1) —up(l) = —{vy;(1) + vy (1)} tanh(x §),

connecting wave-function components in regions / and
I11.

For a very thin and very high mass barrier (the analog of
the 8-type barrier for Schrodinger electrons; see Appendix A)
we take the following limits:

(17a)
(17b)

6§ —>0, k— o0, tanh(xk§)= P = const, (18)

which enables us to rewrite Eq. (17) as
vrrr(D) —vr(1) = —Plug (1) +u (1)},
urrr() —uy(1) = =P{u(1) + vy (1}

These boundary conditions can be formally replaced by
inserting Dirac § functions into Eq. (13), namely, replacing
those equations by

(19a)
(19b)

r

(5-7)
dr r

if we assume the following rule for calculating the integrals
when the integrand is a product of the Dirac § function and
some function f(x) with the discontinuity:*

—[2P8(r — 1)+ Elv,, (20b)

o 1
Jim / AxB()f() = S0 + F0)). @D

The parameter P characterizes the effective strength of the
3-type barrier, and never exceeds the value P = 1 in contrast
to the case of Schrodinger electrons where it can take any
value. A second major difference is that the wave-function
components #(r) and v(r) are discontinuous at the position of
the § function (but the probability density is continuous) while
for Schrédinger electrons the wave function is continuous but
the derivative of the wave function is discontinuous in that
position. This is a consequence of the fact that the Dirac-
Weyl equation is a first-order differential equation while the
Schrodinger equation is second order.

The obtained boundary conditions for the general case
shown in Fig. 1(c) enables us to construct analogous boundary
conditions for the two other cases shown by Figs. 1(a) and
1(b). So, in the case of Fig. 1(a) we assume

k=00, P=1, wu;)=v(1)=0, (22)
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and rewrite the boundary conditions given by Eq. (19) as

ur(1) = vy (D). (23)

This is the boundary condition for the quantum dot, surrounded
by an infinite mass barrier.

In the case of Fig. 1(b) an analogous reasoning leads to the
following boundary condition:

ur(l) = —v(D), (24)

that we shall use for describing Dirac electron scattering by a
hard wall antidot.

The obtained boundary conditions enable us to neglect the
k terms in Eq. (13) and solve the Dirac equations for free

electrons,
d N m—+1
J— U
dr r

d m
5—7 l/lmZ—Evm

in regions I and 711 separately.

(25a)

Il
o
<

5

(25b)

IV. BOUND STATES IN THE DOT

The most simple problem is the one of a quantum dot shown
in Fig. 1(a). In this case the solution of Eq. (25) in region /
has to be finite at r = 0 and is given by Bessel functions,

I/t(}") = FJm(Er)»
V() = F i1 (Er).

(26a)
(26b)

Satisfying boundary condition (23) we immediately arrive
at the algebraic equation,

In(E) = Jmy1(E) =0 27

that determines the energy of the bound states.

V. SCATTERING BY AN IMPENETRABLE CIRCLE

Now we shall consider our main problems, namely, the
scattering of Dirac electrons by circular mass barriers. We shall
start with the case presented in Fig. 1(b)—the scattering by an
impenetrable circle (or by a hard wall antidot). According to
standard scattering theory we have to construct the total wave
function (10) solving the Dirac equations for free electrons
(25) in the outer region [ that satisfies the boundary condition
(24), to exclude the incoming part of the wave function, and
calculate the cross section by means of Eq. (6).

So, the solution of Eq. (25) in the outer region I reads

Uy () = wy[Jn(Er)cosé,, + Y, (Er)sind,,],
Um(}’) = wm[Jm+1(Er) Cos 8m + Yanrl(Er) Singm]»

(28a)
(28b)

where the symbols J,, and Y, stand for Bessel and Neumann
functions, respectively.

