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Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between
the tight-binding and Dirac equation approach
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The Dirac equation is solved for triangular and hexagonal graphene quantum dots for different boundary
conditions in the presence of a perpendicular magnetic field. We analyze the influence of the dot size and its
geometry on their energy spectrum. A comparison between the results obtained for graphene dots with zigzag
and armchair edges, as well as for infinite-mass boundary condition, is presented and our results show that
the type of graphene dot edge and the choice of the appropriate boundary conditions have a very important
influence on the energy spectrum. The single-particle energy levels are calculated as a function of an external
perpendicular magnetic field that lifts degeneracies. Comparing the energy spectra obtained from the tight-binding
approximation to those obtained from the continuum Dirac equation approach, we verify that the behavior of the
energies as a function of the dot size or the applied magnetic field are qualitatively similar, but in some cases

quantitative differences can exist.
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I. INTRODUCTION

Since its recent discovery,' graphene (a single layer of
carbon atoms) has been attracting a lot of interest, due to
its unique band structure, which is gapless and exhibits an
approximately linear dispersion relation at two inequivalent
points of the reciprocal space (labeled as K and K') in the
vicinity of the Fermi energy. The linearity of the band structure
allows one to describe the carriers close to the K and K’ points
in a continuum model, using the Dirac equation with massless
particles.” Because of the well-known Klein tunneling effect in
graphene, which prevents electrical confinement of electrons,
the lateral confinement of Dirac carriers is a big challenge in
manufacturing graphene-based electronic devices.>™ Differ-
ent suggestions have been made to realize lateral confinement
of electrons in graphene, e.g., by means of gap engineering,
provided by a space-dependent mass term,%’ or, alternatively,
by combining an external magnetic field® or a finite mass
term’ with an electrostatic potential. On the other hand,
recent improvements of different fabrication techniques made
possible cutting and manufacturing of single layer graphene
flakes with different shapes and sizes,'!3 where such a
lateral confinement naturally occurs. Using the tight-binding
model (TBM), remarkable effects have been reported as a
consequence of the type of the edges and the geometry of these
flakes:'42% (i) zero-energy states are predicted for triangular
graphene flakes with zigzag boundaries, (ii) for very small
flakes, a gap opens (the energy gap of different graphene flakes
was recently investigated experimentally?') and the density of
states (DOS) strongly depends on the type of the edges for any
dot geometry, and (iii) the energy levels of graphene quantum
dots in the presence of a magnetic field approach the Landau
levels with increasing magnetic field.

Recently, analytical results were reported for infinite-mass
boundary conditions for circular disks,?” for triangular flakes
with armchair®® and zigzag edges,'> and for square graphene
quantum dots.>* However, it is not always clear how the
complicated boundary conditions describing the zigzag and
armchair edges can be invoked in the continuum model.
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Furthermore, the geometry of the triangular and hexagonal
graphene flakes, make such systems harder to be studied by
analytical means. One has to rely on, either a tight-binding
model or a numerical solution of coupled differential equations
in case of the continuum model.

The continuum model describes very well the low-energy
states in an infinite graphene sheet, but it is not clear if this
is still the case for small graphene flakes. Therefore it is
important to learn if there is a minimum size beyond which
the continuum model no longer gives reliable predictions.
Furthermore, because of the large influence of the type of
edges on the energy spectrum, and since it is not always
clear which boundary conditions should be invoked in the
Dirac equation for each possible geometry of the flake, a
comparison between the results obtained with the different
possible boundary conditions and a link with the TBM is an
interesting issue, which requires a detailed study.

In this paper, by solving the Dirac equation numerically, we
present a theoretical study of the energy spectra of triangular
and hexagonal graphene quantum dots, where three types of
boundary conditions are invoked, namely, zigzag, armchair,
and infinite-mass boundary conditions. The influence of
an external magnetic field, perpendicular to the graphene
layer, on the energy spectrum of the quantum dots is also
analyzed. A comparison between the results obtained with the
continuum model and those obtained from the tight-binding
approach will be made.

This paper is organized as follows. In Sec. II, we present
a brief outline of the tight-binding model (TBM). The model
based on the Dirac-Weyl equation is presented in Sec. III and
the different boundary conditions are separately analyzed in
this section. Our numerical results are reported in Sec. IV. The
summary and conclusions of this work are presented in Sec. V.

II. TIGHT-BINDING MODEL

The tight-binding Hamiltonian within the nearest-neighbor
approximation is
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FIG. 1. (Color online) The lattice structure of triangular (upper
panels) and hexagonal (lower panels) graphene quantum dots with [(a)
and (c)] armchair edges and [(b) and (d)] zigzag edges. a = 0.142 nm
is the C-C distance, and the primitive lattice vectors are denoted by
a and b. The atoms of the two sublattices are represented by blue
circles and red dots. The yellow region indicates the area of one
carbon hexagon. N, is the number of C atoms in each side of the dot.

H =" Eycch + Y (tnmcicm + He), (1

(n.m)

where E, is the energy of the nth site, #,, is the hopping

energy and cf, (cy) is the creation (annihilation) operator
of the m electron at site n. Note that, for each site n, the
summation is taken over all nearest neighboring sites m. In
the presence of a magnetic field, the transfer energy becomes
t — te'?®mn where @, ,, = (1/®) frrm A - dl is the Peierls
phase, with ®, = h/e the magnetic quﬁntum flux and A the
vector potential.