Now satisfying the boundary conditions (24) for any partial
wave-function harmonic individually we obtain the expansion
coefficients siné,, and cos§,, through the so-called phase
shifts,

In(E) + Jms1(E)

tand,, = — .
Yu(E) + Yot (E)

(29)

245413-3



M. RAMEZANI MASIR, A. MATULIS, AND F. M. PEETERS

Usually the exclusion of the incoming plane wave from
the total wave function (12) is done in the asymptotic
region where Er >> 1. Here we use the asymptotic of
the Bessel functions J,,(Er) =~ /2/7 Er cos A, Y (Er) =

V2/m Ersin A, where
b4

A, =Er—Zm-Z, (30)
2 4

which allows us to write the total wave-function components

as
2 o0
Ur) =/ — me""? COS(Ay — ), 31
(r) v Z wye'™? cos( ) (31a)

m=—00

2 [e%e] )
Vi) =iJ—— > wue ™ cos(Apir — 8,). (31b
(r) =iy —— m:_oow e cos(Apt1 = dn). (31b)

In this asymptotic region the incoming plane wave can be
presented as

o0

el Ex _ Z imeimgajm(Er)

m=—00

2 [o.¢]
~ ./ 5 Z "M cos A,
LY
m=—00
1 o0
=25 P A G e M 7))
m=—0Q

Now in order to compensate the incoming term in the total
wave function (12) by the second term of the lastline in Eq. (32)
we have to take

Wy = iimeﬂ'ﬁm. (33)
V2

It is remarkable that this choice makes the above-mentioned
compensation in both scattering amplitude components A
and B, but not in every pair of radial components u,, and
v, separately. This is related to the fact that the angular
momentum is not conserved quantity but that the Dirac-Weyl
Hamiltonian commutes with operator consisting of the angular
momentum plus isospin. So, inserting the above expression
of w, into Eq. (31) and subtracting the incoming wave-
function part given by Eq. (32) we arrive after laborious but
straightforward calculations at the following expression for the
components of the scattering amplitude (5):

. 1 . )
A =e*3'”/4,/—E Z M e sin s, | (34a)
T
m=—0o0
. ) 1 . )
Bze*'”/“e%/n—E Z M e sins,,.  (34b)
m=—0o0

Inserting them into Eq. (6) we obtain the following
differential cross section:
o0

Z £ m=me—(6n=38,11 ¢ip Sy SinSy.  (35)

m,m’'=—00

_ 2
0((p)_n_E

We have to keep in mind that the derivation of this cross
section was performed with the Hamiltonian (3a), which is
valid for electrons in the K valley.
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To obtain the results for K’ valley electrons we have to
repeat the procedure starting with the Hamiltonian (3b). For-
tunately, it leads to the same set of differential equations (11)
with a single change U = V. Further, we replace Eq. (12) by

U\ = o un()
(V(r))= 2 wne W(—iel’%mm)’ 0)

m=—0oQ

and arrive at the same radial equation set (13) as was obtained
for the K valley case. Consequently, all equations, including
the boundary condition, remain the same for the K’ valley as
well. The equation for the differential cross section for the K’
valley, however, differs. In this case the changes m — —m
and m’ — —m’ have to be performed in the argument of the
exponent leaving the same indexes of phase shifts §,, and §,,, .

Now inserting the obtained differential cross section (35)
into Eq. (7) we obtain the total cross section:

4 [
o=4 Z e ®r' 70 5in 8, sin 8,y
,m'=—00
4 o)
= E Z sin’ Om- 37
m=—0o0

Note the above-mentioned change m — —m and m’ — —m’
in the exponent argument now appears as the same change
in the argument of the Kronecker symbol §,, . It is evident
that this change does not influence the total cross section, and
consequently, it is the same for both K and K’ valley electrons.
Taking into account Eq. (29) the partial cross-section
contribution to the total cross section can be presented as

[Jn(E) + Jmi1(E)P
[Jm(E) + Jm+l(E)]2 + [Ym(E) + Ym+l(E)]2 '
(38)

sin® 8, =

which enables us to calculate the scattering cross section
directly.

The energy dependence of the total cross section where the
sum is restricted by the value M (Jm| < M) is shown in Fig. 2.
We see a rather good convergence at low energies where three
terms (i.e., m = 0, £ 1) are already sufficient.

The oscillating behavior of the energy dependence of the
partial sum follows from the same behavior of the separate
terms in Eq. (37) that can be easily explained calculating the
asymptotic of the phase shifts. Indeed, using the asymptotic of
the Bessel functions and replacing A, by A,,|,—; we have the
following asymptotic expression for the scattering phase (29):

Jn(E) + Jps1(E) __ cos Ay +cos Ay
T Y(E) + Yot (E)  Sin Ay, + 8in Apyg
Ccos A, +sin A, _ sin(A,, + /4)
sinA,, — cosA,, _cos(Am + /4)
= —tan(A,, + 7w /4). 39)

tan g, =

Thus, in the asymptotic region we have
sin®8,, = sin*(E — wm/2), (40)

which explains the waving behavior of the obtained partial
contributions to the total cross section.

245413-4



SCATTERING OF DIRAC ELECTRONS BY CIRCULAR ...

E

FIG. 2. (Color online) The energy dependence of the partial sums
oy contributing to the total cross section. The italic numbers on
the curves indicate the number M. The black curve for M = 15
corresponds to the convergent result.

By the way, this simple expression for the scattering phase
enables us to perform the approximate summation in Eq. (37)
for large energies which results in the limit cross section
olim = 4 as can also be seen clearly in Fig. 2. This value
is twice larger than the classical value o, = 2 that can be
obtained assuming that relativistic electrons are moving along
trajectories given by nonquantum mechanical equations of
motion. This discrepancy is caused by the diffraction of the
electronic waves when they are scattered by hard wall type
potentials, and it is inherent over scattering by small angles. It
is remarkable that relativistic electrons exhibit the same feature
as Schrodinger electrons (see the textbook*!).

In Appendix A we present similar results for Schrédinger
electrons (see Fig. 9). Note that there are some differences
in their k-dependence: (1) in the low-energy limit the cross
section of the Schrodinger electrons diverge logarithmically,
while for Dirac electrons it becomes zero, and (2) o (k) for
Schrodinger electrons is a uniform decreasing function of k
while for Dirac electrons it exhibits oscillations in the low
energy region. Both cross sections approach the high energy
limit from above.

Inserting the differential cross section (35) into Eq. (8)
we obtain the inverse momentum relaxation time (or the
dissipative resistivity component),

o0

D> 2= 8wt = Swmi]

m,m’'=—00

| o

x €@~ gin 8, sin 8,y
M

_2 Z sin2(8, — Smi1) 41)
= E m m+1)-

m=—M

By the way the change m — —m and m’ — —m’ in the
arguments of the Kronecker symbol does not influence the
value of the above expression. Consequently, the above inverse
momentum relaxation time expression is the same for both K
and K’ valley electrons.
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FIG. 3. (Color online) The contribution of the partial sums y,,
to the inverse momentum relaxation time. The italic numbers on the
curves indicate the number M where M = 15 corresponds to the
convergent result.

Now inserting the phases obtained by solving Eq. (29)
into Eq. (41) we get the result that is shown in Fig. 3. Its
behavior is qualitatively similar to the one for the total cross
section. For large energies it approaches the limiting value
y = 8/3, which we obtain by calculating the integral (8) with
the classical differential cross section, confirming the known
fact that the integral (8) is not sensitive to forward scattering.
Thus this relaxation time isn’t affected by the above-mentioned
discrepancy between the quantum and classical result as it was
with the total cross section.

Note that there is an essential difference in the separate
contributions to the total cross section o and the inverse
momentum relaxation time y. The partial contributions to y
do not exhibit any oscillating behavior that was inherent in the
case of o. This is expected from Eq. (39) where the difference
of neighboring phases (8,, — 8,,+1) doesn’t depend on energy
in the asymptotic region.