Triangular and hexagonal quantum dots with zigzag and
armchair edges are illustrated in Fig. 1, where the vectors a =
a(3/2,4/3/2) and b = a(3/2,—+/3/2), with a = 0.142 nm
the lattice parameter (or the C-C distance), are introduced as
primitive lattice vectors. In the present work, we will consider
only the interaction between each atom »n and its three first
nearest neighbors. In the case of graphene, this interaction has
the hopping energy ¢t = 2.7 eV. The vector potential corre-
sponding to the external magnetic field B = BZ perpendicular
to the layer is chosen as the Landau gauge A = (0, Bx,0).
With this choice of gauge, the Peierls phase for a transition
between two sites n and m is ®,, =0 in the x direction
and ®,,, = £(x/3a)®./ Py along the +y direction, where
®, = 3v/3a?B/2 is the magnetic flux threading one carbon
hexagon (the area of one carbon hexagon is shown in Fig. 1(a)
by the yellow region). An external potential is represented
by a variation in the on-site energies E,, and a vacancy or
defect can be represented by setting the energy of the vacant
site to a larger value and the hopping terms to these atoms
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as zero.”> The Hamiltonian H in Eq. (1) can be represented
in matrix form and the eigenvalues and eigenfunctions of
a graphene flake can be obtained by diagonalization of the
matrix.

Notice that the hexagonal lattice presented in Fig. 1 is not
a Bravais lattice, but a combination of two triangular lattices
composed by atoms labeled as type A (blue) and type B (red).
Accordingly, the tight-binding Hamiltonian of Eq. (1) can be
rewritten as

H =Y Efala,+Y Efblby+ Y (tnmaibn +Hc.),
n n

(n,m)

@)

where the operators ajl (a,) and b,Tl (b)) create (annihilate) an
electron in site n of lattice A and B, respectively.

III. CONTINUUM MODEL: DIRAC-WEYL EQUATION

Considering an infinite (periodic) graphene sheet and after,
performing a Fourier transform on the operators in Eq. (1) and
diagonalizing the resulting Hamiltonian leads to an energy
dispersion:?

Ek)

= it\/3 + 2cos(\/§kya) + 4 cos <@k},> cos <3_akx).
(3

The first Brillouin zone in reciprocal space is a hexagon with
six Dirac points, where only two of them are inequivalent.
From the primitive vectors, we can find the position of these as
K = (2n/3a,27r/3\/§a) and K' = (2n/3a,—2n/3\/§a). The
states near these points have approximately a linear dispersion
and can be described as massless Dirac fermions by the

Hamiltonian
_ (Hg 0
H= (0 HK’ > ’ (4)

where Hg (Hg) is the Hamiltonian in the K (K’) point, which
are given by

Hx = vpo - p, (5a)
Hyg = UFO'* P, (Sb)

where ¢ = (0,,0,) are Pauli matrices and ¢* = (0,,—0y)
denotes the complex conjugate of the matrix o . In the presence
of a magnetic field B perpendicular to the graphene layer and
using the Landau gauge, one can simply rewrite Eq. (4) in the
following form:

0 n- o 0
N ) PR 0 0
H=10" o o m| ©)
0 0 I- o0
where,
. 5 ad 27 B 7
+ = —ihvp 5 zay g X
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The wave function in real space for the sublattice A is

Ya®) = e®Tu(r) + ™ (), (8a)

and for sublattice B it is given by
V() = ¢XTop(r) + ¢ Top (). (8b)

The Hamiltonian of Eq. (6) acts on the four-component
wave function ¥ = [@4,¢p,04 9517, which leads to the four
coupled first-order differential equations:

0
_~<8—— ——i—,Bx) —— (9a)
X

0
- <—+ — — Bx' |oa = €pp, (9b)
ax’
(2 + Bx’ = (%90
l ax’ la X |Qp = €@y, C
9 9 )
—7 1 ;= . 9d
l(ax’ iy )m "y (9d)

In the above equations, we used the following dimen-
sionless units: x' = x//S, ¥y = y/v/S, B =27BS/dy =
21 ®/ Dy, € = E/Ey, with Ey = hvp/+/S, where S o L? is
the area of the dot with L being the length of the side of
the dot. In this paper, we solve Eq. (9) numerically, using
the finite-elements method, for the triangular and hexagonal
graphene flakes shown in Fig. 1, considering zigzag, arm-
chair, and infinite-mass boundary conditions. The numerical
calculations are performed by using the standard finite-
element package COMSOL MULTIPHYSICS,?® which discretizes
the two-dimensional flake in a finite-sized mesh and allows
the implementation of the appropriate boundary conditions.
The way the boundary conditions are implemented in the
continuum model is the subject of the following three sections.

A. Zigzag boundary conditions

The geometry of the hexagonal and triangular graphene
quantum dots with zigzag edges are illustrated in Figs. 1(b)
and 1(d). The length of one side of the hexagonal and triangular
dots, respectively, are given by L = «/3(N; — 1/3)a and L =
\/g(Ns + Da, with N being the number of atoms in each
side of the dot and a = 0.142 nm is the C-C distance. The
total number of C atoms in the triangular dot is N = [(N, +
2)2 — 3] and N = 6N? for the hexagonal dot. The zigzag-
type boundary condition was previously studied by Akhmerov
et al.,*” who presented a model that is generically applicable
to any honeycomb lattice. For a graphene dot with zigzag
edges and if the last atoms at the boundary are from sublattice
A (blue circles in Fig. 1), the boundary conditions are given
by 4 = ¢4 = 0, whereas ¢ and g are not determined, and
similarly, when the zigzag edges are terminated by the B atoms
(red dots in Fig. 1), g = ¢p = 0, while ¢4 and @4 are not
determined.