And at last inserting the differential cross section (35) into
Eq. (9) we obtain the perpendicular (or Hall) component of
the conductivity,

2 i s 5 ]
n= TE m’ ,m+1 m',m—1

m,m’'=—00

x ¢! G =8 gin 8, sin 8,

4 ()
= Z Sin 8y SIN Sy SISt — S).  (42)

m=—0oQ

The result is shown in Fig. 4. Naively we would expect that
n = 0 at zero magnetic field. To our surprise we find that < 0
and that it conserves its sign as a function of E. It means that the
mass barrier acts similar as a magnetic field. In order to obtain
the result for K’ valley electrons we have to change m — —m
and m’ — —m' in the arguments of Kronecker symbols in the
first line of Eq. (42). It is evident that due to this change the
Hall component of the resistivity 7 changes its sign. Thus, the
electrons from different valleys are deflected to opposite sides
of the sample. There is no net charge buildup across the sample
and thus no Hall voltage. But there is a separation of different
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E

FIG. 4. The Hall component of resistivity.

K and K’ valley electrons across the sample and thus we can
use this effect for valley filtering purposes.

VI. SCATTERING ON A PENETRABLE CIRCLE

Now we turn to our last problem—scattering of Dirac
electrons by a penetrable circle in order to demonstrate how
possible quasibound states reveal themselves in the scattering
cross section. For this purpose we have to solve the Dirac
equation for free electrons (25) in both 7 and 711 regions and
to apply boundary conditions (19). These solutions are given
by Eq. (26) for the inner region /, and by Eq. (28) for the
outer region /1. Moreover, the procedure of the exclusion
of the incident exponent is the same as it was performed in
Sec. V. Thus we can immediately write down Eq. (34) for the
components of the scattering amplitudes, and use the previous
expressions for the scattering cross section (35),(37),(41),(42).

The single procedure that should be performed is to satisfy
the boundary conditions (19) and calculate the phase shifts §,,,.
Inserting into Eq. (19) the solutions (26) and (28) we obtain
the set of two equations:

C-]m+1 + SYm+l - F-]m+1 = _P{C-]m + SYm + FJm},

(43a)
Cly,+SY,—FJ, =—P{CJyus1+ SYus1 + Flyi1},
(43b)
where for the sake of shortness we denoted
C =w,cosé,,, S=w,sind,, 44)

and omitted the arguments E of all Bessel functions.

Now excluding coefficient F' we obtain a single equation.
It can be solved for the tangent of the phase shift, and using
the expression for the Wronskian of the Bessel functions we
arrive at

(Jm+1 + Jm)(-]m - Jerl)

tané,, = — ) (45)
(Ym-H + Ym)(Jm - Jm-H) - l/pE
where the symbol,
P
pP= m, (46)

PHYSICAL REVIEW B 84, 245413 (2011)

p
1— ©
2——30
3—5
4— 2

FIG. 5. (Color online) The partial oy contribution to the total
cross section for different values of the penetrable parameter p of the
circular scatterer. The curve marked by p = oo corresponds to the
case of scattering by an impenetrable circle.

characterizes the impenetrability of the circle. The value
p = oo corresponds to a completely impenetrable circle
(i.e., the previously considered scattering on an impen-
etrable antidot), while the value p =0 corresponds to
the case of complete penetration, or the absence of any
scatterer.

The numerical results for the lowest contribution (m = 0)
to the total cross section are shown in Fig. 5 for different p
values. The vertical arrows indicate the energies of the bound
states of the dot obtained by solving Eq. (27) as described in
Sec. IV. Although now the dot is penetrable and it has no bound
states, the corresponding quasibound states reveal themselves
as narrow gaps close to the maxima of the oscillating partial
contribution. Note that this is a particular feature of Dirac
electrons. While in the case of Schrodinger electrons the
quasibound states appear as peaks in the cross section (see
Figs. 10 and 11 in Appendix A).