B. Armchair boundary conditions

The geometry of a hexagonal and triangular graphene
quantum dot with armchair edges is illustrated in Figs. 1(a) and
1(c). Here, the length of one of the edges of the hexagon dot is
L = (3N; — 4)a/2 and for the triangular dot is L = 3Na/2.
For an armchair hexagonal graphene dot, the total number of
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C atoms is N = [9N;(N,/2 — 1) 4 6] and for the triangular
dot is given by N = (N; 4+ 2)3N, /4. Note that in the case of
armchair boundaries the number of C-atoms in each side is an
even number [see Figs. 1(a) and 1(c)].

From Figs. 1(a) and 1(c), we notice that the edge atoms
consist of a line of A-B dimers, where the wave function should
be zero. From Egs. (8a) and (8b), these boundary conditions
become?®

i(K'—K)r (loa)

(10b)

pa(r) = —e oa(r),
pp(r) = =" KB gp ),

where r is taken at the position of the edge. Notice that these
armchair boundary conditions mix the wave functions of the
K and K’ points.

C. Infinite-mass boundary condition

A mass-related potential energy V(x,y) can be coupled to
the Hamiltonian via the o, Pauli matrix,

H =vro -p+r1o.V(x.y), an

where the parameter t = £1 distinguishes the two K and K’
valleys. It is straightforwardly verified that the presence of
a mass term in the Hamiltonian of Eq. (11) induces a gap
in the energy spectrum of graphene. However, if the mass-
related potential V(x,y) is defined as zero inside the dot and
infinity at its edge, the Klein tunneling effect at the interface
between the internal and external regions of the dot can be
avoided and, consequently, the charge carriers will be confined.
This infinite-mass boundary condition can be introduced in
the Dirac equation by defining @g(x,y)/@a(x,y) = ie'® and
@B (x,y)/@a(x,y) = —ie'? (which, respectively, correspond
to the K point and the K’ point wave spinors) at the
boundary, where ¢ is the angle between the outward unit
vector at the edges and the x axis.”’ Due to its simplicity,
this type of boundary condition has been used in the study
of circular graphene dots?’> and rings’>?! in the presence of
a perpendicularly magnetic field, where analytical solutions
can be found. For the hexagonal and triangular geometries,
the angle ¢ has a fixed value at each side of the dot that
simplifies the boundary conditions to ¢p = a@4 (for the K
valley) and ¢p = —a@s (for the K’ valley) where a = ie'®
is a complex number. The infinite-mass boundary conditions
are shown explicitly in Fig. 2 for a triangular dot.

= (-iv3/2-1/2)pa
e = (ivV3/2+1/2)pa

fLQ

en = (ivV3/2 = 1/2)pa
e = (-iv3/24 1/
d=m/6

FIG. 2. (Color online) The infinite-mass boundary conditions
implemented on the edges of a triangular dot. 71,75, 713 are the outward
unit vectors at each edge of the dot.
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IV. NUMERICAL RESULTS

A. Zero magnetic field

The energy levels of hexagonal (upper panels) and trian-
gular (lower panels) graphene flakes, as calculated within the
continuum model, are shown in Fig. 3 as a function of the
square root of the dot area. The results are shown for zigzag [(a)
and (b)], armchair [(c) and (d)], and infinite-mass [(e) and (f)]
boundary conditions and are qualitatively and quantitatively
very different. As the dot area increases, the energy levels tend
to a gapless spectrum, which is expected, since the energy
spectrum of an infinite graphene sheet does not exhibit a gap.
A peculiar spectrum is observed for zigzag triangular dots [see
Fig. 3(b)]: zero-energy states are found for all sizes of such a
dot. These zero-energy states are separated from the remaining
positive and negative energy states by an energy gap, which
decreases as the dot becomes larger. The presence of such
zero-energy states in triangular and trapezoidal graphene flakes
have been previously reported in the literature,'>~!” where the
TBM was applied. In the case of zigzag triangular dots, it
has been shown analytically'> that the equation HW = 0 for
the TBM Hamiltonian in Eq. (2) leads to Ny — 1 linearly
independent states, namely, Ny — 1 degenerate states with
E =0, for any number N; of C atoms in one of the edges
of the flake. Thus Fig. 3(b) demonstrates that the existence
of zero-energy states, which is observed in the TBM, is
qualitatively captured by the approximations of the continuum
model as well. The results in Fig. 3 also show that the energy
levels for a dot with armchair and infinite-mass boundary
conditions are qualitatively more similar to each other than
the spectra for zigzag edges, where carriers are predominantly
confined at the edge of the dot. In fact, for the triangular
geometry, the infinite-mass boundary condition describes very
well the armchair states, specially for lower energy states.
However, for the hexagonal geometry, the results for armchair
and infinite-mass boundary conditions are only qualitatively
similar where the hexagonal dots with infinite-mass boundary

zigzag armchair infinite-mass
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FIG. 3. (Color online) Energy levels of hexagonal [(a), (c), and
(e)] and triangular [(b), (d), and (f)] graphene quantum dots with
zigzag [(a) and (b)], armchair [(c) and (d)] edges and infinite-mass
boundary condition [(e) and (f)] as a function of the square root of
the dot area S in the absence of a magnetic field.
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condition exhibit more energy states in comparison with the
armchair case.

Notice that the energy spectra shown in Fig. 3 exhibits
degenerate states. These degeneracies, which will be evidenced
in the following figures where we plot the energy spectra as a
function of the eigenvalue index, are related to the symmetries
of the triangular and hexagonal dots, as we will explain in
further detail later on, when we discuss about the electron
probability densities.

A comparison between the energy spectra obtained by
means of the TBM (a) and the Dirac equation (b) for zigzag
hexagonal dots is shown in Fig. 4, for three sizes of the
dot, defined by the number of C atoms in each side of the
hexagon N;. The energies E; are plotted as a function of
the eigenvalue index i. Although the results are quantitatively
different, they are qualitatively similar, e.g., as the size of
the dot increases, they start to exhibit an almost flat energy
spectrum as a function of the eigenvalue index around the
Dirac point. Such a flat spectrum leads to a peak in the DOS
close to the Dirac point, which was recently reported in the
literature'® for graphene dots with zigzag edges within the
TBM. The curves for Ny = 30 obtained by the TBM and
continuum models are very similar, except for the fact that
many more states are found in the latter, whereas the discrete
character of the spectrum in the former is much more clear.
For smaller dots, the agreement between these two models
becomes clearly worse. For instance, an energy gap E, is found
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B o ooo
A Ne =10 w -
0.25F 24 o 7
o N, = e .
o® N =20 N =30
—~ o
> Ey : oooOOO DDDDDD
\G_)/ oF ----|-- O&meogggggﬁammammmammmammm 777777777777 —
&3] 47000 oae 12} © TBM
oo —~ 1
0o =
o - © o8
L aa o S i
-0.25 NS — = 04
O  ooo 0
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eigenvalue index

FIG. 4. (Color online) Energy levels of a zigzag hexagonal
graphene dot as a function of the eigenvalue index obtained by (a)
the TBM and (b) the continuum model, for three different sizes of the
dot with Ny = 10, 20, 30, having respectively surface area S = 14.68,
60.78, 138.32 nm?. The inset in panel (a) shows the energy gap E,
as a function of N, obtained by the TBM.
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for very small hexagons (i.e., Ny < 10) within TBM, whereas Fig. 5(b)], for three different sizes of the dot. The energy
in the case of the continuum model such a gap is extremely spectrum in both cases approaches the prolonged S-shape
small. As a consequence, the continuum model overestimates curve predicted by Ezawa'* as the size of the dot increases and
the DOS at E = 0 as the dot size decreases, since it exhibitsa  the spectrum exhibits an energy gap E, at the Dirac point. The
plateau in the energy as a function of the eigenstate index in energy gap as a function of N; is shown in the inset of Fig. 5(a),
the vicinity of E = 0 even for smaller Ny, where TBM results which decreases rapidly as the size of the dot increases.
show a gap in the energy spectrum. Notice that the £ =0 Our numerical results can be fitted to E, = o/ N with o =
states in zigzag dots are edge states, so that the number of 8.5 eV for the TBM (blue solid curve) and ¢ = 13 eV for the
zero-energy states depends on the number of edge atoms in  continuum model (red dashed curve) results. Notice that E,
the TBM and, similarly, to the number of mesh elements at obtained from the continuum model is larger than the one from
the edge in the continuum model. Therefore, in the continuum  the TBM results in particular for small N, and both curves can
model for E = 0, the finite elements problem is ill defined, not be made to coincide by a simple shift in Ny. This is clearly
where the constructed matrix of the finite-mesh elements in this a consequence of the increased importance of corrections to
case is singular (zero inverse), leading to spurious solutions the linear spectrum used in the continuum model for small
around £ = 0. As the size of the dot increases, the gap in the sizes of the system. The inset of Fig. 5(b) shows the five
TBM results quickly reduces to zero and a zero-energy level lowest electron states for both TBM (blue solid curves) and
for the hexagonal flakes with zigzag edges appears.®> In the  the continuum model (dashed red curves). Our results show
inset of Fig. 4(a), the energy gap values obtained by TBM that the continuum model overestimates the energy values also
are shown as a function of Ny. These results can be fitted to  for the upper energy levels in comparison with the TBM energy
E; = a(1/N,)” [blue solid curve in the inset of Fig. 4(a)], levels. In fact, the energy dispersion in the continuum model is
where ¢ = 94.6 eV and y = 3.23 are fitting parameters. given by a linear curve, which coincides with the TBM energy

The energy states of armchair hexagonal dots are shown as spectrum for low energies, but as the energy goes further away
a function of the eigenvalue index in Fig. 5 within the TBM  from E = 0, this linear dispersion overestimates the energy as
approach [see Fig. 5(a)] and the Dirac-Weyl equations [see compared to the real band structure of graphene, which starts
to bend down from the linear spectrum as the energy increases.
This emphasizes once again the importance of the higher-order
corrections to the linear dispersion, especially for high-energy
states and smaller dot sizes.