According to Eq. (45) it seems that there should be one
more set of gaps in the partial cross section, related to the

[&]

VA

o1
{——
2——30
33— 5
4— 2
8 10

FIG. 6. (Color online) The total cross section o for a penetrable
circular scatterer for different p values. The curve marked by p = oo
corresponds to the case of scattering on an impenetrable circle.
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FIG. 7. (Color online) The inverse momentum relaxation time
calculated according to Eq. (41) for a penetrable circular scatterer.

equation,

In(E) + Jpy1(E) = 0. (47)

But in this case, however, after neglecting the last term in
the denominator of Eq. (45) it coincides with the phase (29)
obtained for the scattering by the impenetrable circle, and in
such a way it indicates that the above condition defines the flat
minimum related to the diffraction pattern in the cross section
considered in Sec. V.

These gaps in the partial cross-section reveal themselves
in the total cross-section as shown in Fig. 6. Because of the
contribution of the other partial waves the gaps no longer reach
zero as (e.g., shown in the case of the partial cross section
0p). Notice that they become more pronounced and narrower
when the parameter p increases (when the circle becomes less
penetrable).

In Fig. 7 the results for the inverse momentum relaxation
time and in Fig. 8 those for the perpendicular component of
the resistivity are presented. We see that although Egs. (41)
and (42) are more sophisticated functions of the phases &,
and even two neighboring phases §,, and §,,; are intermixed,
nevertheless the resonant behavior (i.e., the negative peaks) is
still clearly visible in the inverse momentum relaxation time.
The behavior of peaks in the Hall component of the resistivity,

2 4 6 8 10
E

FIG. 8. (Color online) The Hall component 5 calculated accord-
ing Eq. (42) for a penetrable circular scatterer.

PHYSICAL REVIEW B 84, 245413 (2011)

however, is more complicated, and exhibits both sharp peaks
and dips where now the sign of 7 can change in small regions
of energy.

VII. CONCLUSIONS

We investigated the scattering of Dirac electrons by sharp
circular mass barriers, where we studied both hard wall type
antidot and circular penetrable scatterer. For this purpose
the proper boundary conditions for the Dirac equation were
derived, and it was illustrated how it is possible to use formally
8-type functions describing relativistic systems with high and
sharp potentials.

The differential and total cross section, the inverse momen-
tum relaxation time, and the perpendicular (Hall) component
of resistivity were calculated. The obtained results were
compared with analogous results for scattering of Schrodinger
electrons by similar scatterers.

It was shown that the scattering of Dirac electrons even by
azimuthal symmetric structures depends on the valley index:
The K valley electrons are preferentially deflected to one side
(the Hall component of the resistivity isn’t zero) while the
electrons of the other K’ valley are deflected to the other side
of the sample. This enables one to use this property for valley
index filtering in transport experiments.

There is an essential difference in the energy dependence of
the cross section between Dirac and Schrodinger electrons. At
small energies the cross section for Dirac electrons tend to zero
while those for Schrodinger electrons diverge logarithmically.
This feature of Dirac electron is caused by the fact that zero
energy for the Dirac electron actually corresponds to the
middle of the half-filled band, and not to the bottom of it
as in the Schrodinger electron case.

We showed that in the case of Dirac electron scattering on
a penetrable circle the quasibound states reveal themselves as
sharp gaps in the total cross section, the inverse momentum
relaxation time, and the Hall component of the resistivity as
well. In the case of Schrodinger electrons those resonances
show up as peaks in the cross sections, and thus their
appearance is qualitatively very different.
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APPENDIX: SCATTERING OF A SCHRODINGER
ELECTRON BY CIRCULAR BARRIERS

In this Appendix we study the scattering of Schrodinger
electrons by sharp circular potentials shown in Fig. 1. This
allows us to compare them with results for Dirac electrons
considered in the present paper.