Figure 6 shows the probability density (using the contin-

0.5

0.25
uum model) corresponding to the first two energy levels of
- hexagonal flakes. The probability density for the zigzag case
R with N; = 20 is presented in panels (a) and (b), respectively,
&3] for E =0 and 0.01 eV. The results clearly demonstrate that
-0.25 . .
zigzag armchair
(a) ’
-05
05 e ; —
A 000000” Clontinuum model ooooo
o DDDDDD
e =20 o s N = 00
0.25- o Ns; =40 ol
o DDDDD 04
>
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FIG. 5. (Color online) Energy levels of an armchair hexagonal
graphene dot as a function of the eigenvalue index obtained by (a)
the TBM and (b) the continuum model for three different sizes of
the dot with Ny = 20, 40, 60 having respectively surface area S =
41.07, 176.23, 405.68 nm?>. The inset in panel (a) shows the energy

gap obtained from both TBM (black squares) and continuum model FIG. 6. (Color online) Electron probability densities correspond-
(green circles). The inset in panel (b) shows the lowest electron energy ing to the two lowest energy levels of hexagonal graphene flakes,
levels as a function of N, for both TBM (blue solid curves) and obtained by the continuum model, for [(a) and (b)] zigzag (N, = 20)
continuum model (red dashed curves). and [(c) and (d)] armchair (N, = 40) edges.
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FIG. 7. (Color online) Energy levels of a zigzag triangular
graphene dot as a function of the eigenvalue index obtained by (a)
the TBM and (b) the continuum model for three different sizes of
the dot with N, = 12, 24, 40 having respectively surface area S =
4.42,16.37, 44.03 nm>. The inset in panel (a) shows the energy gap
obtained from both TBM (black squares) and continuum model (green
circles).

the zero-energy states in the zigzag case are due to edge effects
and, accordingly, are confined at the edges while the carriers
confine toward the center of the flake with increasing energy
[see Fig. 6(b)]. The probability densities of the armchair-edged
graphene flake with Ny =40 are very different as seen in
Figs. 6(c) and 6(d) for the lowest degenerate states with
E = 0.16 eV. The electron wave function is spread out over the
whole sample, but different from the usual quantum dots with
parabolic energy-momentum spectrum, it has a local minimum
in the center of the dot. Note that Fig. 6(c) has only two-fold
symmetry while Fig. 6(d) is sixfold symmetric. Both densities
are zero in the center, while Fig. 6(c) has two extra zeros at the
sides along y = 0. These results are comparable to the TBM
results obtained in Ref. 18.

The energy spectrum for triangular dots with zigzag edges,
obtained by the TBM and the Dirac-Weyl equation are shown
as a function of the eigenvalue index in Figs. 7(a) and
7(b), respectively. Notice that both energy spectra exhibit
zero-energy states. As we mentioned before, the number of
degenerate states with zero energy is a well defined quantity in
the tight-binding approach, namely, Ny — 1, where Nj is the
number of C atoms in one side of the triangle.!> On the other
hand, the result in Fig. 7(b) for the continuum model exhibits
many more zero-energy states. Therefore, while the continuum
model captures qualitatively the existence of zero-energy
states, it does not provide the appropriate number of degenerate
states as calculated by the TBM. These zero-energy levels are
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FIG. 8. (Color online) Energy levels of an armchair triangular
graphene dot as a function of the eigenvalue index obtained by (a) the
TBM and (b) the continuum model for three different sizes of the dot
with Ny =20, 40, 60 having respectively surface area S = 7.85,31.43,
70.72 nm?. The inset in panel (a) shows the energy gap obtained from
both TBM (black squares) and continuum model (green circles). The
inset in panel (b) shows the lowest electron energy levels as a function
of N, for both TBM (blue solid curves) and continuum model (red
dashed curves).

related to the edge states of zigzag graphene flakes.'>!® The
energy gap (between the zero-energy level and the first nonzero
eigenvalue) is shown in the inset of Fig. 7(a) as a function of
the size of the dot, where E, obtained by both models are
comparable and the difference between the TBM (red dashed
curve) and continuum (blue solid curve) results tend to zero for
large graphene flakes. These results can be fitted to £, = o/ N,
with o = 15.75 eV for the TBM gap and o = 18.9 eV for the
continuum model.

The energy spectra of triangular dots with armchair edges
obtained by the TBM and the continuum model are shown in
Fig. 8. No zero-energy states are found and the energy gap at
the Dirac point for both models is comparable. The gap can be
fitted to E; = o/ Ny (@ = 21.9 eV for TBM and o = 25.9 eV
for the continuum model) as shown respectively by the blue
solid and dashed red curves in the inset of Fig. 8(a). The lowest
electron energy levels, obtained by the TBM (blue solid curves)
and the continuum model (red dashed curves), are shown in the
inset of Fig. 8(b) as a function of N;. The results show a larger
difference between the TBM and continuum energy values for
the upper energy levels (e.g., |ET — ES| < |[ET — ES)).

Notice that the energy gaps found for all the systems that we
investigated were fitted to E, = o/ N, for different values of o,
except for the case of zigzag hexagonal dots, where the gap is
fitted to £, = oz/Nsy, with y = 3.23. This is a consequence of
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armchair

zigzag

-max

FIG. 9. (Color online) Electron probability densities correspond-
ing to the lowest energy levels of the triangular graphene flakes,
obtained by the continuum model, for [(a) and (b)] zigzag (N, = 20)
and [(c) and (d)] armchair (N, = 40) edges.

the fact that the corners of the zigzag hexagonal dot structure
are not terminated by a single atom, as in the case of zigzag
triangular dots, but by a pair of C atoms corresponding to two
different sublattices, forming an A-B dimer (see Fig. 1). These
A-B dimers are responsible for a vanishing wave function in
the corners of the zigzag hexagonal dots, as observed in Fig. 6.
As explained in Sec. IIT A, the zigzag boundary condition
for each side of the dot is implemented in the Dirac-Weyl
equations by setting to zero the component of the pseudospinor
corresponding to the sublattice that forms that side. As the
sublattice types of adjacent sides of a zigzag hexagonal dot
are different, connected by the A-B dimers in the corners,
the whole wave function must vanish at these corners, since
these points are composed of both A and B sublattices. The
vanishing wave function at the corners reduces the effective
confinement area and, consequently, increases the energy gap,
especially for smaller dots, where the influence of the corners
is more significant. As the size of the dot increases, the role
of the corners in the energy gap becomes less important and
is eventually suppressed by the influence of the zigzag edges,
leading to the zero-energy states that form the plateau in Fig. 4,
explaining the faster decay of the energy gap (y = 3.23)
in zigzag hexagonal dots, as compared to the other cases
(y =D.

The probability density corresponding to the first two
energy levels of triangular graphene flakes obtained by the
continuum model is shown in Fig. 9. The probability density
for the zigzag-edged dot with Ny = 20 is presented in panels
(a) and (b), respectively, for E = 0 and for the first nonzero
eigenvalue (i.e., £ =0.92 eV). For the degenerate zero
energy states, the carriers are confined at the edges of the
triangular flake, which is typical for zigzag boundaries. States
corresponding to large energy values are confined in the center
of the triangle [see Fig. 9(b)]. For armchair triangular flakes,
as in the hexagonal case, the electron state is spread out over
the whole flake [see Figs. 9(c) and 9(d), which display the
different probability densities for Ny = 40 corresponding to
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s E=005 eV ||l

lpal?

| E=13¢eV

FIG. 10. (Color online) Electron densities for the first energy
level of the triangular and hexagonal graphene flakes (using TBM)
with Ny = 10 and zigzag edges. Left panels show the total electron
density |W|?> and the right panels present the electron densities
associated with A and B sublattices. The gray dots are the positions of
C atoms.

the first degenerate eigenvalues with E = 0.32 eV]. Both wave
functions have three-fold symmetry and the inner part is even
six-fold symmetric. Note that the electron density in Fig. 9(d)
is zero at the three corners and in the center of the triangle,
which is different from Fig. 9(c) where zero’s are found at the
corners of the inner hexagon and at the center of the sides of
this hexagon.

The TBM electron densities of the zigzag graphene dots
with Ny = 10 is shown in Fig. 10 for the first energy level
of the triangular and hexagonal graphene flake. Left panels
present the total electron density |W?| and the electron densities
associated with A and B sublattices (|04, 5 |?) are shown in the
right panels. We found that the wave functions of the two-fold
degenerate states are related to each other by a 60° rotation.
The sum of the densities of the degenerate states results in a
sixfold (threefold) symmetric wave function for the hexagonal
(triangular) flakes. As seen in Fig. 10, the total electron density
is related to the densities of A and B sublattices by |W|?> =
|pa)? + |pg|*. Figure 11 describes the density distributions of
the lowest energy levels for armchair graphene flakes. For the
armchair hexagonal dots, the electron densities corresponding
to the A and B sublattices (right panels) can be transformed
into each other by a 180° rotation, whereas the densities of the
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E=0.215eV

|

FIG. 11. (Color online) The same as Fig. 10 but for the dots with
armchair boundaries and N, = 20.

triangular wave spinors can not be linked to each other by a
rotational transformation.

B. Magnetic field dependence

The dependence of the energy levels of triangular (a) and
hexagonal (b) graphene flakes on the magnetic flux through
one carbon hexagon &, = BS, is shown in Figs. 12 and 13,
for flakes with armchair and zigzag edges, respectively. The
results in panels (a) and (b) are obtained using the continuum
model and the results in panels (c) and (d) show the TBM
energy spectrum. S, = (3+/3/2)a? is the area of a carbon
hexagon, which is indicated by the yellow region in Fig. 1(a).
The results are obtained for dots with an area of S = 100
nm? and S = 25 nm?, respectively, for armchair and zigzag
edges. The continuum and TBM results are qualitatively
similar to each other in the sense that as the magnetic flux
increases, the energy levels converge to the Landau levels
of a graphene sheet E, (see red solid curves), which are
given by

3at
E, = sgn(m) 3/ 2Inl. (12)
B

where, [ = /I /eB is the magnetic length and » is an integer.
The interplay between the quantum dot and magnetic field
confinements is responsible for the appearance of a series of
(anti)crossings in the energy spectrum. As explained earlier,
armchair graphene dots do not exhibit zero-energy states for
B = 0. However, as the magnetic field increases, some of the

PHYSICAL REVIEW B 84, 245403 (2011)

FIG. 12. (Color online) Energy levels of [(a) and (c)] triangular
and [(b) and (d)] hexagonal graphene dots with an armchair boundary
as a function of the magnetic flux threading one carbon hexagon ®..
The results in panels (a) and (b) are obtained using the continuum
model while panels (c) and (d) display the TBM results. The quantum
dots have an area S such that «/§ = 10 nm.

excited energy levels approach the zero-energy Landau level
n =0 in both armchair and zigzag graphene flakes, which
naturally produces (anti)crossings between the excited states.
Lifting the degeneracy of the energy levels by the magnetic
field results in a closing of the energy gap with increasing
magnetic field. Notice that the zero-energy states of zigzag
triangular dots [see Fig. 13(a)] are not affected by the magnetic
field because they are strongly confined at the edges of the dot.
All these features are qualitatively similar to those obtained
by the TBM (see the lower panels in Figs. 12 and 13). In
the case of hexagonal zigzag graphene dots [see Fig. 13(b)],
the continuum model exhibits a plethora of additional lines as
compared to the well-known energy spectrum obtained by the
TBM [compare Figs. 13(b) and 13(c)].