Here scattering is now described by the single component
wave function W(r) satisfying the stationary Schrddinger
equation,

(V2 +HW(r) =0, (A1)
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FIG. 9. (Color online) The energy dependence of the partial sums
oy contributing to the total cross section for Schrodinger electrons.
The italic numbers on the curves indicate the number M.

where the symbol k stands for the electron momentum related
to its energy as E = k>/2. Now we use dimensionless units
defined as follows. The coordinates will be measured in the
radius of the circular scatterer R, energy, in 2> /m R units, and
the electron momentum, in 72/ R units.

In polar coordinates the wave function W(r) is usually
expanded into a Fourier series like U(r) component of the
Dirac function in Eq. (12) with radial components ,,(r)
satisfying the Bessel equation. That is why all mathematics
is practically the same as used in previous sections with a
single replacement of the Dirac electron energy E by the
momentum k of the Schrodinger electron. Consequently, we
obtain the same differential cross-section given by Eq. (35),
and Eqgs. (37) and (41) for the total cross section and inverse
momentum relaxation time.

Nevertheless, there is an essential difference between Dirac
and Schrodinger electrons which is the different boundary
conditions that will lead to different scattering phases.

Thus, in the case of scattering on a circular hard wall
potential [see Fig. 1(a)] every radial component of the wave
function has to satisfy the zero boundary condition,

Ym(1) =0, (A2)
which leads to the following equation for the phase,
n(k
tans,, = — 25D (A3)
Y (ka)

instead of Eq. (29) for the Dirac electron. The partial
contributions and the total cross section calculated by using
the above phase equation are shown in Fig. 9.

In the case of an extremely narrow penetrable circle (i.e., a
8-type potential), Eq. (A1) has to be replaced by

(V24 k% = pd(r — D}W(r) =0,

which leads to the following boundary conditions for the radial
wave-function components on the circle:

Ym(1 +0) = ¥, (1 — 0),
v,,(14+0) — ¢, (1 = 0) = py,(1).

(A4)

(A5a)
(A5b)
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Go
~
T

FIG. 10. (Color online) The m = 0 contribution to the total cross
section for Schrodinger electrons scattered on penetrable circular
potentials, shown by the red solid curve. The green dotted curve is
the envelop function 4/ k, and the blue dashed curve is the result for
scattering on impenetrable scatterers.

This leads to the following scattering phase equation:
Im (k)
Y, (k) — 2/ pr I (k)

From it we obtain the following partial contribution to the total
cross section:

tan§,, =

(A6)

.5 4J (k)
—sin“ 4, = .
k k{ T2 (k) + [V (k) — 2/ pr T (k)] }

The typical contribution(when m = 0) is shown in Fig. 10 by
the red solid curve. Narrow peaks appear close to the positions
of the bound states of a dot that are defined by the equation
Jn(k) = 0. This can be also seen from Eq. (A7) which formally
is similar to a Lorentzian curve. The top of the peak is achieved
when the second term in the denominator (the analog of
detuning) in Eq. (A7) is zero. In the case of small penetrability
of the scatterer this can be realized if the large parameter
p > 1 is compensated by a small J,,(k) < 1 value. But then
the contribution becomes equal to 4/k which indicates that
the maximum of all peaks reach the above envelope function
shown by the green dotted curve in Fig. 10. One more property
of the partial contribution follows from the fact that it is rather

(AT)

FIG. 11. (Color online) The same as Fig. 10 but now for the total
cross section.
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close to the same contribution in the case of scattering by
the impenetrable scatterer shown by the blue dashed curve
[Eq. (A6) converts itself into Eq. (A3) when p = oo] which
indicates that the peaks appear at the minima of that dashed
curve.

PHYSICAL REVIEW B 84, 245413 (2011)

These resonances show up also in the total cross section
as seen in Fig. 11. The comparison with the blue dashed
curve calculated for p = oo indicates clearly that the qua-
sibound states appear in the total cross section as positive
peaks.
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