For the infinite-mass boundary condition, the energy spec-
trum of triangular (a) and hexagonal (b) dots as a function of
the magnetic field is shown in Fig. 14 for the dot with area
S =25 nm?. The energy spectrum in this case differs from
both obtained for zigzag and armchair boundary conditions.
The spectra exhibit no zero-energy state at B = 0 and show
crossings and anticrossings between the higher-energy levels
that resemble the TBM results [see Figs. 14(c) and 14(d),
respectively, for triangular and hexagonal dots]. In the TBM
model, the infinite-mass boundary conditions can be realized
as a graphene dot structure surrounded by an infinite-mass me-
dia, where we applied a staggered potential [i.e., +10(—10) eV
on-site potential for sublattice A(B)] around the dot
geometry.
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Triangular

Hexagonal

FIG. 13. (Color online) The same as Fig. 12 but for dots with
zigzag boundaries and the dots have an area S such that /S =5 nm.

Triangular
A

T A T A
Y A Y

Hexagonal

’ (€)=

0.15

TR
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D,/ P

FIG. 14. (Color online) The same as Fig. 12, but for dots with
infinite-mass boundary conditions. The dots have an area S such
that v/S = 5 nm. In panels (c) and (d), the infinite-mass boundary
condition is applied within the TBM model, where we imposed a
+10(—10) eV on-site potential for sublattice A(B) around the dot
geometry.
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FIG. 15. (Color online) The same as Fig. 3 but in the presence of
an external magnetic field of B = 50 T. The inset shows the energy
gap as a function of the magnetic flux obtained by the TBM for two
values of N;. The triangle and circle symbols display Eq. (13), which
is fitted to the numerical results.

The energy levels obtained by the TBM (a) and the
continuum models (b) for hexagonal graphene flakes under
a B = 50 T external magnetic field are shown in Figs. 15 and
16 for zigzag and armchair edges, respectively, as a function of
the eigenvalue index. The energy spectra of such systems in the
absence of magnetic field, which are shown in Figs. 4 and 5,
are composed of a series of degenerate states for |E| > 0. The
magnetic field lifts the degeneracy of such states and reduces
the gap between the states. The energy gap as a function of the
magnetic flux through a single carbon hexagon &, is shown
in the insets of Figs. 15(a) and 16(a), respectively, for zigzag
(with Ny = 10,20) and armchair (with Ny = 20,40) hexagonal
dots. These results can be fitted to

Ey(®./®o) = Ey + Eg(Pc/ Do) + Ef(Dc/ Do),  (13)

where Eg’l’z (eV) are the fitting parameters. In the inset
of Figs. 15(a) and 16(a), the fitted results are shown by
symbols. The fitting parameters for the TBM results of a zigzag
hexagonal dot with Ny = 10 (for the range of 0 < &./ Py <
0.17) are Eg*l’z =(0.12,—0.91,1.36) eV [see triangles in
the inset of Fig. 15(a)] and Eg’l'z = (0.86,—26,210) eV,
Eg'l’z = (0.88,—12.5,46.5) eV are the fitting parameters of an
armchair hexagonal dot with Ny = 20 respectively for TBM
and continuum results [triangles in the inset of Fig. 16(a)].
The fittings are done for the range of 0 < ®./Py < 0.06
and 0 < @,/ Py < 0.13 respectively for TBM and continuum
results.
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FIG. 16. (Color online) The same as Fig. 4 but in the presence of
an external magnetic field of B = 50 T. The inset shows the energy
gap as a function of the magnetic flux obtained by the TBM (solid
curves) and continuum model (dashed curves) for two values of N;.
The triangle and circle symbols display Eq. (13), which is fitted to
the numerical results.
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FIG. 17. (Color online) The same as Fig. 5 but in the presence of
an external magnetic field of B = 50 T. The inset shows the energy
gap as a function of the magnetic flux obtained by the TBM (solid
curves) and continuum models (dashed curves) for two values of N;.
The triangle and circle symbols display Eq. (13), which is fitted to
the numerical results.
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FIG. 18. (Color online) The same as Fig. 6 but in the presence of
an external magnetic field B = 50 T. The inset in panel (a) shows the
energy gap E,, obtained by the TBM (solid curves) and continuum
model (dashed curves), as a function of the magnetic flux through
one carbon ring @, for N; = 20 and N, = 40. The triangle and circle
symbols display Eq. (13), which is fitted to the numerical results. In
the inset of panel (b), E, is shown as a function of N; for both TBM
(black squares) and continuum models (green circles) in the presence
of an external magnetic field B = 50 T.

For the zigzag case and for Ny = 20, the energy gap is
already negligible, whereas for Ny = 10, the E, ~ 0.12 eV
gap at B =0 decays as the magnetic flux increases and
approach zero in the limit of large magnetic flux (i.e., ®./®y >
0.2). Due to the lifting of the degeneracies, the energy spectrum
of an armchair hexagonal dot exhibits an almost linear behavior
around E = 0 as a function of eigenvalue index where, both
TBM and continuum models approximately display the same
slope for the linear regime.

For triangular graphene flakes under a B =50 T (i.e,,
d,./ Dy = 0.0063) magnetic field, the energy spectra obtained
by the TBM (a) and the continuum model (b) are shown in
Fig. 17, considering zigzag edges, and Fig. 18, considering
armchair edges. As mentioned earlier, the presence of a
magnetic field does not affect the £ = 0 edge states in the
triangular zigzag flakes, but lifts the degeneracy of the £ # 0
states. The energy gap E, around E = 0 of triangular flakes
is shown as a function of magnetic flux &, in the insets
of Fig. 17(a) and Fig. 18(a) respectively for zigzag (with
Ny, = 12,24) and armchair (with Ny = 20,40) edges (circle
and triangle symbols present the fitted results). EY'?* =
(1.12,—1.32,-0.028) and Ey"* = (1.5,—1.77,0.4) are the
fitting parameters of a zigzag triangular dot with Ny = 12
respectively for TBM and continuum results [see inset of
Fig. 17(a)]. The fitting parameters for an armchair dot with
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N, = 20 [see inset of Fig. 18(a)] obtained by TBM and contin-
uum models are respectively EJ'* = (1.02,—3.87,3.83) and
Eg’l*z = (1.12,—-2.41,1.2). In both zigzag (with Ny = 12 and
armchair (N, = 20) triangular dots, the fittings are done for the
range of 0 < @,/ Py < 0.2). In contrast with hexagonal dots,
the energy gap of the triangular dots reduces smoothly (i.e.,
almost linearly) with increasing the magnetic flux. Therefore
the energy gap is weakly affected by a low magnetic field in
triangular graphene dots. In the inset of Fig. 18(b), the energy
gap is shown as a function of N;. As in the case of zero
magnetic field, E, can be fitted to E, = /N, as a function
of N [see blue solid and red dashed curves in Fig. 18(b)].
The fitting parameters for B =50 T are o ~ 21.87 eV for
TBM and o ~ 25.9 eV for the continuum model, which is
almost the same as for zero magnetic field (see Fig. 8), i.e.,
because of the linear magnetic field dependence of the energy
gap for low magnetic field, it does not affect significantly the
dependence of the energy gap on the size of the armchair
triangular graphene dot.

As a matter of fact, tuning the energy gap by adjusting
the external magnetic field is more useful for smaller sizes
of the dot, since the energy gap decays to zero as the size of
the dot increases. On the other hand, due to the small size of
the dots considered in Figs. 1518, we need large magnetic
field values (e.g., B =50 T) in order to see its effect on
the energy spectrum. Nevertheless, as the influence of the
magnetic field scales with the magnetic flux through the dot
area, similar results will be obtained for lower magnetic fields
in case of a larger graphene dot.

V. SUMMARY AND CONCLUDING REMARKS

We have presented a theoretical study of triangular and
hexagonal graphene quantum dots, using the two well-
known models of graphene: the tight-binding model and
the continuum model. For the continuum model, the Dirac-
Weyl equations are solved numerically, considering armchair,
zigzag, and infinite-mass boundary conditions. A comparison
between the results obtained from the TBM and the Dirac-
Weyl equations show the importance of boundary conditions
in finite-size graphene systems, which affects their energy
spectra. The results obtained by the TBM for graphene flakes
are only qualitatively similar to the results from the Dirac-Weyl
equation for such systems considering zigzag and armchair
boundary conditions, which shows that energy values obtained
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from the continuum model for small graphene dots may not
always be quantitatively reliable.

More specifically, for zigzag hexagonal and triangular
dots, the DOS at E = 0 in the absence of a magnetic field
is overestimated in the continuum approach. Similarly, the
continuum model also overestimates the energy gap around
E =0 in the armchair case for both geometries. A good
agreement between both models is only observed for very
large dots, as expected, and such agreement is always better
for the triangular case, as compared to the hexagonal case.
The energy spectrum obtained using the continuum model
with infinite-mass boundary condition for hexagonal graphene
flakes do not exhibit the same properties as the results
obtained with the armchair or zigzag boundaries (in both
TBM and continuum models), which shows that this type
of boundary condition may not give a good description of
finite-size hexagonal graphene flakes. On the other hand, for
the triangular case, the results from the continuum model with
infinite-mass boundary conditions describe very well the case
of triangular dots with armchair edges.

In the presence of an external magnetic field, the energy
levels obtained by the continuum model with zigzag and
armchair boundary conditions converge to the Landau levels
of graphene as the magnetic field increases, as observed in the
TBM. However, many additional artifact states appear in the
continuum model, which do not match with any TBM result
and do not approach any Landau level. Besides, the influence
of an external magnetic field on the gap in the energy spectra
of graphene flakes is particulary different for triangular and
hexagonal dots. The energy gap of the hexagonal flakes (with
N, < 10) reduces quickly with increasing the magnetic flux,
whereas the gap of the triangular flakes decreases smoothly as
the magnetic flux increases. This feature is observed in both
TBM and continuum models, and suggests that the energy
gaps of hexagonal flakes are more easily controllable by an
applied external field, as compared to the triangular graphene
dots.
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